qemu/target-ppc/fpu_helper.c
<<
>>
Prefs
   1/*
   2 *  PowerPC floating point and SPE emulation helpers for QEMU.
   3 *
   4 *  Copyright (c) 2003-2007 Jocelyn Mayer
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20#include "cpu.h"
  21#include "exec/helper-proto.h"
  22#include "exec/exec-all.h"
  23
  24#define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
  25#define float32_snan_to_qnan(x) ((x) | 0x00400000)
  26
  27/*****************************************************************************/
  28/* Floating point operations helpers */
  29uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
  30{
  31    CPU_FloatU f;
  32    CPU_DoubleU d;
  33
  34    f.l = arg;
  35    d.d = float32_to_float64(f.f, &env->fp_status);
  36    return d.ll;
  37}
  38
  39uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
  40{
  41    CPU_FloatU f;
  42    CPU_DoubleU d;
  43
  44    d.ll = arg;
  45    f.f = float64_to_float32(d.d, &env->fp_status);
  46    return f.l;
  47}
  48
  49static inline int isden(float64 d)
  50{
  51    CPU_DoubleU u;
  52
  53    u.d = d;
  54
  55    return ((u.ll >> 52) & 0x7FF) == 0;
  56}
  57
  58static inline int ppc_float32_get_unbiased_exp(float32 f)
  59{
  60    return ((f >> 23) & 0xFF) - 127;
  61}
  62
  63static inline int ppc_float64_get_unbiased_exp(float64 f)
  64{
  65    return ((f >> 52) & 0x7FF) - 1023;
  66}
  67
  68void helper_compute_fprf(CPUPPCState *env, uint64_t arg)
  69{
  70    CPU_DoubleU farg;
  71    int isneg;
  72    int fprf;
  73
  74    farg.ll = arg;
  75    isneg = float64_is_neg(farg.d);
  76    if (unlikely(float64_is_any_nan(farg.d))) {
  77        if (float64_is_signaling_nan(farg.d, &env->fp_status)) {
  78            /* Signaling NaN: flags are undefined */
  79            fprf = 0x00;
  80        } else {
  81            /* Quiet NaN */
  82            fprf = 0x11;
  83        }
  84    } else if (unlikely(float64_is_infinity(farg.d))) {
  85        /* +/- infinity */
  86        if (isneg) {
  87            fprf = 0x09;
  88        } else {
  89            fprf = 0x05;
  90        }
  91    } else {
  92        if (float64_is_zero(farg.d)) {
  93            /* +/- zero */
  94            if (isneg) {
  95                fprf = 0x12;
  96            } else {
  97                fprf = 0x02;
  98            }
  99        } else {
 100            if (isden(farg.d)) {
 101                /* Denormalized numbers */
 102                fprf = 0x10;
 103            } else {
 104                /* Normalized numbers */
 105                fprf = 0x00;
 106            }
 107            if (isneg) {
 108                fprf |= 0x08;
 109            } else {
 110                fprf |= 0x04;
 111            }
 112        }
 113    }
 114    /* We update FPSCR_FPRF */
 115    env->fpscr &= ~(0x1F << FPSCR_FPRF);
 116    env->fpscr |= fprf << FPSCR_FPRF;
 117}
 118
 119/* Floating-point invalid operations exception */
 120static inline __attribute__((__always_inline__))
 121uint64_t float_invalid_op_excp(CPUPPCState *env, int op, int set_fpcc)
 122{
 123    CPUState *cs = CPU(ppc_env_get_cpu(env));
 124    uint64_t ret = 0;
 125    int ve;
 126
 127    ve = fpscr_ve;
 128    switch (op) {
 129    case POWERPC_EXCP_FP_VXSNAN:
 130        env->fpscr |= 1 << FPSCR_VXSNAN;
 131        break;
 132    case POWERPC_EXCP_FP_VXSOFT:
 133        env->fpscr |= 1 << FPSCR_VXSOFT;
 134        break;
 135    case POWERPC_EXCP_FP_VXISI:
 136        /* Magnitude subtraction of infinities */
 137        env->fpscr |= 1 << FPSCR_VXISI;
 138        goto update_arith;
 139    case POWERPC_EXCP_FP_VXIDI:
 140        /* Division of infinity by infinity */
 141        env->fpscr |= 1 << FPSCR_VXIDI;
 142        goto update_arith;
 143    case POWERPC_EXCP_FP_VXZDZ:
 144        /* Division of zero by zero */
 145        env->fpscr |= 1 << FPSCR_VXZDZ;
 146        goto update_arith;
 147    case POWERPC_EXCP_FP_VXIMZ:
 148        /* Multiplication of zero by infinity */
 149        env->fpscr |= 1 << FPSCR_VXIMZ;
 150        goto update_arith;
 151    case POWERPC_EXCP_FP_VXVC:
 152        /* Ordered comparison of NaN */
 153        env->fpscr |= 1 << FPSCR_VXVC;
 154        if (set_fpcc) {
 155            env->fpscr &= ~(0xF << FPSCR_FPCC);
 156            env->fpscr |= 0x11 << FPSCR_FPCC;
 157        }
 158        /* We must update the target FPR before raising the exception */
 159        if (ve != 0) {
 160            cs->exception_index = POWERPC_EXCP_PROGRAM;
 161            env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
 162            /* Update the floating-point enabled exception summary */
 163            env->fpscr |= 1 << FPSCR_FEX;
 164            /* Exception is differed */
 165            ve = 0;
 166        }
 167        break;
 168    case POWERPC_EXCP_FP_VXSQRT:
 169        /* Square root of a negative number */
 170        env->fpscr |= 1 << FPSCR_VXSQRT;
 171    update_arith:
 172        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 173        if (ve == 0) {
 174            /* Set the result to quiet NaN */
 175            ret = 0x7FF8000000000000ULL;
 176            if (set_fpcc) {
 177                env->fpscr &= ~(0xF << FPSCR_FPCC);
 178                env->fpscr |= 0x11 << FPSCR_FPCC;
 179            }
 180        }
 181        break;
 182    case POWERPC_EXCP_FP_VXCVI:
 183        /* Invalid conversion */
 184        env->fpscr |= 1 << FPSCR_VXCVI;
 185        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 186        if (ve == 0) {
 187            /* Set the result to quiet NaN */
 188            ret = 0x7FF8000000000000ULL;
 189            if (set_fpcc) {
 190                env->fpscr &= ~(0xF << FPSCR_FPCC);
 191                env->fpscr |= 0x11 << FPSCR_FPCC;
 192            }
 193        }
 194        break;
 195    }
 196    /* Update the floating-point invalid operation summary */
 197    env->fpscr |= 1 << FPSCR_VX;
 198    /* Update the floating-point exception summary */
 199    env->fpscr |= FP_FX;
 200    if (ve != 0) {
 201        /* Update the floating-point enabled exception summary */
 202        env->fpscr |= 1 << FPSCR_FEX;
 203        if (msr_fe0 != 0 || msr_fe1 != 0) {
 204            /* GETPC() works here because this is inline */
 205            raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 206                                   POWERPC_EXCP_FP | op, GETPC());
 207        }
 208    }
 209    return ret;
 210}
 211
 212static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
 213{
 214    env->fpscr |= 1 << FPSCR_ZX;
 215    env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 216    /* Update the floating-point exception summary */
 217    env->fpscr |= FP_FX;
 218    if (fpscr_ze != 0) {
 219        /* Update the floating-point enabled exception summary */
 220        env->fpscr |= 1 << FPSCR_FEX;
 221        if (msr_fe0 != 0 || msr_fe1 != 0) {
 222            raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 223                                   POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
 224                                   raddr);
 225        }
 226    }
 227}
 228
 229static inline void float_overflow_excp(CPUPPCState *env)
 230{
 231    CPUState *cs = CPU(ppc_env_get_cpu(env));
 232
 233    env->fpscr |= 1 << FPSCR_OX;
 234    /* Update the floating-point exception summary */
 235    env->fpscr |= FP_FX;
 236    if (fpscr_oe != 0) {
 237        /* XXX: should adjust the result */
 238        /* Update the floating-point enabled exception summary */
 239        env->fpscr |= 1 << FPSCR_FEX;
 240        /* We must update the target FPR before raising the exception */
 241        cs->exception_index = POWERPC_EXCP_PROGRAM;
 242        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
 243    } else {
 244        env->fpscr |= 1 << FPSCR_XX;
 245        env->fpscr |= 1 << FPSCR_FI;
 246    }
 247}
 248
 249static inline void float_underflow_excp(CPUPPCState *env)
 250{
 251    CPUState *cs = CPU(ppc_env_get_cpu(env));
 252
 253    env->fpscr |= 1 << FPSCR_UX;
 254    /* Update the floating-point exception summary */
 255    env->fpscr |= FP_FX;
 256    if (fpscr_ue != 0) {
 257        /* XXX: should adjust the result */
 258        /* Update the floating-point enabled exception summary */
 259        env->fpscr |= 1 << FPSCR_FEX;
 260        /* We must update the target FPR before raising the exception */
 261        cs->exception_index = POWERPC_EXCP_PROGRAM;
 262        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
 263    }
 264}
 265
 266static inline void float_inexact_excp(CPUPPCState *env)
 267{
 268    CPUState *cs = CPU(ppc_env_get_cpu(env));
 269
 270    env->fpscr |= 1 << FPSCR_XX;
 271    /* Update the floating-point exception summary */
 272    env->fpscr |= FP_FX;
 273    if (fpscr_xe != 0) {
 274        /* Update the floating-point enabled exception summary */
 275        env->fpscr |= 1 << FPSCR_FEX;
 276        /* We must update the target FPR before raising the exception */
 277        cs->exception_index = POWERPC_EXCP_PROGRAM;
 278        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
 279    }
 280}
 281
 282static inline void fpscr_set_rounding_mode(CPUPPCState *env)
 283{
 284    int rnd_type;
 285
 286    /* Set rounding mode */
 287    switch (fpscr_rn) {
 288    case 0:
 289        /* Best approximation (round to nearest) */
 290        rnd_type = float_round_nearest_even;
 291        break;
 292    case 1:
 293        /* Smaller magnitude (round toward zero) */
 294        rnd_type = float_round_to_zero;
 295        break;
 296    case 2:
 297        /* Round toward +infinite */
 298        rnd_type = float_round_up;
 299        break;
 300    default:
 301    case 3:
 302        /* Round toward -infinite */
 303        rnd_type = float_round_down;
 304        break;
 305    }
 306    set_float_rounding_mode(rnd_type, &env->fp_status);
 307}
 308
 309void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
 310{
 311    int prev;
 312
 313    prev = (env->fpscr >> bit) & 1;
 314    env->fpscr &= ~(1 << bit);
 315    if (prev == 1) {
 316        switch (bit) {
 317        case FPSCR_RN1:
 318        case FPSCR_RN:
 319            fpscr_set_rounding_mode(env);
 320            break;
 321        default:
 322            break;
 323        }
 324    }
 325}
 326
 327void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
 328{
 329    CPUState *cs = CPU(ppc_env_get_cpu(env));
 330    int prev;
 331
 332    prev = (env->fpscr >> bit) & 1;
 333    env->fpscr |= 1 << bit;
 334    if (prev == 0) {
 335        switch (bit) {
 336        case FPSCR_VX:
 337            env->fpscr |= FP_FX;
 338            if (fpscr_ve) {
 339                goto raise_ve;
 340            }
 341            break;
 342        case FPSCR_OX:
 343            env->fpscr |= FP_FX;
 344            if (fpscr_oe) {
 345                goto raise_oe;
 346            }
 347            break;
 348        case FPSCR_UX:
 349            env->fpscr |= FP_FX;
 350            if (fpscr_ue) {
 351                goto raise_ue;
 352            }
 353            break;
 354        case FPSCR_ZX:
 355            env->fpscr |= FP_FX;
 356            if (fpscr_ze) {
 357                goto raise_ze;
 358            }
 359            break;
 360        case FPSCR_XX:
 361            env->fpscr |= FP_FX;
 362            if (fpscr_xe) {
 363                goto raise_xe;
 364            }
 365            break;
 366        case FPSCR_VXSNAN:
 367        case FPSCR_VXISI:
 368        case FPSCR_VXIDI:
 369        case FPSCR_VXZDZ:
 370        case FPSCR_VXIMZ:
 371        case FPSCR_VXVC:
 372        case FPSCR_VXSOFT:
 373        case FPSCR_VXSQRT:
 374        case FPSCR_VXCVI:
 375            env->fpscr |= 1 << FPSCR_VX;
 376            env->fpscr |= FP_FX;
 377            if (fpscr_ve != 0) {
 378                goto raise_ve;
 379            }
 380            break;
 381        case FPSCR_VE:
 382            if (fpscr_vx != 0) {
 383            raise_ve:
 384                env->error_code = POWERPC_EXCP_FP;
 385                if (fpscr_vxsnan) {
 386                    env->error_code |= POWERPC_EXCP_FP_VXSNAN;
 387                }
 388                if (fpscr_vxisi) {
 389                    env->error_code |= POWERPC_EXCP_FP_VXISI;
 390                }
 391                if (fpscr_vxidi) {
 392                    env->error_code |= POWERPC_EXCP_FP_VXIDI;
 393                }
 394                if (fpscr_vxzdz) {
 395                    env->error_code |= POWERPC_EXCP_FP_VXZDZ;
 396                }
 397                if (fpscr_vximz) {
 398                    env->error_code |= POWERPC_EXCP_FP_VXIMZ;
 399                }
 400                if (fpscr_vxvc) {
 401                    env->error_code |= POWERPC_EXCP_FP_VXVC;
 402                }
 403                if (fpscr_vxsoft) {
 404                    env->error_code |= POWERPC_EXCP_FP_VXSOFT;
 405                }
 406                if (fpscr_vxsqrt) {
 407                    env->error_code |= POWERPC_EXCP_FP_VXSQRT;
 408                }
 409                if (fpscr_vxcvi) {
 410                    env->error_code |= POWERPC_EXCP_FP_VXCVI;
 411                }
 412                goto raise_excp;
 413            }
 414            break;
 415        case FPSCR_OE:
 416            if (fpscr_ox != 0) {
 417            raise_oe:
 418                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
 419                goto raise_excp;
 420            }
 421            break;
 422        case FPSCR_UE:
 423            if (fpscr_ux != 0) {
 424            raise_ue:
 425                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
 426                goto raise_excp;
 427            }
 428            break;
 429        case FPSCR_ZE:
 430            if (fpscr_zx != 0) {
 431            raise_ze:
 432                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
 433                goto raise_excp;
 434            }
 435            break;
 436        case FPSCR_XE:
 437            if (fpscr_xx != 0) {
 438            raise_xe:
 439                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
 440                goto raise_excp;
 441            }
 442            break;
 443        case FPSCR_RN1:
 444        case FPSCR_RN:
 445            fpscr_set_rounding_mode(env);
 446            break;
 447        default:
 448            break;
 449        raise_excp:
 450            /* Update the floating-point enabled exception summary */
 451            env->fpscr |= 1 << FPSCR_FEX;
 452            /* We have to update Rc1 before raising the exception */
 453            cs->exception_index = POWERPC_EXCP_PROGRAM;
 454            break;
 455        }
 456    }
 457}
 458
 459void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
 460{
 461    CPUState *cs = CPU(ppc_env_get_cpu(env));
 462    target_ulong prev, new;
 463    int i;
 464
 465    prev = env->fpscr;
 466    new = (target_ulong)arg;
 467    new &= ~0x60000000LL;
 468    new |= prev & 0x60000000LL;
 469    for (i = 0; i < sizeof(target_ulong) * 2; i++) {
 470        if (mask & (1 << i)) {
 471            env->fpscr &= ~(0xFLL << (4 * i));
 472            env->fpscr |= new & (0xFLL << (4 * i));
 473        }
 474    }
 475    /* Update VX and FEX */
 476    if (fpscr_ix != 0) {
 477        env->fpscr |= 1 << FPSCR_VX;
 478    } else {
 479        env->fpscr &= ~(1 << FPSCR_VX);
 480    }
 481    if ((fpscr_ex & fpscr_eex) != 0) {
 482        env->fpscr |= 1 << FPSCR_FEX;
 483        cs->exception_index = POWERPC_EXCP_PROGRAM;
 484        /* XXX: we should compute it properly */
 485        env->error_code = POWERPC_EXCP_FP;
 486    } else {
 487        env->fpscr &= ~(1 << FPSCR_FEX);
 488    }
 489    fpscr_set_rounding_mode(env);
 490}
 491
 492void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
 493{
 494    helper_store_fpscr(env, arg, mask);
 495}
 496
 497static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
 498{
 499    CPUState *cs = CPU(ppc_env_get_cpu(env));
 500    int status = get_float_exception_flags(&env->fp_status);
 501
 502    if (status & float_flag_divbyzero) {
 503        float_zero_divide_excp(env, raddr);
 504    } else if (status & float_flag_overflow) {
 505        float_overflow_excp(env);
 506    } else if (status & float_flag_underflow) {
 507        float_underflow_excp(env);
 508    } else if (status & float_flag_inexact) {
 509        float_inexact_excp(env);
 510    }
 511
 512    if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
 513        (env->error_code & POWERPC_EXCP_FP)) {
 514        /* Differred floating-point exception after target FPR update */
 515        if (msr_fe0 != 0 || msr_fe1 != 0) {
 516            raise_exception_err_ra(env, cs->exception_index,
 517                                   env->error_code, raddr);
 518        }
 519    }
 520}
 521
 522static inline  __attribute__((__always_inline__))
 523void float_check_status(CPUPPCState *env)
 524{
 525    /* GETPC() works here because this is inline */
 526    do_float_check_status(env, GETPC());
 527}
 528
 529void helper_float_check_status(CPUPPCState *env)
 530{
 531    do_float_check_status(env, GETPC());
 532}
 533
 534void helper_reset_fpstatus(CPUPPCState *env)
 535{
 536    set_float_exception_flags(0, &env->fp_status);
 537}
 538
 539/* fadd - fadd. */
 540uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 541{
 542    CPU_DoubleU farg1, farg2;
 543
 544    farg1.ll = arg1;
 545    farg2.ll = arg2;
 546
 547    if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
 548                 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
 549        /* Magnitude subtraction of infinities */
 550        farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 551    } else {
 552        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
 553                     float64_is_signaling_nan(farg2.d, &env->fp_status))) {
 554            /* sNaN addition */
 555            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 556        }
 557        farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
 558    }
 559
 560    return farg1.ll;
 561}
 562
 563/* fsub - fsub. */
 564uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 565{
 566    CPU_DoubleU farg1, farg2;
 567
 568    farg1.ll = arg1;
 569    farg2.ll = arg2;
 570
 571    if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
 572                 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
 573        /* Magnitude subtraction of infinities */
 574        farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 575    } else {
 576        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
 577                     float64_is_signaling_nan(farg2.d, &env->fp_status))) {
 578            /* sNaN subtraction */
 579            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 580        }
 581        farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
 582    }
 583
 584    return farg1.ll;
 585}
 586
 587/* fmul - fmul. */
 588uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 589{
 590    CPU_DoubleU farg1, farg2;
 591
 592    farg1.ll = arg1;
 593    farg2.ll = arg2;
 594
 595    if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 596                 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 597        /* Multiplication of zero by infinity */
 598        farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
 599    } else {
 600        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
 601                     float64_is_signaling_nan(farg2.d, &env->fp_status))) {
 602            /* sNaN multiplication */
 603            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 604        }
 605        farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
 606    }
 607
 608    return farg1.ll;
 609}
 610
 611/* fdiv - fdiv. */
 612uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 613{
 614    CPU_DoubleU farg1, farg2;
 615
 616    farg1.ll = arg1;
 617    farg2.ll = arg2;
 618
 619    if (unlikely(float64_is_infinity(farg1.d) &&
 620                 float64_is_infinity(farg2.d))) {
 621        /* Division of infinity by infinity */
 622        farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
 623    } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
 624        /* Division of zero by zero */
 625        farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
 626    } else {
 627        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
 628                     float64_is_signaling_nan(farg2.d, &env->fp_status))) {
 629            /* sNaN division */
 630            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 631        }
 632        farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
 633    }
 634
 635    return farg1.ll;
 636}
 637
 638
 639#define FPU_FCTI(op, cvt, nanval)                                      \
 640uint64_t helper_##op(CPUPPCState *env, uint64_t arg)                   \
 641{                                                                      \
 642    CPU_DoubleU farg;                                                  \
 643                                                                       \
 644    farg.ll = arg;                                                     \
 645    farg.ll = float64_to_##cvt(farg.d, &env->fp_status);               \
 646                                                                       \
 647    if (unlikely(env->fp_status.float_exception_flags)) {              \
 648        if (float64_is_any_nan(arg)) {                                 \
 649            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \
 650            if (float64_is_signaling_nan(arg, &env->fp_status)) {      \
 651                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
 652            }                                                          \
 653            farg.ll = nanval;                                          \
 654        } else if (env->fp_status.float_exception_flags &              \
 655                   float_flag_invalid) {                               \
 656            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \
 657        }                                                              \
 658        float_check_status(env);                                       \
 659    }                                                                  \
 660    return farg.ll;                                                    \
 661 }
 662
 663FPU_FCTI(fctiw, int32, 0x80000000U)
 664FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
 665FPU_FCTI(fctiwu, uint32, 0x00000000U)
 666FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
 667FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
 668FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
 669FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
 670FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
 671
 672#define FPU_FCFI(op, cvtr, is_single)                      \
 673uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \
 674{                                                          \
 675    CPU_DoubleU farg;                                      \
 676                                                           \
 677    if (is_single) {                                       \
 678        float32 tmp = cvtr(arg, &env->fp_status);          \
 679        farg.d = float32_to_float64(tmp, &env->fp_status); \
 680    } else {                                               \
 681        farg.d = cvtr(arg, &env->fp_status);               \
 682    }                                                      \
 683    float_check_status(env);                               \
 684    return farg.ll;                                        \
 685}
 686
 687FPU_FCFI(fcfid, int64_to_float64, 0)
 688FPU_FCFI(fcfids, int64_to_float32, 1)
 689FPU_FCFI(fcfidu, uint64_to_float64, 0)
 690FPU_FCFI(fcfidus, uint64_to_float32, 1)
 691
 692static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
 693                              int rounding_mode)
 694{
 695    CPU_DoubleU farg;
 696
 697    farg.ll = arg;
 698
 699    if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
 700        /* sNaN round */
 701        float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 702        farg.ll = arg | 0x0008000000000000ULL;
 703    } else {
 704        int inexact = get_float_exception_flags(&env->fp_status) &
 705                      float_flag_inexact;
 706        set_float_rounding_mode(rounding_mode, &env->fp_status);
 707        farg.ll = float64_round_to_int(farg.d, &env->fp_status);
 708        /* Restore rounding mode from FPSCR */
 709        fpscr_set_rounding_mode(env);
 710
 711        /* fri* does not set FPSCR[XX] */
 712        if (!inexact) {
 713            env->fp_status.float_exception_flags &= ~float_flag_inexact;
 714        }
 715    }
 716    float_check_status(env);
 717    return farg.ll;
 718}
 719
 720uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
 721{
 722    return do_fri(env, arg, float_round_ties_away);
 723}
 724
 725uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
 726{
 727    return do_fri(env, arg, float_round_to_zero);
 728}
 729
 730uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
 731{
 732    return do_fri(env, arg, float_round_up);
 733}
 734
 735uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
 736{
 737    return do_fri(env, arg, float_round_down);
 738}
 739
 740/* fmadd - fmadd. */
 741uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 742                      uint64_t arg3)
 743{
 744    CPU_DoubleU farg1, farg2, farg3;
 745
 746    farg1.ll = arg1;
 747    farg2.ll = arg2;
 748    farg3.ll = arg3;
 749
 750    if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 751                 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 752        /* Multiplication of zero by infinity */
 753        farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
 754    } else {
 755        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
 756                     float64_is_signaling_nan(farg2.d, &env->fp_status) ||
 757                     float64_is_signaling_nan(farg3.d, &env->fp_status))) {
 758            /* sNaN operation */
 759            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 760        }
 761        /* This is the way the PowerPC specification defines it */
 762        float128 ft0_128, ft1_128;
 763
 764        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 765        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 766        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 767        if (unlikely(float128_is_infinity(ft0_128) &&
 768                     float64_is_infinity(farg3.d) &&
 769                     float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
 770            /* Magnitude subtraction of infinities */
 771            farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 772        } else {
 773            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 774            ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
 775            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 776        }
 777    }
 778
 779    return farg1.ll;
 780}
 781
 782/* fmsub - fmsub. */
 783uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 784                      uint64_t arg3)
 785{
 786    CPU_DoubleU farg1, farg2, farg3;
 787
 788    farg1.ll = arg1;
 789    farg2.ll = arg2;
 790    farg3.ll = arg3;
 791
 792    if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 793                 (float64_is_zero(farg1.d) &&
 794                  float64_is_infinity(farg2.d)))) {
 795        /* Multiplication of zero by infinity */
 796        farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
 797    } else {
 798        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
 799                     float64_is_signaling_nan(farg2.d, &env->fp_status) ||
 800                     float64_is_signaling_nan(farg3.d, &env->fp_status))) {
 801            /* sNaN operation */
 802            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 803        }
 804        /* This is the way the PowerPC specification defines it */
 805        float128 ft0_128, ft1_128;
 806
 807        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 808        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 809        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 810        if (unlikely(float128_is_infinity(ft0_128) &&
 811                     float64_is_infinity(farg3.d) &&
 812                     float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
 813            /* Magnitude subtraction of infinities */
 814            farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 815        } else {
 816            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 817            ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
 818            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 819        }
 820    }
 821    return farg1.ll;
 822}
 823
 824/* fnmadd - fnmadd. */
 825uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 826                       uint64_t arg3)
 827{
 828    CPU_DoubleU farg1, farg2, farg3;
 829
 830    farg1.ll = arg1;
 831    farg2.ll = arg2;
 832    farg3.ll = arg3;
 833
 834    if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 835                 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 836        /* Multiplication of zero by infinity */
 837        farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
 838    } else {
 839        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
 840                     float64_is_signaling_nan(farg2.d, &env->fp_status) ||
 841                     float64_is_signaling_nan(farg3.d, &env->fp_status))) {
 842            /* sNaN operation */
 843            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 844        }
 845        /* This is the way the PowerPC specification defines it */
 846        float128 ft0_128, ft1_128;
 847
 848        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 849        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 850        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 851        if (unlikely(float128_is_infinity(ft0_128) &&
 852                     float64_is_infinity(farg3.d) &&
 853                     float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
 854            /* Magnitude subtraction of infinities */
 855            farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 856        } else {
 857            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 858            ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
 859            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 860        }
 861        if (likely(!float64_is_any_nan(farg1.d))) {
 862            farg1.d = float64_chs(farg1.d);
 863        }
 864    }
 865    return farg1.ll;
 866}
 867
 868/* fnmsub - fnmsub. */
 869uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 870                       uint64_t arg3)
 871{
 872    CPU_DoubleU farg1, farg2, farg3;
 873
 874    farg1.ll = arg1;
 875    farg2.ll = arg2;
 876    farg3.ll = arg3;
 877
 878    if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 879                 (float64_is_zero(farg1.d) &&
 880                  float64_is_infinity(farg2.d)))) {
 881        /* Multiplication of zero by infinity */
 882        farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
 883    } else {
 884        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
 885                     float64_is_signaling_nan(farg2.d, &env->fp_status) ||
 886                     float64_is_signaling_nan(farg3.d, &env->fp_status))) {
 887            /* sNaN operation */
 888            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 889        }
 890        /* This is the way the PowerPC specification defines it */
 891        float128 ft0_128, ft1_128;
 892
 893        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 894        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 895        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 896        if (unlikely(float128_is_infinity(ft0_128) &&
 897                     float64_is_infinity(farg3.d) &&
 898                     float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
 899            /* Magnitude subtraction of infinities */
 900            farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 901        } else {
 902            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 903            ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
 904            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 905        }
 906        if (likely(!float64_is_any_nan(farg1.d))) {
 907            farg1.d = float64_chs(farg1.d);
 908        }
 909    }
 910    return farg1.ll;
 911}
 912
 913/* frsp - frsp. */
 914uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
 915{
 916    CPU_DoubleU farg;
 917    float32 f32;
 918
 919    farg.ll = arg;
 920
 921    if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
 922        /* sNaN square root */
 923        float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 924    }
 925    f32 = float64_to_float32(farg.d, &env->fp_status);
 926    farg.d = float32_to_float64(f32, &env->fp_status);
 927
 928    return farg.ll;
 929}
 930
 931/* fsqrt - fsqrt. */
 932uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
 933{
 934    CPU_DoubleU farg;
 935
 936    farg.ll = arg;
 937
 938    if (unlikely(float64_is_any_nan(farg.d))) {
 939        if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
 940            /* sNaN reciprocal square root */
 941            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 942            farg.ll = float64_snan_to_qnan(farg.ll);
 943        }
 944    } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
 945        /* Square root of a negative nonzero number */
 946        farg.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
 947    } else {
 948        farg.d = float64_sqrt(farg.d, &env->fp_status);
 949    }
 950    return farg.ll;
 951}
 952
 953/* fre - fre. */
 954uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
 955{
 956    CPU_DoubleU farg;
 957
 958    farg.ll = arg;
 959
 960    if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
 961        /* sNaN reciprocal */
 962        float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 963    }
 964    farg.d = float64_div(float64_one, farg.d, &env->fp_status);
 965    return farg.d;
 966}
 967
 968/* fres - fres. */
 969uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
 970{
 971    CPU_DoubleU farg;
 972    float32 f32;
 973
 974    farg.ll = arg;
 975
 976    if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
 977        /* sNaN reciprocal */
 978        float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 979    }
 980    farg.d = float64_div(float64_one, farg.d, &env->fp_status);
 981    f32 = float64_to_float32(farg.d, &env->fp_status);
 982    farg.d = float32_to_float64(f32, &env->fp_status);
 983
 984    return farg.ll;
 985}
 986
 987/* frsqrte  - frsqrte. */
 988uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
 989{
 990    CPU_DoubleU farg;
 991
 992    farg.ll = arg;
 993
 994    if (unlikely(float64_is_any_nan(farg.d))) {
 995        if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
 996            /* sNaN reciprocal square root */
 997            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 998            farg.ll = float64_snan_to_qnan(farg.ll);
 999        }
1000    } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1001        /* Reciprocal square root of a negative nonzero number */
1002        farg.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
1003    } else {
1004        farg.d = float64_sqrt(farg.d, &env->fp_status);
1005        farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1006    }
1007
1008    return farg.ll;
1009}
1010
1011/* fsel - fsel. */
1012uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1013                     uint64_t arg3)
1014{
1015    CPU_DoubleU farg1;
1016
1017    farg1.ll = arg1;
1018
1019    if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1020        !float64_is_any_nan(farg1.d)) {
1021        return arg2;
1022    } else {
1023        return arg3;
1024    }
1025}
1026
1027uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1028{
1029    int fe_flag = 0;
1030    int fg_flag = 0;
1031
1032    if (unlikely(float64_is_infinity(fra) ||
1033                 float64_is_infinity(frb) ||
1034                 float64_is_zero(frb))) {
1035        fe_flag = 1;
1036        fg_flag = 1;
1037    } else {
1038        int e_a = ppc_float64_get_unbiased_exp(fra);
1039        int e_b = ppc_float64_get_unbiased_exp(frb);
1040
1041        if (unlikely(float64_is_any_nan(fra) ||
1042                     float64_is_any_nan(frb))) {
1043            fe_flag = 1;
1044        } else if ((e_b <= -1022) || (e_b >= 1021)) {
1045            fe_flag = 1;
1046        } else if (!float64_is_zero(fra) &&
1047                   (((e_a - e_b) >= 1023) ||
1048                    ((e_a - e_b) <= -1021) ||
1049                    (e_a <= -970))) {
1050            fe_flag = 1;
1051        }
1052
1053        if (unlikely(float64_is_zero_or_denormal(frb))) {
1054            /* XB is not zero because of the above check and */
1055            /* so must be denormalized.                      */
1056            fg_flag = 1;
1057        }
1058    }
1059
1060    return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1061}
1062
1063uint32_t helper_ftsqrt(uint64_t frb)
1064{
1065    int fe_flag = 0;
1066    int fg_flag = 0;
1067
1068    if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1069        fe_flag = 1;
1070        fg_flag = 1;
1071    } else {
1072        int e_b = ppc_float64_get_unbiased_exp(frb);
1073
1074        if (unlikely(float64_is_any_nan(frb))) {
1075            fe_flag = 1;
1076        } else if (unlikely(float64_is_zero(frb))) {
1077            fe_flag = 1;
1078        } else if (unlikely(float64_is_neg(frb))) {
1079            fe_flag = 1;
1080        } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) {
1081            fe_flag = 1;
1082        }
1083
1084        if (unlikely(float64_is_zero_or_denormal(frb))) {
1085            /* XB is not zero because of the above check and */
1086            /* therefore must be denormalized.               */
1087            fg_flag = 1;
1088        }
1089    }
1090
1091    return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1092}
1093
1094void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1095                  uint32_t crfD)
1096{
1097    CPU_DoubleU farg1, farg2;
1098    uint32_t ret = 0;
1099
1100    farg1.ll = arg1;
1101    farg2.ll = arg2;
1102
1103    if (unlikely(float64_is_any_nan(farg1.d) ||
1104                 float64_is_any_nan(farg2.d))) {
1105        ret = 0x01UL;
1106    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1107        ret = 0x08UL;
1108    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1109        ret = 0x04UL;
1110    } else {
1111        ret = 0x02UL;
1112    }
1113
1114    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1115    env->fpscr |= ret << FPSCR_FPRF;
1116    env->crf[crfD] = ret;
1117    if (unlikely(ret == 0x01UL
1118                 && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1119                     float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1120        /* sNaN comparison */
1121        float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1122    }
1123}
1124
1125void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1126                  uint32_t crfD)
1127{
1128    CPU_DoubleU farg1, farg2;
1129    uint32_t ret = 0;
1130
1131    farg1.ll = arg1;
1132    farg2.ll = arg2;
1133
1134    if (unlikely(float64_is_any_nan(farg1.d) ||
1135                 float64_is_any_nan(farg2.d))) {
1136        ret = 0x01UL;
1137    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1138        ret = 0x08UL;
1139    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1140        ret = 0x04UL;
1141    } else {
1142        ret = 0x02UL;
1143    }
1144
1145    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1146    env->fpscr |= ret << FPSCR_FPRF;
1147    env->crf[crfD] = ret;
1148    if (unlikely(ret == 0x01UL)) {
1149        if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1150            float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1151            /* sNaN comparison */
1152            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1153                                  POWERPC_EXCP_FP_VXVC, 1);
1154        } else {
1155            /* qNaN comparison */
1156            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1);
1157        }
1158    }
1159}
1160
1161/* Single-precision floating-point conversions */
1162static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1163{
1164    CPU_FloatU u;
1165
1166    u.f = int32_to_float32(val, &env->vec_status);
1167
1168    return u.l;
1169}
1170
1171static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1172{
1173    CPU_FloatU u;
1174
1175    u.f = uint32_to_float32(val, &env->vec_status);
1176
1177    return u.l;
1178}
1179
1180static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1181{
1182    CPU_FloatU u;
1183
1184    u.l = val;
1185    /* NaN are not treated the same way IEEE 754 does */
1186    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1187        return 0;
1188    }
1189
1190    return float32_to_int32(u.f, &env->vec_status);
1191}
1192
1193static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1194{
1195    CPU_FloatU u;
1196
1197    u.l = val;
1198    /* NaN are not treated the same way IEEE 754 does */
1199    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1200        return 0;
1201    }
1202
1203    return float32_to_uint32(u.f, &env->vec_status);
1204}
1205
1206static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1207{
1208    CPU_FloatU u;
1209
1210    u.l = val;
1211    /* NaN are not treated the same way IEEE 754 does */
1212    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1213        return 0;
1214    }
1215
1216    return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1217}
1218
1219static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1220{
1221    CPU_FloatU u;
1222
1223    u.l = val;
1224    /* NaN are not treated the same way IEEE 754 does */
1225    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1226        return 0;
1227    }
1228
1229    return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1230}
1231
1232static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1233{
1234    CPU_FloatU u;
1235    float32 tmp;
1236
1237    u.f = int32_to_float32(val, &env->vec_status);
1238    tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1239    u.f = float32_div(u.f, tmp, &env->vec_status);
1240
1241    return u.l;
1242}
1243
1244static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1245{
1246    CPU_FloatU u;
1247    float32 tmp;
1248
1249    u.f = uint32_to_float32(val, &env->vec_status);
1250    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1251    u.f = float32_div(u.f, tmp, &env->vec_status);
1252
1253    return u.l;
1254}
1255
1256static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1257{
1258    CPU_FloatU u;
1259    float32 tmp;
1260
1261    u.l = val;
1262    /* NaN are not treated the same way IEEE 754 does */
1263    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1264        return 0;
1265    }
1266    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1267    u.f = float32_mul(u.f, tmp, &env->vec_status);
1268
1269    return float32_to_int32(u.f, &env->vec_status);
1270}
1271
1272static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1273{
1274    CPU_FloatU u;
1275    float32 tmp;
1276
1277    u.l = val;
1278    /* NaN are not treated the same way IEEE 754 does */
1279    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1280        return 0;
1281    }
1282    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1283    u.f = float32_mul(u.f, tmp, &env->vec_status);
1284
1285    return float32_to_uint32(u.f, &env->vec_status);
1286}
1287
1288#define HELPER_SPE_SINGLE_CONV(name)                              \
1289    uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
1290    {                                                             \
1291        return e##name(env, val);                                 \
1292    }
1293/* efscfsi */
1294HELPER_SPE_SINGLE_CONV(fscfsi);
1295/* efscfui */
1296HELPER_SPE_SINGLE_CONV(fscfui);
1297/* efscfuf */
1298HELPER_SPE_SINGLE_CONV(fscfuf);
1299/* efscfsf */
1300HELPER_SPE_SINGLE_CONV(fscfsf);
1301/* efsctsi */
1302HELPER_SPE_SINGLE_CONV(fsctsi);
1303/* efsctui */
1304HELPER_SPE_SINGLE_CONV(fsctui);
1305/* efsctsiz */
1306HELPER_SPE_SINGLE_CONV(fsctsiz);
1307/* efsctuiz */
1308HELPER_SPE_SINGLE_CONV(fsctuiz);
1309/* efsctsf */
1310HELPER_SPE_SINGLE_CONV(fsctsf);
1311/* efsctuf */
1312HELPER_SPE_SINGLE_CONV(fsctuf);
1313
1314#define HELPER_SPE_VECTOR_CONV(name)                            \
1315    uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
1316    {                                                           \
1317        return ((uint64_t)e##name(env, val >> 32) << 32) |      \
1318            (uint64_t)e##name(env, val);                        \
1319    }
1320/* evfscfsi */
1321HELPER_SPE_VECTOR_CONV(fscfsi);
1322/* evfscfui */
1323HELPER_SPE_VECTOR_CONV(fscfui);
1324/* evfscfuf */
1325HELPER_SPE_VECTOR_CONV(fscfuf);
1326/* evfscfsf */
1327HELPER_SPE_VECTOR_CONV(fscfsf);
1328/* evfsctsi */
1329HELPER_SPE_VECTOR_CONV(fsctsi);
1330/* evfsctui */
1331HELPER_SPE_VECTOR_CONV(fsctui);
1332/* evfsctsiz */
1333HELPER_SPE_VECTOR_CONV(fsctsiz);
1334/* evfsctuiz */
1335HELPER_SPE_VECTOR_CONV(fsctuiz);
1336/* evfsctsf */
1337HELPER_SPE_VECTOR_CONV(fsctsf);
1338/* evfsctuf */
1339HELPER_SPE_VECTOR_CONV(fsctuf);
1340
1341/* Single-precision floating-point arithmetic */
1342static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1343{
1344    CPU_FloatU u1, u2;
1345
1346    u1.l = op1;
1347    u2.l = op2;
1348    u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1349    return u1.l;
1350}
1351
1352static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1353{
1354    CPU_FloatU u1, u2;
1355
1356    u1.l = op1;
1357    u2.l = op2;
1358    u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1359    return u1.l;
1360}
1361
1362static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1363{
1364    CPU_FloatU u1, u2;
1365
1366    u1.l = op1;
1367    u2.l = op2;
1368    u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1369    return u1.l;
1370}
1371
1372static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1373{
1374    CPU_FloatU u1, u2;
1375
1376    u1.l = op1;
1377    u2.l = op2;
1378    u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1379    return u1.l;
1380}
1381
1382#define HELPER_SPE_SINGLE_ARITH(name)                                   \
1383    uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1384    {                                                                   \
1385        return e##name(env, op1, op2);                                  \
1386    }
1387/* efsadd */
1388HELPER_SPE_SINGLE_ARITH(fsadd);
1389/* efssub */
1390HELPER_SPE_SINGLE_ARITH(fssub);
1391/* efsmul */
1392HELPER_SPE_SINGLE_ARITH(fsmul);
1393/* efsdiv */
1394HELPER_SPE_SINGLE_ARITH(fsdiv);
1395
1396#define HELPER_SPE_VECTOR_ARITH(name)                                   \
1397    uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1398    {                                                                   \
1399        return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
1400            (uint64_t)e##name(env, op1, op2);                           \
1401    }
1402/* evfsadd */
1403HELPER_SPE_VECTOR_ARITH(fsadd);
1404/* evfssub */
1405HELPER_SPE_VECTOR_ARITH(fssub);
1406/* evfsmul */
1407HELPER_SPE_VECTOR_ARITH(fsmul);
1408/* evfsdiv */
1409HELPER_SPE_VECTOR_ARITH(fsdiv);
1410
1411/* Single-precision floating-point comparisons */
1412static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1413{
1414    CPU_FloatU u1, u2;
1415
1416    u1.l = op1;
1417    u2.l = op2;
1418    return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1419}
1420
1421static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1422{
1423    CPU_FloatU u1, u2;
1424
1425    u1.l = op1;
1426    u2.l = op2;
1427    return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1428}
1429
1430static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1431{
1432    CPU_FloatU u1, u2;
1433
1434    u1.l = op1;
1435    u2.l = op2;
1436    return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1437}
1438
1439static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1440{
1441    /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1442    return efscmplt(env, op1, op2);
1443}
1444
1445static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1446{
1447    /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1448    return efscmpgt(env, op1, op2);
1449}
1450
1451static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1452{
1453    /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1454    return efscmpeq(env, op1, op2);
1455}
1456
1457#define HELPER_SINGLE_SPE_CMP(name)                                     \
1458    uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1459    {                                                                   \
1460        return e##name(env, op1, op2);                                  \
1461    }
1462/* efststlt */
1463HELPER_SINGLE_SPE_CMP(fststlt);
1464/* efststgt */
1465HELPER_SINGLE_SPE_CMP(fststgt);
1466/* efststeq */
1467HELPER_SINGLE_SPE_CMP(fststeq);
1468/* efscmplt */
1469HELPER_SINGLE_SPE_CMP(fscmplt);
1470/* efscmpgt */
1471HELPER_SINGLE_SPE_CMP(fscmpgt);
1472/* efscmpeq */
1473HELPER_SINGLE_SPE_CMP(fscmpeq);
1474
1475static inline uint32_t evcmp_merge(int t0, int t1)
1476{
1477    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1478}
1479
1480#define HELPER_VECTOR_SPE_CMP(name)                                     \
1481    uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1482    {                                                                   \
1483        return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
1484                           e##name(env, op1, op2));                     \
1485    }
1486/* evfststlt */
1487HELPER_VECTOR_SPE_CMP(fststlt);
1488/* evfststgt */
1489HELPER_VECTOR_SPE_CMP(fststgt);
1490/* evfststeq */
1491HELPER_VECTOR_SPE_CMP(fststeq);
1492/* evfscmplt */
1493HELPER_VECTOR_SPE_CMP(fscmplt);
1494/* evfscmpgt */
1495HELPER_VECTOR_SPE_CMP(fscmpgt);
1496/* evfscmpeq */
1497HELPER_VECTOR_SPE_CMP(fscmpeq);
1498
1499/* Double-precision floating-point conversion */
1500uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1501{
1502    CPU_DoubleU u;
1503
1504    u.d = int32_to_float64(val, &env->vec_status);
1505
1506    return u.ll;
1507}
1508
1509uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1510{
1511    CPU_DoubleU u;
1512
1513    u.d = int64_to_float64(val, &env->vec_status);
1514
1515    return u.ll;
1516}
1517
1518uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1519{
1520    CPU_DoubleU u;
1521
1522    u.d = uint32_to_float64(val, &env->vec_status);
1523
1524    return u.ll;
1525}
1526
1527uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1528{
1529    CPU_DoubleU u;
1530
1531    u.d = uint64_to_float64(val, &env->vec_status);
1532
1533    return u.ll;
1534}
1535
1536uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1537{
1538    CPU_DoubleU u;
1539
1540    u.ll = val;
1541    /* NaN are not treated the same way IEEE 754 does */
1542    if (unlikely(float64_is_any_nan(u.d))) {
1543        return 0;
1544    }
1545
1546    return float64_to_int32(u.d, &env->vec_status);
1547}
1548
1549uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1550{
1551    CPU_DoubleU u;
1552
1553    u.ll = val;
1554    /* NaN are not treated the same way IEEE 754 does */
1555    if (unlikely(float64_is_any_nan(u.d))) {
1556        return 0;
1557    }
1558
1559    return float64_to_uint32(u.d, &env->vec_status);
1560}
1561
1562uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1563{
1564    CPU_DoubleU u;
1565
1566    u.ll = val;
1567    /* NaN are not treated the same way IEEE 754 does */
1568    if (unlikely(float64_is_any_nan(u.d))) {
1569        return 0;
1570    }
1571
1572    return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1573}
1574
1575uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1576{
1577    CPU_DoubleU u;
1578
1579    u.ll = val;
1580    /* NaN are not treated the same way IEEE 754 does */
1581    if (unlikely(float64_is_any_nan(u.d))) {
1582        return 0;
1583    }
1584
1585    return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1586}
1587
1588uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1589{
1590    CPU_DoubleU u;
1591
1592    u.ll = val;
1593    /* NaN are not treated the same way IEEE 754 does */
1594    if (unlikely(float64_is_any_nan(u.d))) {
1595        return 0;
1596    }
1597
1598    return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1599}
1600
1601uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1602{
1603    CPU_DoubleU u;
1604
1605    u.ll = val;
1606    /* NaN are not treated the same way IEEE 754 does */
1607    if (unlikely(float64_is_any_nan(u.d))) {
1608        return 0;
1609    }
1610
1611    return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1612}
1613
1614uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1615{
1616    CPU_DoubleU u;
1617    float64 tmp;
1618
1619    u.d = int32_to_float64(val, &env->vec_status);
1620    tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1621    u.d = float64_div(u.d, tmp, &env->vec_status);
1622
1623    return u.ll;
1624}
1625
1626uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1627{
1628    CPU_DoubleU u;
1629    float64 tmp;
1630
1631    u.d = uint32_to_float64(val, &env->vec_status);
1632    tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1633    u.d = float64_div(u.d, tmp, &env->vec_status);
1634
1635    return u.ll;
1636}
1637
1638uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1639{
1640    CPU_DoubleU u;
1641    float64 tmp;
1642
1643    u.ll = val;
1644    /* NaN are not treated the same way IEEE 754 does */
1645    if (unlikely(float64_is_any_nan(u.d))) {
1646        return 0;
1647    }
1648    tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1649    u.d = float64_mul(u.d, tmp, &env->vec_status);
1650
1651    return float64_to_int32(u.d, &env->vec_status);
1652}
1653
1654uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1655{
1656    CPU_DoubleU u;
1657    float64 tmp;
1658
1659    u.ll = val;
1660    /* NaN are not treated the same way IEEE 754 does */
1661    if (unlikely(float64_is_any_nan(u.d))) {
1662        return 0;
1663    }
1664    tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1665    u.d = float64_mul(u.d, tmp, &env->vec_status);
1666
1667    return float64_to_uint32(u.d, &env->vec_status);
1668}
1669
1670uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1671{
1672    CPU_DoubleU u1;
1673    CPU_FloatU u2;
1674
1675    u1.ll = val;
1676    u2.f = float64_to_float32(u1.d, &env->vec_status);
1677
1678    return u2.l;
1679}
1680
1681uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1682{
1683    CPU_DoubleU u2;
1684    CPU_FloatU u1;
1685
1686    u1.l = val;
1687    u2.d = float32_to_float64(u1.f, &env->vec_status);
1688
1689    return u2.ll;
1690}
1691
1692/* Double precision fixed-point arithmetic */
1693uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1694{
1695    CPU_DoubleU u1, u2;
1696
1697    u1.ll = op1;
1698    u2.ll = op2;
1699    u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1700    return u1.ll;
1701}
1702
1703uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1704{
1705    CPU_DoubleU u1, u2;
1706
1707    u1.ll = op1;
1708    u2.ll = op2;
1709    u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1710    return u1.ll;
1711}
1712
1713uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1714{
1715    CPU_DoubleU u1, u2;
1716
1717    u1.ll = op1;
1718    u2.ll = op2;
1719    u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1720    return u1.ll;
1721}
1722
1723uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1724{
1725    CPU_DoubleU u1, u2;
1726
1727    u1.ll = op1;
1728    u2.ll = op2;
1729    u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1730    return u1.ll;
1731}
1732
1733/* Double precision floating point helpers */
1734uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1735{
1736    CPU_DoubleU u1, u2;
1737
1738    u1.ll = op1;
1739    u2.ll = op2;
1740    return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1741}
1742
1743uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1744{
1745    CPU_DoubleU u1, u2;
1746
1747    u1.ll = op1;
1748    u2.ll = op2;
1749    return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1750}
1751
1752uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1753{
1754    CPU_DoubleU u1, u2;
1755
1756    u1.ll = op1;
1757    u2.ll = op2;
1758    return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1759}
1760
1761uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1762{
1763    /* XXX: TODO: test special values (NaN, infinites, ...) */
1764    return helper_efdtstlt(env, op1, op2);
1765}
1766
1767uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1768{
1769    /* XXX: TODO: test special values (NaN, infinites, ...) */
1770    return helper_efdtstgt(env, op1, op2);
1771}
1772
1773uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1774{
1775    /* XXX: TODO: test special values (NaN, infinites, ...) */
1776    return helper_efdtsteq(env, op1, op2);
1777}
1778
1779#define DECODE_SPLIT(opcode, shift1, nb1, shift2, nb2) \
1780    (((((opcode) >> (shift1)) & ((1 << (nb1)) - 1)) << nb2) |    \
1781     (((opcode) >> (shift2)) & ((1 << (nb2)) - 1)))
1782
1783#define xT(opcode) DECODE_SPLIT(opcode, 0, 1, 21, 5)
1784#define xA(opcode) DECODE_SPLIT(opcode, 2, 1, 16, 5)
1785#define xB(opcode) DECODE_SPLIT(opcode, 1, 1, 11, 5)
1786#define xC(opcode) DECODE_SPLIT(opcode, 3, 1,  6, 5)
1787#define BF(opcode) (((opcode) >> (31-8)) & 7)
1788
1789typedef union _ppc_vsr_t {
1790    uint64_t u64[2];
1791    uint32_t u32[4];
1792    float32 f32[4];
1793    float64 f64[2];
1794} ppc_vsr_t;
1795
1796#if defined(HOST_WORDS_BIGENDIAN)
1797#define VsrW(i) u32[i]
1798#define VsrD(i) u64[i]
1799#else
1800#define VsrW(i) u32[3-(i)]
1801#define VsrD(i) u64[1-(i)]
1802#endif
1803
1804static void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1805{
1806    if (n < 32) {
1807        vsr->VsrD(0) = env->fpr[n];
1808        vsr->VsrD(1) = env->vsr[n];
1809    } else {
1810        vsr->u64[0] = env->avr[n-32].u64[0];
1811        vsr->u64[1] = env->avr[n-32].u64[1];
1812    }
1813}
1814
1815static void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1816{
1817    if (n < 32) {
1818        env->fpr[n] = vsr->VsrD(0);
1819        env->vsr[n] = vsr->VsrD(1);
1820    } else {
1821        env->avr[n-32].u64[0] = vsr->u64[0];
1822        env->avr[n-32].u64[1] = vsr->u64[1];
1823    }
1824}
1825
1826#define float64_to_float64(x, env) x
1827
1828
1829/* VSX_ADD_SUB - VSX floating point add/subract
1830 *   name  - instruction mnemonic
1831 *   op    - operation (add or sub)
1832 *   nels  - number of elements (1, 2 or 4)
1833 *   tp    - type (float32 or float64)
1834 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1835 *   sfprf - set FPRF
1836 */
1837#define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp)                    \
1838void helper_##name(CPUPPCState *env, uint32_t opcode)                        \
1839{                                                                            \
1840    ppc_vsr_t xt, xa, xb;                                                    \
1841    int i;                                                                   \
1842                                                                             \
1843    getVSR(xA(opcode), &xa, env);                                            \
1844    getVSR(xB(opcode), &xb, env);                                            \
1845    getVSR(xT(opcode), &xt, env);                                            \
1846    helper_reset_fpstatus(env);                                              \
1847                                                                             \
1848    for (i = 0; i < nels; i++) {                                             \
1849        float_status tstat = env->fp_status;                                 \
1850        set_float_exception_flags(0, &tstat);                                \
1851        xt.fld = tp##_##op(xa.fld, xb.fld, &tstat);                          \
1852        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1853                                                                             \
1854        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1855            if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) {      \
1856                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);    \
1857            } else if (tp##_is_signaling_nan(xa.fld, &tstat) ||              \
1858                       tp##_is_signaling_nan(xb.fld, &tstat)) {              \
1859                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
1860            }                                                                \
1861        }                                                                    \
1862                                                                             \
1863        if (r2sp) {                                                          \
1864            xt.fld = helper_frsp(env, xt.fld);                               \
1865        }                                                                    \
1866                                                                             \
1867        if (sfprf) {                                                         \
1868            helper_compute_fprf(env, xt.fld);                                \
1869        }                                                                    \
1870    }                                                                        \
1871    putVSR(xT(opcode), &xt, env);                                            \
1872    float_check_status(env);                                                 \
1873}
1874
1875VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1876VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1877VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1878VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1879VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1880VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1881VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1882VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1883
1884/* VSX_MUL - VSX floating point multiply
1885 *   op    - instruction mnemonic
1886 *   nels  - number of elements (1, 2 or 4)
1887 *   tp    - type (float32 or float64)
1888 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1889 *   sfprf - set FPRF
1890 */
1891#define VSX_MUL(op, nels, tp, fld, sfprf, r2sp)                              \
1892void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
1893{                                                                            \
1894    ppc_vsr_t xt, xa, xb;                                                    \
1895    int i;                                                                   \
1896                                                                             \
1897    getVSR(xA(opcode), &xa, env);                                            \
1898    getVSR(xB(opcode), &xb, env);                                            \
1899    getVSR(xT(opcode), &xt, env);                                            \
1900    helper_reset_fpstatus(env);                                              \
1901                                                                             \
1902    for (i = 0; i < nels; i++) {                                             \
1903        float_status tstat = env->fp_status;                                 \
1904        set_float_exception_flags(0, &tstat);                                \
1905        xt.fld = tp##_mul(xa.fld, xb.fld, &tstat);                           \
1906        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1907                                                                             \
1908        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1909            if ((tp##_is_infinity(xa.fld) && tp##_is_zero(xb.fld)) ||        \
1910                (tp##_is_infinity(xb.fld) && tp##_is_zero(xa.fld))) {        \
1911                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf);    \
1912            } else if (tp##_is_signaling_nan(xa.fld, &tstat) ||              \
1913                       tp##_is_signaling_nan(xb.fld, &tstat)) {              \
1914                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
1915            }                                                                \
1916        }                                                                    \
1917                                                                             \
1918        if (r2sp) {                                                          \
1919            xt.fld = helper_frsp(env, xt.fld);                               \
1920        }                                                                    \
1921                                                                             \
1922        if (sfprf) {                                                         \
1923            helper_compute_fprf(env, xt.fld);                                \
1924        }                                                                    \
1925    }                                                                        \
1926                                                                             \
1927    putVSR(xT(opcode), &xt, env);                                            \
1928    float_check_status(env);                                                 \
1929}
1930
1931VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1932VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1933VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1934VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1935
1936/* VSX_DIV - VSX floating point divide
1937 *   op    - instruction mnemonic
1938 *   nels  - number of elements (1, 2 or 4)
1939 *   tp    - type (float32 or float64)
1940 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1941 *   sfprf - set FPRF
1942 */
1943#define VSX_DIV(op, nels, tp, fld, sfprf, r2sp)                               \
1944void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1945{                                                                             \
1946    ppc_vsr_t xt, xa, xb;                                                     \
1947    int i;                                                                    \
1948                                                                              \
1949    getVSR(xA(opcode), &xa, env);                                             \
1950    getVSR(xB(opcode), &xb, env);                                             \
1951    getVSR(xT(opcode), &xt, env);                                             \
1952    helper_reset_fpstatus(env);                                               \
1953                                                                              \
1954    for (i = 0; i < nels; i++) {                                              \
1955        float_status tstat = env->fp_status;                                  \
1956        set_float_exception_flags(0, &tstat);                                 \
1957        xt.fld = tp##_div(xa.fld, xb.fld, &tstat);                            \
1958        env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
1959                                                                              \
1960        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
1961            if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) {       \
1962                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf);     \
1963            } else if (tp##_is_zero(xa.fld) &&                                \
1964                tp##_is_zero(xb.fld)) {                                       \
1965                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf);     \
1966            } else if (tp##_is_signaling_nan(xa.fld, &tstat) ||               \
1967                tp##_is_signaling_nan(xb.fld, &tstat)) {                      \
1968                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
1969            }                                                                 \
1970        }                                                                     \
1971                                                                              \
1972        if (r2sp) {                                                           \
1973            xt.fld = helper_frsp(env, xt.fld);                                \
1974        }                                                                     \
1975                                                                              \
1976        if (sfprf) {                                                          \
1977            helper_compute_fprf(env, xt.fld);                                 \
1978        }                                                                     \
1979    }                                                                         \
1980                                                                              \
1981    putVSR(xT(opcode), &xt, env);                                             \
1982    float_check_status(env);                                                  \
1983}
1984
1985VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1986VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1987VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1988VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1989
1990/* VSX_RE  - VSX floating point reciprocal estimate
1991 *   op    - instruction mnemonic
1992 *   nels  - number of elements (1, 2 or 4)
1993 *   tp    - type (float32 or float64)
1994 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1995 *   sfprf - set FPRF
1996 */
1997#define VSX_RE(op, nels, tp, fld, sfprf, r2sp)                                \
1998void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1999{                                                                             \
2000    ppc_vsr_t xt, xb;                                                         \
2001    int i;                                                                    \
2002                                                                              \
2003    getVSR(xB(opcode), &xb, env);                                             \
2004    getVSR(xT(opcode), &xt, env);                                             \
2005    helper_reset_fpstatus(env);                                               \
2006                                                                              \
2007    for (i = 0; i < nels; i++) {                                              \
2008        if (unlikely(tp##_is_signaling_nan(xb.fld, &env->fp_status))) {       \
2009                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
2010        }                                                                     \
2011        xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status);                 \
2012                                                                              \
2013        if (r2sp) {                                                           \
2014            xt.fld = helper_frsp(env, xt.fld);                                \
2015        }                                                                     \
2016                                                                              \
2017        if (sfprf) {                                                          \
2018            helper_compute_fprf(env, xt.fld);                                 \
2019        }                                                                     \
2020    }                                                                         \
2021                                                                              \
2022    putVSR(xT(opcode), &xt, env);                                             \
2023    float_check_status(env);                                                  \
2024}
2025
2026VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2027VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2028VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2029VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2030
2031/* VSX_SQRT - VSX floating point square root
2032 *   op    - instruction mnemonic
2033 *   nels  - number of elements (1, 2 or 4)
2034 *   tp    - type (float32 or float64)
2035 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2036 *   sfprf - set FPRF
2037 */
2038#define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp)                             \
2039void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2040{                                                                            \
2041    ppc_vsr_t xt, xb;                                                        \
2042    int i;                                                                   \
2043                                                                             \
2044    getVSR(xB(opcode), &xb, env);                                            \
2045    getVSR(xT(opcode), &xt, env);                                            \
2046    helper_reset_fpstatus(env);                                              \
2047                                                                             \
2048    for (i = 0; i < nels; i++) {                                             \
2049        float_status tstat = env->fp_status;                                 \
2050        set_float_exception_flags(0, &tstat);                                \
2051        xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2052        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2053                                                                             \
2054        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2055            if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2056                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
2057            } else if (tp##_is_signaling_nan(xb.fld, &tstat)) {              \
2058                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
2059            }                                                                \
2060        }                                                                    \
2061                                                                             \
2062        if (r2sp) {                                                          \
2063            xt.fld = helper_frsp(env, xt.fld);                               \
2064        }                                                                    \
2065                                                                             \
2066        if (sfprf) {                                                         \
2067            helper_compute_fprf(env, xt.fld);                                \
2068        }                                                                    \
2069    }                                                                        \
2070                                                                             \
2071    putVSR(xT(opcode), &xt, env);                                            \
2072    float_check_status(env);                                                 \
2073}
2074
2075VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2076VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2077VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2078VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2079
2080/* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2081 *   op    - instruction mnemonic
2082 *   nels  - number of elements (1, 2 or 4)
2083 *   tp    - type (float32 or float64)
2084 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2085 *   sfprf - set FPRF
2086 */
2087#define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp)                           \
2088void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2089{                                                                            \
2090    ppc_vsr_t xt, xb;                                                        \
2091    int i;                                                                   \
2092                                                                             \
2093    getVSR(xB(opcode), &xb, env);                                            \
2094    getVSR(xT(opcode), &xt, env);                                            \
2095    helper_reset_fpstatus(env);                                              \
2096                                                                             \
2097    for (i = 0; i < nels; i++) {                                             \
2098        float_status tstat = env->fp_status;                                 \
2099        set_float_exception_flags(0, &tstat);                                \
2100        xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2101        xt.fld = tp##_div(tp##_one, xt.fld, &tstat);                         \
2102        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2103                                                                             \
2104        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2105            if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2106                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
2107            } else if (tp##_is_signaling_nan(xb.fld, &tstat)) {              \
2108                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
2109            }                                                                \
2110        }                                                                    \
2111                                                                             \
2112        if (r2sp) {                                                          \
2113            xt.fld = helper_frsp(env, xt.fld);                               \
2114        }                                                                    \
2115                                                                             \
2116        if (sfprf) {                                                         \
2117            helper_compute_fprf(env, xt.fld);                                \
2118        }                                                                    \
2119    }                                                                        \
2120                                                                             \
2121    putVSR(xT(opcode), &xt, env);                                            \
2122    float_check_status(env);                                                 \
2123}
2124
2125VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2126VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2127VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2128VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2129
2130/* VSX_TDIV - VSX floating point test for divide
2131 *   op    - instruction mnemonic
2132 *   nels  - number of elements (1, 2 or 4)
2133 *   tp    - type (float32 or float64)
2134 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2135 *   emin  - minimum unbiased exponent
2136 *   emax  - maximum unbiased exponent
2137 *   nbits - number of fraction bits
2138 */
2139#define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \
2140void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2141{                                                                       \
2142    ppc_vsr_t xa, xb;                                                   \
2143    int i;                                                              \
2144    int fe_flag = 0;                                                    \
2145    int fg_flag = 0;                                                    \
2146                                                                        \
2147    getVSR(xA(opcode), &xa, env);                                       \
2148    getVSR(xB(opcode), &xb, env);                                       \
2149                                                                        \
2150    for (i = 0; i < nels; i++) {                                        \
2151        if (unlikely(tp##_is_infinity(xa.fld) ||                        \
2152                     tp##_is_infinity(xb.fld) ||                        \
2153                     tp##_is_zero(xb.fld))) {                           \
2154            fe_flag = 1;                                                \
2155            fg_flag = 1;                                                \
2156        } else {                                                        \
2157            int e_a = ppc_##tp##_get_unbiased_exp(xa.fld);              \
2158            int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2159                                                                        \
2160            if (unlikely(tp##_is_any_nan(xa.fld) ||                     \
2161                         tp##_is_any_nan(xb.fld))) {                    \
2162                fe_flag = 1;                                            \
2163            } else if ((e_b <= emin) || (e_b >= (emax-2))) {            \
2164                fe_flag = 1;                                            \
2165            } else if (!tp##_is_zero(xa.fld) &&                         \
2166                       (((e_a - e_b) >= emax) ||                        \
2167                        ((e_a - e_b) <= (emin+1)) ||                    \
2168                         (e_a <= (emin+nbits)))) {                      \
2169                fe_flag = 1;                                            \
2170            }                                                           \
2171                                                                        \
2172            if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2173                /* XB is not zero because of the above check and */     \
2174                /* so must be denormalized.                      */     \
2175                fg_flag = 1;                                            \
2176            }                                                           \
2177        }                                                               \
2178    }                                                                   \
2179                                                                        \
2180    env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2181}
2182
2183VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2184VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2185VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2186
2187/* VSX_TSQRT - VSX floating point test for square root
2188 *   op    - instruction mnemonic
2189 *   nels  - number of elements (1, 2 or 4)
2190 *   tp    - type (float32 or float64)
2191 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2192 *   emin  - minimum unbiased exponent
2193 *   emax  - maximum unbiased exponent
2194 *   nbits - number of fraction bits
2195 */
2196#define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \
2197void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2198{                                                                       \
2199    ppc_vsr_t xa, xb;                                                   \
2200    int i;                                                              \
2201    int fe_flag = 0;                                                    \
2202    int fg_flag = 0;                                                    \
2203                                                                        \
2204    getVSR(xA(opcode), &xa, env);                                       \
2205    getVSR(xB(opcode), &xb, env);                                       \
2206                                                                        \
2207    for (i = 0; i < nels; i++) {                                        \
2208        if (unlikely(tp##_is_infinity(xb.fld) ||                        \
2209                     tp##_is_zero(xb.fld))) {                           \
2210            fe_flag = 1;                                                \
2211            fg_flag = 1;                                                \
2212        } else {                                                        \
2213            int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2214                                                                        \
2215            if (unlikely(tp##_is_any_nan(xb.fld))) {                    \
2216                fe_flag = 1;                                            \
2217            } else if (unlikely(tp##_is_zero(xb.fld))) {                \
2218                fe_flag = 1;                                            \
2219            } else if (unlikely(tp##_is_neg(xb.fld))) {                 \
2220                fe_flag = 1;                                            \
2221            } else if (!tp##_is_zero(xb.fld) &&                         \
2222                      (e_b <= (emin+nbits))) {                          \
2223                fe_flag = 1;                                            \
2224            }                                                           \
2225                                                                        \
2226            if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2227                /* XB is not zero because of the above check and */     \
2228                /* therefore must be denormalized.               */     \
2229                fg_flag = 1;                                            \
2230            }                                                           \
2231        }                                                               \
2232    }                                                                   \
2233                                                                        \
2234    env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2235}
2236
2237VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2238VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2239VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2240
2241/* VSX_MADD - VSX floating point muliply/add variations
2242 *   op    - instruction mnemonic
2243 *   nels  - number of elements (1, 2 or 4)
2244 *   tp    - type (float32 or float64)
2245 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2246 *   maddflgs - flags for the float*muladd routine that control the
2247 *           various forms (madd, msub, nmadd, nmsub)
2248 *   afrm  - A form (1=A, 0=M)
2249 *   sfprf - set FPRF
2250 */
2251#define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp)              \
2252void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
2253{                                                                             \
2254    ppc_vsr_t xt_in, xa, xb, xt_out;                                          \
2255    ppc_vsr_t *b, *c;                                                         \
2256    int i;                                                                    \
2257                                                                              \
2258    if (afrm) { /* AxB + T */                                                 \
2259        b = &xb;                                                              \
2260        c = &xt_in;                                                           \
2261    } else { /* AxT + B */                                                    \
2262        b = &xt_in;                                                           \
2263        c = &xb;                                                              \
2264    }                                                                         \
2265                                                                              \
2266    getVSR(xA(opcode), &xa, env);                                             \
2267    getVSR(xB(opcode), &xb, env);                                             \
2268    getVSR(xT(opcode), &xt_in, env);                                          \
2269                                                                              \
2270    xt_out = xt_in;                                                           \
2271                                                                              \
2272    helper_reset_fpstatus(env);                                               \
2273                                                                              \
2274    for (i = 0; i < nels; i++) {                                              \
2275        float_status tstat = env->fp_status;                                  \
2276        set_float_exception_flags(0, &tstat);                                 \
2277        if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2278            /* Avoid double rounding errors by rounding the intermediate */   \
2279            /* result to odd.                                            */   \
2280            set_float_rounding_mode(float_round_to_zero, &tstat);             \
2281            xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2282                                       maddflgs, &tstat);                     \
2283            xt_out.fld |= (get_float_exception_flags(&tstat) &                \
2284                              float_flag_inexact) != 0;                       \
2285        } else {                                                              \
2286            xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2287                                        maddflgs, &tstat);                    \
2288        }                                                                     \
2289        env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
2290                                                                              \
2291        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
2292            if (tp##_is_signaling_nan(xa.fld, &tstat) ||                      \
2293                tp##_is_signaling_nan(b->fld, &tstat) ||                      \
2294                tp##_is_signaling_nan(c->fld, &tstat)) {                      \
2295                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
2296                tstat.float_exception_flags &= ~float_flag_invalid;           \
2297            }                                                                 \
2298            if ((tp##_is_infinity(xa.fld) && tp##_is_zero(b->fld)) ||         \
2299                (tp##_is_zero(xa.fld) && tp##_is_infinity(b->fld))) {         \
2300                xt_out.fld = float64_to_##tp(float_invalid_op_excp(env,       \
2301                    POWERPC_EXCP_FP_VXIMZ, sfprf), &env->fp_status);          \
2302                tstat.float_exception_flags &= ~float_flag_invalid;           \
2303            }                                                                 \
2304            if ((tstat.float_exception_flags & float_flag_invalid) &&         \
2305                ((tp##_is_infinity(xa.fld) ||                                 \
2306                  tp##_is_infinity(b->fld)) &&                                \
2307                  tp##_is_infinity(c->fld))) {                                \
2308                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);     \
2309            }                                                                 \
2310        }                                                                     \
2311                                                                              \
2312        if (r2sp) {                                                           \
2313            xt_out.fld = helper_frsp(env, xt_out.fld);                        \
2314        }                                                                     \
2315                                                                              \
2316        if (sfprf) {                                                          \
2317            helper_compute_fprf(env, xt_out.fld);                             \
2318        }                                                                     \
2319    }                                                                         \
2320    putVSR(xT(opcode), &xt_out, env);                                         \
2321    float_check_status(env);                                                  \
2322}
2323
2324#define MADD_FLGS 0
2325#define MSUB_FLGS float_muladd_negate_c
2326#define NMADD_FLGS float_muladd_negate_result
2327#define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
2328
2329VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2330VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2331VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2332VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2333VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2334VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2335VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2336VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2337
2338VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2339VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2340VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2341VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2342VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2343VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2344VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2345VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2346
2347VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2348VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2349VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2350VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2351VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2352VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2353VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2354VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2355
2356VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2357VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2358VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2359VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2360VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2361VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2362VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2363VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2364
2365/* VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2366 *   op    - instruction mnemonic
2367 *   cmp   - comparison operation
2368 *   exp   - expected result of comparison
2369 *   svxvc - set VXVC bit
2370 */
2371#define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc)                                \
2372void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
2373{                                                                             \
2374    ppc_vsr_t xt, xa, xb;                                                     \
2375    bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false;            \
2376                                                                              \
2377    getVSR(xA(opcode), &xa, env);                                             \
2378    getVSR(xB(opcode), &xb, env);                                             \
2379    getVSR(xT(opcode), &xt, env);                                             \
2380                                                                              \
2381    if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) ||              \
2382        float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) {              \
2383        vxsnan_flag = true;                                                   \
2384        if (fpscr_ve == 0 && svxvc) {                                         \
2385            vxvc_flag = true;                                                 \
2386        }                                                                     \
2387    } else if (svxvc) {                                                       \
2388        vxvc_flag = float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) ||      \
2389            float64_is_quiet_nan(xb.VsrD(0), &env->fp_status);                \
2390    }                                                                         \
2391    if (vxsnan_flag) {                                                        \
2392        float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);                \
2393    }                                                                         \
2394    if (vxvc_flag) {                                                          \
2395        float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);                  \
2396    }                                                                         \
2397    vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag);                        \
2398                                                                              \
2399    if (!vex_flag) {                                                          \
2400        if (float64_##cmp(xb.VsrD(0), xa.VsrD(0), &env->fp_status) == exp) {  \
2401            xt.VsrD(0) = -1;                                                  \
2402            xt.VsrD(1) = 0;                                                   \
2403        } else {                                                              \
2404            xt.VsrD(0) = 0;                                                   \
2405            xt.VsrD(1) = 0;                                                   \
2406        }                                                                     \
2407    }                                                                         \
2408    putVSR(xT(opcode), &xt, env);                                             \
2409    helper_float_check_status(env);                                           \
2410}
2411
2412VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
2413VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
2414VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
2415VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
2416
2417#define VSX_SCALAR_CMP(op, ordered)                                      \
2418void helper_##op(CPUPPCState *env, uint32_t opcode)                      \
2419{                                                                        \
2420    ppc_vsr_t xa, xb;                                                    \
2421    uint32_t cc = 0;                                                     \
2422                                                                         \
2423    getVSR(xA(opcode), &xa, env);                                        \
2424    getVSR(xB(opcode), &xb, env);                                        \
2425                                                                         \
2426    if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||                       \
2427                 float64_is_any_nan(xb.VsrD(0)))) {                      \
2428        if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) ||     \
2429            float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) {     \
2430            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \
2431        }                                                                \
2432        if (ordered) {                                                   \
2433            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);         \
2434        }                                                                \
2435        cc = 1;                                                          \
2436    } else {                                                             \
2437        if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) {       \
2438            cc = 8;                                                      \
2439        } else if (!float64_le(xa.VsrD(0), xb.VsrD(0),                   \
2440                               &env->fp_status)) { \
2441            cc = 4;                                                      \
2442        } else {                                                         \
2443            cc = 2;                                                      \
2444        }                                                                \
2445    }                                                                    \
2446                                                                         \
2447    env->fpscr &= ~(0x0F << FPSCR_FPRF);                                 \
2448    env->fpscr |= cc << FPSCR_FPRF;                                      \
2449    env->crf[BF(opcode)] = cc;                                           \
2450                                                                         \
2451    float_check_status(env);                                             \
2452}
2453
2454VSX_SCALAR_CMP(xscmpodp, 1)
2455VSX_SCALAR_CMP(xscmpudp, 0)
2456
2457/* VSX_MAX_MIN - VSX floating point maximum/minimum
2458 *   name  - instruction mnemonic
2459 *   op    - operation (max or min)
2460 *   nels  - number of elements (1, 2 or 4)
2461 *   tp    - type (float32 or float64)
2462 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2463 */
2464#define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \
2465void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
2466{                                                                             \
2467    ppc_vsr_t xt, xa, xb;                                                     \
2468    int i;                                                                    \
2469                                                                              \
2470    getVSR(xA(opcode), &xa, env);                                             \
2471    getVSR(xB(opcode), &xb, env);                                             \
2472    getVSR(xT(opcode), &xt, env);                                             \
2473                                                                              \
2474    for (i = 0; i < nels; i++) {                                              \
2475        xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status);                  \
2476        if (unlikely(tp##_is_signaling_nan(xa.fld, &env->fp_status) ||        \
2477                     tp##_is_signaling_nan(xb.fld, &env->fp_status))) {       \
2478            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);            \
2479        }                                                                     \
2480    }                                                                         \
2481                                                                              \
2482    putVSR(xT(opcode), &xt, env);                                             \
2483    float_check_status(env);                                                  \
2484}
2485
2486VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2487VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2488VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2489VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2490VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2491VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2492
2493/* VSX_CMP - VSX floating point compare
2494 *   op    - instruction mnemonic
2495 *   nels  - number of elements (1, 2 or 4)
2496 *   tp    - type (float32 or float64)
2497 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2498 *   cmp   - comparison operation
2499 *   svxvc - set VXVC bit
2500 *   exp   - expected result of comparison
2501 */
2502#define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp)                       \
2503void helper_##op(CPUPPCState *env, uint32_t opcode)                       \
2504{                                                                         \
2505    ppc_vsr_t xt, xa, xb;                                                 \
2506    int i;                                                                \
2507    int all_true = 1;                                                     \
2508    int all_false = 1;                                                    \
2509                                                                          \
2510    getVSR(xA(opcode), &xa, env);                                         \
2511    getVSR(xB(opcode), &xb, env);                                         \
2512    getVSR(xT(opcode), &xt, env);                                         \
2513                                                                          \
2514    for (i = 0; i < nels; i++) {                                          \
2515        if (unlikely(tp##_is_any_nan(xa.fld) ||                           \
2516                     tp##_is_any_nan(xb.fld))) {                          \
2517            if (tp##_is_signaling_nan(xa.fld, &env->fp_status) ||         \
2518                tp##_is_signaling_nan(xb.fld, &env->fp_status)) {         \
2519                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);    \
2520            }                                                             \
2521            if (svxvc) {                                                  \
2522                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);      \
2523            }                                                             \
2524            xt.fld = 0;                                                   \
2525            all_true = 0;                                                 \
2526        } else {                                                          \
2527            if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == exp) {     \
2528                xt.fld = -1;                                              \
2529                all_false = 0;                                            \
2530            } else {                                                      \
2531                xt.fld = 0;                                               \
2532                all_true = 0;                                             \
2533            }                                                             \
2534        }                                                                 \
2535    }                                                                     \
2536                                                                          \
2537    putVSR(xT(opcode), &xt, env);                                         \
2538    if ((opcode >> (31-21)) & 1) {                                        \
2539        env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);       \
2540    }                                                                     \
2541    float_check_status(env);                                              \
2542 }
2543
2544VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2545VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2546VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2547VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2548VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2549VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2550VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2551VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2552
2553/* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2554 *   op    - instruction mnemonic
2555 *   nels  - number of elements (1, 2 or 4)
2556 *   stp   - source type (float32 or float64)
2557 *   ttp   - target type (float32 or float64)
2558 *   sfld  - source vsr_t field
2559 *   tfld  - target vsr_t field (f32 or f64)
2560 *   sfprf - set FPRF
2561 */
2562#define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2563void helper_##op(CPUPPCState *env, uint32_t opcode)                \
2564{                                                                  \
2565    ppc_vsr_t xt, xb;                                              \
2566    int i;                                                         \
2567                                                                   \
2568    getVSR(xB(opcode), &xb, env);                                  \
2569    getVSR(xT(opcode), &xt, env);                                  \
2570                                                                   \
2571    for (i = 0; i < nels; i++) {                                   \
2572        xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);        \
2573        if (unlikely(stp##_is_signaling_nan(xb.sfld,               \
2574                                            &env->fp_status))) {   \
2575            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2576            xt.tfld = ttp##_snan_to_qnan(xt.tfld);                 \
2577        }                                                          \
2578        if (sfprf) {                                               \
2579            helper_compute_fprf(env, ttp##_to_float64(xt.tfld,     \
2580                                &env->fp_status));                 \
2581        }                                                          \
2582    }                                                              \
2583                                                                   \
2584    putVSR(xT(opcode), &xt, env);                                  \
2585    float_check_status(env);                                       \
2586}
2587
2588VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2589VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2590VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2*i), 0)
2591VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2*i), VsrD(i), 0)
2592
2593uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2594{
2595    float_status tstat = env->fp_status;
2596    set_float_exception_flags(0, &tstat);
2597
2598    return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2599}
2600
2601uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2602{
2603    float_status tstat = env->fp_status;
2604    set_float_exception_flags(0, &tstat);
2605
2606    return float32_to_float64(xb >> 32, &tstat);
2607}
2608
2609/* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2610 *   op    - instruction mnemonic
2611 *   nels  - number of elements (1, 2 or 4)
2612 *   stp   - source type (float32 or float64)
2613 *   ttp   - target type (int32, uint32, int64 or uint64)
2614 *   sfld  - source vsr_t field
2615 *   tfld  - target vsr_t field
2616 *   rnan  - resulting NaN
2617 */
2618#define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan)              \
2619void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2620{                                                                            \
2621    ppc_vsr_t xt, xb;                                                        \
2622    int i;                                                                   \
2623                                                                             \
2624    getVSR(xB(opcode), &xb, env);                                            \
2625    getVSR(xT(opcode), &xt, env);                                            \
2626                                                                             \
2627    for (i = 0; i < nels; i++) {                                             \
2628        if (unlikely(stp##_is_any_nan(xb.sfld))) {                           \
2629            if (stp##_is_signaling_nan(xb.sfld, &env->fp_status)) {          \
2630                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \
2631            }                                                                \
2632            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);            \
2633            xt.tfld = rnan;                                                  \
2634        } else {                                                             \
2635            xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld,                \
2636                          &env->fp_status);                                  \
2637            if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2638                float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);        \
2639            }                                                                \
2640        }                                                                    \
2641    }                                                                        \
2642                                                                             \
2643    putVSR(xT(opcode), &xt, env);                                            \
2644    float_check_status(env);                                                 \
2645}
2646
2647VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2648                  0x8000000000000000ULL)
2649VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2650                  0x80000000U)
2651VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2652VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2653VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2654                  0x8000000000000000ULL)
2655VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2*i), \
2656                  0x80000000U)
2657VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2658VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2*i), 0U)
2659VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2*i), VsrD(i), \
2660                  0x8000000000000000ULL)
2661VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2662VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2*i), VsrD(i), 0ULL)
2663VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2664
2665/* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2666 *   op    - instruction mnemonic
2667 *   nels  - number of elements (1, 2 or 4)
2668 *   stp   - source type (int32, uint32, int64 or uint64)
2669 *   ttp   - target type (float32 or float64)
2670 *   sfld  - source vsr_t field
2671 *   tfld  - target vsr_t field
2672 *   jdef  - definition of the j index (i or 2*i)
2673 *   sfprf - set FPRF
2674 */
2675#define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp)  \
2676void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2677{                                                                       \
2678    ppc_vsr_t xt, xb;                                                   \
2679    int i;                                                              \
2680                                                                        \
2681    getVSR(xB(opcode), &xb, env);                                       \
2682    getVSR(xT(opcode), &xt, env);                                       \
2683                                                                        \
2684    for (i = 0; i < nels; i++) {                                        \
2685        xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);             \
2686        if (r2sp) {                                                     \
2687            xt.tfld = helper_frsp(env, xt.tfld);                        \
2688        }                                                               \
2689        if (sfprf) {                                                    \
2690            helper_compute_fprf(env, xt.tfld);                          \
2691        }                                                               \
2692    }                                                                   \
2693                                                                        \
2694    putVSR(xT(opcode), &xt, env);                                       \
2695    float_check_status(env);                                            \
2696}
2697
2698VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
2699VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
2700VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
2701VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
2702VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
2703VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
2704VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2*i), VsrD(i), 0, 0)
2705VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2*i), VsrD(i), 0, 0)
2706VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2*i), 0, 0)
2707VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2*i), 0, 0)
2708VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
2709VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
2710
2711/* For "use current rounding mode", define a value that will not be one of
2712 * the existing rounding model enums.
2713 */
2714#define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
2715  float_round_up + float_round_to_zero)
2716
2717/* VSX_ROUND - VSX floating point round
2718 *   op    - instruction mnemonic
2719 *   nels  - number of elements (1, 2 or 4)
2720 *   tp    - type (float32 or float64)
2721 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2722 *   rmode - rounding mode
2723 *   sfprf - set FPRF
2724 */
2725#define VSX_ROUND(op, nels, tp, fld, rmode, sfprf)                     \
2726void helper_##op(CPUPPCState *env, uint32_t opcode)                    \
2727{                                                                      \
2728    ppc_vsr_t xt, xb;                                                  \
2729    int i;                                                             \
2730    getVSR(xB(opcode), &xb, env);                                      \
2731    getVSR(xT(opcode), &xt, env);                                      \
2732                                                                       \
2733    if (rmode != FLOAT_ROUND_CURRENT) {                                \
2734        set_float_rounding_mode(rmode, &env->fp_status);               \
2735    }                                                                  \
2736                                                                       \
2737    for (i = 0; i < nels; i++) {                                       \
2738        if (unlikely(tp##_is_signaling_nan(xb.fld,                     \
2739                                           &env->fp_status))) {        \
2740            float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);     \
2741            xt.fld = tp##_snan_to_qnan(xb.fld);                        \
2742        } else {                                                       \
2743            xt.fld = tp##_round_to_int(xb.fld, &env->fp_status);       \
2744        }                                                              \
2745        if (sfprf) {                                                   \
2746            helper_compute_fprf(env, xt.fld);                          \
2747        }                                                              \
2748    }                                                                  \
2749                                                                       \
2750    /* If this is not a "use current rounding mode" instruction,       \
2751     * then inhibit setting of the XX bit and restore rounding         \
2752     * mode from FPSCR */                                              \
2753    if (rmode != FLOAT_ROUND_CURRENT) {                                \
2754        fpscr_set_rounding_mode(env);                                  \
2755        env->fp_status.float_exception_flags &= ~float_flag_inexact;   \
2756    }                                                                  \
2757                                                                       \
2758    putVSR(xT(opcode), &xt, env);                                      \
2759    float_check_status(env);                                           \
2760}
2761
2762VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
2763VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
2764VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
2765VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
2766VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
2767
2768VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
2769VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
2770VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
2771VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
2772VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
2773
2774VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
2775VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
2776VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
2777VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
2778VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
2779
2780uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
2781{
2782    helper_reset_fpstatus(env);
2783
2784    uint64_t xt = helper_frsp(env, xb);
2785
2786    helper_compute_fprf(env, xt);
2787    float_check_status(env);
2788    return xt;
2789}
2790