qemu/target-ppc/mmu-hash64.c
<<
>>
Prefs
   1/*
   2 *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
   3 *
   4 *  Copyright (c) 2003-2007 Jocelyn Mayer
   5 *  Copyright (c) 2013 David Gibson, IBM Corporation
   6 *
   7 * This library is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU Lesser General Public
   9 * License as published by the Free Software Foundation; either
  10 * version 2 of the License, or (at your option) any later version.
  11 *
  12 * This library is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * Lesser General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU Lesser General Public
  18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  19 */
  20#include "qemu/osdep.h"
  21#include "qapi/error.h"
  22#include "cpu.h"
  23#include "exec/exec-all.h"
  24#include "exec/helper-proto.h"
  25#include "qemu/error-report.h"
  26#include "sysemu/kvm.h"
  27#include "kvm_ppc.h"
  28#include "mmu-hash64.h"
  29#include "exec/log.h"
  30
  31//#define DEBUG_SLB
  32
  33#ifdef DEBUG_SLB
  34#  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
  35#else
  36#  define LOG_SLB(...) do { } while (0)
  37#endif
  38
  39/*
  40 * Used to indicate that a CPU has its hash page table (HPT) managed
  41 * within the host kernel
  42 */
  43#define MMU_HASH64_KVM_MANAGED_HPT      ((void *)-1)
  44
  45/*
  46 * SLB handling
  47 */
  48
  49static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
  50{
  51    CPUPPCState *env = &cpu->env;
  52    uint64_t esid_256M, esid_1T;
  53    int n;
  54
  55    LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
  56
  57    esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
  58    esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
  59
  60    for (n = 0; n < env->slb_nr; n++) {
  61        ppc_slb_t *slb = &env->slb[n];
  62
  63        LOG_SLB("%s: slot %d %016" PRIx64 " %016"
  64                    PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
  65        /* We check for 1T matches on all MMUs here - if the MMU
  66         * doesn't have 1T segment support, we will have prevented 1T
  67         * entries from being inserted in the slbmte code. */
  68        if (((slb->esid == esid_256M) &&
  69             ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
  70            || ((slb->esid == esid_1T) &&
  71                ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
  72            return slb;
  73        }
  74    }
  75
  76    return NULL;
  77}
  78
  79void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
  80{
  81    CPUPPCState *env = &cpu->env;
  82    int i;
  83    uint64_t slbe, slbv;
  84
  85    cpu_synchronize_state(CPU(cpu));
  86
  87    cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
  88    for (i = 0; i < env->slb_nr; i++) {
  89        slbe = env->slb[i].esid;
  90        slbv = env->slb[i].vsid;
  91        if (slbe == 0 && slbv == 0) {
  92            continue;
  93        }
  94        cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
  95                    i, slbe, slbv);
  96    }
  97}
  98
  99void helper_slbia(CPUPPCState *env)
 100{
 101    int n;
 102
 103    /* XXX: Warning: slbia never invalidates the first segment */
 104    for (n = 1; n < env->slb_nr; n++) {
 105        ppc_slb_t *slb = &env->slb[n];
 106
 107        if (slb->esid & SLB_ESID_V) {
 108            slb->esid &= ~SLB_ESID_V;
 109            /* XXX: given the fact that segment size is 256 MB or 1TB,
 110             *      and we still don't have a tlb_flush_mask(env, n, mask)
 111             *      in QEMU, we just invalidate all TLBs
 112             */
 113            env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
 114        }
 115    }
 116}
 117
 118void helper_slbie(CPUPPCState *env, target_ulong addr)
 119{
 120    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 121    ppc_slb_t *slb;
 122
 123    slb = slb_lookup(cpu, addr);
 124    if (!slb) {
 125        return;
 126    }
 127
 128    if (slb->esid & SLB_ESID_V) {
 129        slb->esid &= ~SLB_ESID_V;
 130
 131        /* XXX: given the fact that segment size is 256 MB or 1TB,
 132         *      and we still don't have a tlb_flush_mask(env, n, mask)
 133         *      in QEMU, we just invalidate all TLBs
 134         */
 135        env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
 136    }
 137}
 138
 139int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
 140                  target_ulong esid, target_ulong vsid)
 141{
 142    CPUPPCState *env = &cpu->env;
 143    ppc_slb_t *slb = &env->slb[slot];
 144    const struct ppc_one_seg_page_size *sps = NULL;
 145    int i;
 146
 147    if (slot >= env->slb_nr) {
 148        return -1; /* Bad slot number */
 149    }
 150    if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
 151        return -1; /* Reserved bits set */
 152    }
 153    if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
 154        return -1; /* Bad segment size */
 155    }
 156    if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
 157        return -1; /* 1T segment on MMU that doesn't support it */
 158    }
 159
 160    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 161        const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
 162
 163        if (!sps1->page_shift) {
 164            break;
 165        }
 166
 167        if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
 168            sps = sps1;
 169            break;
 170        }
 171    }
 172
 173    if (!sps) {
 174        error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
 175                     " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
 176                     slot, esid, vsid);
 177        return -1;
 178    }
 179
 180    slb->esid = esid;
 181    slb->vsid = vsid;
 182    slb->sps = sps;
 183
 184    LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
 185            " %016" PRIx64 "\n", __func__, slot, esid, vsid,
 186            slb->esid, slb->vsid);
 187
 188    return 0;
 189}
 190
 191static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
 192                             target_ulong *rt)
 193{
 194    CPUPPCState *env = &cpu->env;
 195    int slot = rb & 0xfff;
 196    ppc_slb_t *slb = &env->slb[slot];
 197
 198    if (slot >= env->slb_nr) {
 199        return -1;
 200    }
 201
 202    *rt = slb->esid;
 203    return 0;
 204}
 205
 206static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
 207                             target_ulong *rt)
 208{
 209    CPUPPCState *env = &cpu->env;
 210    int slot = rb & 0xfff;
 211    ppc_slb_t *slb = &env->slb[slot];
 212
 213    if (slot >= env->slb_nr) {
 214        return -1;
 215    }
 216
 217    *rt = slb->vsid;
 218    return 0;
 219}
 220
 221static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
 222                             target_ulong *rt)
 223{
 224    CPUPPCState *env = &cpu->env;
 225    ppc_slb_t *slb;
 226
 227    if (!msr_is_64bit(env, env->msr)) {
 228        rb &= 0xffffffff;
 229    }
 230    slb = slb_lookup(cpu, rb);
 231    if (slb == NULL) {
 232        *rt = (target_ulong)-1ul;
 233    } else {
 234        *rt = slb->vsid;
 235    }
 236    return 0;
 237}
 238
 239void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
 240{
 241    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 242
 243    if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
 244        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 245                               POWERPC_EXCP_INVAL, GETPC());
 246    }
 247}
 248
 249target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
 250{
 251    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 252    target_ulong rt = 0;
 253
 254    if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
 255        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 256                               POWERPC_EXCP_INVAL, GETPC());
 257    }
 258    return rt;
 259}
 260
 261target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
 262{
 263    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 264    target_ulong rt = 0;
 265
 266    if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
 267        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 268                               POWERPC_EXCP_INVAL, GETPC());
 269    }
 270    return rt;
 271}
 272
 273target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
 274{
 275    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 276    target_ulong rt = 0;
 277
 278    if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
 279        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 280                               POWERPC_EXCP_INVAL, GETPC());
 281    }
 282    return rt;
 283}
 284
 285/*
 286 * 64-bit hash table MMU handling
 287 */
 288void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value,
 289                         Error **errp)
 290{
 291    CPUPPCState *env = &cpu->env;
 292    target_ulong htabsize = value & SDR_64_HTABSIZE;
 293
 294    env->spr[SPR_SDR1] = value;
 295    if (htabsize > 28) {
 296        error_setg(errp,
 297                   "Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1",
 298                   htabsize);
 299        htabsize = 28;
 300    }
 301    env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1;
 302    env->htab_base = value & SDR_64_HTABORG;
 303}
 304
 305void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift,
 306                                 Error **errp)
 307{
 308    CPUPPCState *env = &cpu->env;
 309    Error *local_err = NULL;
 310
 311    if (hpt) {
 312        env->external_htab = hpt;
 313    } else {
 314        env->external_htab = MMU_HASH64_KVM_MANAGED_HPT;
 315    }
 316    ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18),
 317                        &local_err);
 318    if (local_err) {
 319        error_propagate(errp, local_err);
 320        return;
 321    }
 322
 323    /* Not strictly necessary, but makes it clearer that an external
 324     * htab is in use when debugging */
 325    env->htab_base = -1;
 326
 327    if (kvm_enabled()) {
 328        if (kvmppc_put_books_sregs(cpu) < 0) {
 329            error_setg(errp, "Unable to update SDR1 in KVM");
 330        }
 331    }
 332}
 333
 334static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
 335                               ppc_slb_t *slb, ppc_hash_pte64_t pte)
 336{
 337    CPUPPCState *env = &cpu->env;
 338    unsigned pp, key;
 339    /* Some pp bit combinations have undefined behaviour, so default
 340     * to no access in those cases */
 341    int prot = 0;
 342
 343    key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
 344             : (slb->vsid & SLB_VSID_KS));
 345    pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
 346
 347    if (key == 0) {
 348        switch (pp) {
 349        case 0x0:
 350        case 0x1:
 351        case 0x2:
 352            prot = PAGE_READ | PAGE_WRITE;
 353            break;
 354
 355        case 0x3:
 356        case 0x6:
 357            prot = PAGE_READ;
 358            break;
 359        }
 360    } else {
 361        switch (pp) {
 362        case 0x0:
 363        case 0x6:
 364            prot = 0;
 365            break;
 366
 367        case 0x1:
 368        case 0x3:
 369            prot = PAGE_READ;
 370            break;
 371
 372        case 0x2:
 373            prot = PAGE_READ | PAGE_WRITE;
 374            break;
 375        }
 376    }
 377
 378    /* No execute if either noexec or guarded bits set */
 379    if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
 380        || (slb->vsid & SLB_VSID_N)) {
 381        prot |= PAGE_EXEC;
 382    }
 383
 384    return prot;
 385}
 386
 387static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
 388{
 389    CPUPPCState *env = &cpu->env;
 390    int key, amrbits;
 391    int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 392
 393    /* Only recent MMUs implement Virtual Page Class Key Protection */
 394    if (!(env->mmu_model & POWERPC_MMU_AMR)) {
 395        return prot;
 396    }
 397
 398    key = HPTE64_R_KEY(pte.pte1);
 399    amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
 400
 401    /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
 402    /*         env->spr[SPR_AMR]); */
 403
 404    /*
 405     * A store is permitted if the AMR bit is 0. Remove write
 406     * protection if it is set.
 407     */
 408    if (amrbits & 0x2) {
 409        prot &= ~PAGE_WRITE;
 410    }
 411    /*
 412     * A load is permitted if the AMR bit is 0. Remove read
 413     * protection if it is set.
 414     */
 415    if (amrbits & 0x1) {
 416        prot &= ~PAGE_READ;
 417    }
 418
 419    return prot;
 420}
 421
 422uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
 423{
 424    uint64_t token = 0;
 425    hwaddr pte_offset;
 426
 427    pte_offset = pte_index * HASH_PTE_SIZE_64;
 428    if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
 429        /*
 430         * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
 431         */
 432        token = kvmppc_hash64_read_pteg(cpu, pte_index);
 433    } else if (cpu->env.external_htab) {
 434        /*
 435         * HTAB is controlled by QEMU. Just point to the internally
 436         * accessible PTEG.
 437         */
 438        token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
 439    } else if (cpu->env.htab_base) {
 440        token = cpu->env.htab_base + pte_offset;
 441    }
 442    return token;
 443}
 444
 445void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token)
 446{
 447    if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
 448        kvmppc_hash64_free_pteg(token);
 449    }
 450}
 451
 452static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
 453    uint64_t pte0, uint64_t pte1)
 454{
 455    int i;
 456
 457    if (!(pte0 & HPTE64_V_LARGE)) {
 458        if (sps->page_shift != 12) {
 459            /* 4kiB page in a non 4kiB segment */
 460            return 0;
 461        }
 462        /* Normal 4kiB page */
 463        return 12;
 464    }
 465
 466    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 467        const struct ppc_one_page_size *ps = &sps->enc[i];
 468        uint64_t mask;
 469
 470        if (!ps->page_shift) {
 471            break;
 472        }
 473
 474        if (ps->page_shift == 12) {
 475            /* L bit is set so this can't be a 4kiB page */
 476            continue;
 477        }
 478
 479        mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
 480
 481        if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
 482            return ps->page_shift;
 483        }
 484    }
 485
 486    return 0; /* Bad page size encoding */
 487}
 488
 489static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
 490                                     const struct ppc_one_seg_page_size *sps,
 491                                     target_ulong ptem,
 492                                     ppc_hash_pte64_t *pte, unsigned *pshift)
 493{
 494    CPUPPCState *env = &cpu->env;
 495    int i;
 496    uint64_t token;
 497    target_ulong pte0, pte1;
 498    target_ulong pte_index;
 499
 500    pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
 501    token = ppc_hash64_start_access(cpu, pte_index);
 502    if (!token) {
 503        return -1;
 504    }
 505    for (i = 0; i < HPTES_PER_GROUP; i++) {
 506        pte0 = ppc_hash64_load_hpte0(cpu, token, i);
 507        pte1 = ppc_hash64_load_hpte1(cpu, token, i);
 508
 509        /* This compares V, B, H (secondary) and the AVPN */
 510        if (HPTE64_V_COMPARE(pte0, ptem)) {
 511            *pshift = hpte_page_shift(sps, pte0, pte1);
 512            /*
 513             * If there is no match, ignore the PTE, it could simply
 514             * be for a different segment size encoding and the
 515             * architecture specifies we should not match. Linux will
 516             * potentially leave behind PTEs for the wrong base page
 517             * size when demoting segments.
 518             */
 519            if (*pshift == 0) {
 520                continue;
 521            }
 522            /* We don't do anything with pshift yet as qemu TLB only deals
 523             * with 4K pages anyway
 524             */
 525            pte->pte0 = pte0;
 526            pte->pte1 = pte1;
 527            ppc_hash64_stop_access(cpu, token);
 528            return (pte_index + i) * HASH_PTE_SIZE_64;
 529        }
 530    }
 531    ppc_hash64_stop_access(cpu, token);
 532    /*
 533     * We didn't find a valid entry.
 534     */
 535    return -1;
 536}
 537
 538static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
 539                                     ppc_slb_t *slb, target_ulong eaddr,
 540                                     ppc_hash_pte64_t *pte, unsigned *pshift)
 541{
 542    CPUPPCState *env = &cpu->env;
 543    hwaddr pte_offset;
 544    hwaddr hash;
 545    uint64_t vsid, epnmask, epn, ptem;
 546    const struct ppc_one_seg_page_size *sps = slb->sps;
 547
 548    /* The SLB store path should prevent any bad page size encodings
 549     * getting in there, so: */
 550    assert(sps);
 551
 552    /* If ISL is set in LPCR we need to clamp the page size to 4K */
 553    if (env->spr[SPR_LPCR] & LPCR_ISL) {
 554        /* We assume that when using TCG, 4k is first entry of SPS */
 555        sps = &env->sps.sps[0];
 556        assert(sps->page_shift == 12);
 557    }
 558
 559    epnmask = ~((1ULL << sps->page_shift) - 1);
 560
 561    if (slb->vsid & SLB_VSID_B) {
 562        /* 1TB segment */
 563        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
 564        epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
 565        hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
 566    } else {
 567        /* 256M segment */
 568        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
 569        epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
 570        hash = vsid ^ (epn >> sps->page_shift);
 571    }
 572    ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
 573    ptem |= HPTE64_V_VALID;
 574
 575    /* Page address translation */
 576    qemu_log_mask(CPU_LOG_MMU,
 577            "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
 578            " hash " TARGET_FMT_plx "\n",
 579            env->htab_base, env->htab_mask, hash);
 580
 581    /* Primary PTEG lookup */
 582    qemu_log_mask(CPU_LOG_MMU,
 583            "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 584            " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
 585            " hash=" TARGET_FMT_plx "\n",
 586            env->htab_base, env->htab_mask, vsid, ptem,  hash);
 587    pte_offset = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
 588
 589    if (pte_offset == -1) {
 590        /* Secondary PTEG lookup */
 591        ptem |= HPTE64_V_SECONDARY;
 592        qemu_log_mask(CPU_LOG_MMU,
 593                "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 594                " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
 595                " hash=" TARGET_FMT_plx "\n", env->htab_base,
 596                env->htab_mask, vsid, ptem, ~hash);
 597
 598        pte_offset = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
 599    }
 600
 601    return pte_offset;
 602}
 603
 604unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
 605                                          uint64_t pte0, uint64_t pte1)
 606{
 607    CPUPPCState *env = &cpu->env;
 608    int i;
 609
 610    if (!(pte0 & HPTE64_V_LARGE)) {
 611        return 12;
 612    }
 613
 614    /*
 615     * The encodings in env->sps need to be carefully chosen so that
 616     * this gives an unambiguous result.
 617     */
 618    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 619        const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
 620        unsigned shift;
 621
 622        if (!sps->page_shift) {
 623            break;
 624        }
 625
 626        shift = hpte_page_shift(sps, pte0, pte1);
 627        if (shift) {
 628            return shift;
 629        }
 630    }
 631
 632    return 0;
 633}
 634
 635static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env,
 636                               uint64_t error_code)
 637{
 638    bool vpm;
 639
 640    if (msr_ir) {
 641        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
 642    } else {
 643        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
 644    }
 645    if (vpm && !msr_hv) {
 646        cs->exception_index = POWERPC_EXCP_HISI;
 647    } else {
 648        cs->exception_index = POWERPC_EXCP_ISI;
 649    }
 650    env->error_code = error_code;
 651}
 652
 653static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar,
 654                               uint64_t dsisr)
 655{
 656    bool vpm;
 657
 658    if (msr_dr) {
 659        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
 660    } else {
 661        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
 662    }
 663    if (vpm && !msr_hv) {
 664        cs->exception_index = POWERPC_EXCP_HDSI;
 665        env->spr[SPR_HDAR] = dar;
 666        env->spr[SPR_HDSISR] = dsisr;
 667    } else {
 668        cs->exception_index = POWERPC_EXCP_DSI;
 669        env->spr[SPR_DAR] = dar;
 670        env->spr[SPR_DSISR] = dsisr;
 671   }
 672    env->error_code = 0;
 673}
 674
 675
 676int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
 677                                int rwx, int mmu_idx)
 678{
 679    CPUState *cs = CPU(cpu);
 680    CPUPPCState *env = &cpu->env;
 681    ppc_slb_t *slb;
 682    unsigned apshift;
 683    hwaddr pte_offset;
 684    ppc_hash_pte64_t pte;
 685    int pp_prot, amr_prot, prot;
 686    uint64_t new_pte1, dsisr;
 687    const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
 688    hwaddr raddr;
 689
 690    assert((rwx == 0) || (rwx == 1) || (rwx == 2));
 691
 692    /* Note on LPCR usage: 970 uses HID4, but our special variant
 693     * of store_spr copies relevant fields into env->spr[SPR_LPCR].
 694     * Similarily we filter unimplemented bits when storing into
 695     * LPCR depending on the MMU version. This code can thus just
 696     * use the LPCR "as-is".
 697     */
 698
 699    /* 1. Handle real mode accesses */
 700    if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
 701        /* Translation is supposedly "off"  */
 702        /* In real mode the top 4 effective address bits are (mostly) ignored */
 703        raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
 704
 705        /* In HV mode, add HRMOR if top EA bit is clear */
 706        if (msr_hv || !env->has_hv_mode) {
 707            if (!(eaddr >> 63)) {
 708                raddr |= env->spr[SPR_HRMOR];
 709            }
 710        } else {
 711            /* Otherwise, check VPM for RMA vs VRMA */
 712            if (env->spr[SPR_LPCR] & LPCR_VPM0) {
 713                slb = &env->vrma_slb;
 714                if (slb->sps) {
 715                    goto skip_slb_search;
 716                }
 717                /* Not much else to do here */
 718                cs->exception_index = POWERPC_EXCP_MCHECK;
 719                env->error_code = 0;
 720                return 1;
 721            } else if (raddr < env->rmls) {
 722                /* RMA. Check bounds in RMLS */
 723                raddr |= env->spr[SPR_RMOR];
 724            } else {
 725                /* The access failed, generate the approriate interrupt */
 726                if (rwx == 2) {
 727                    ppc_hash64_set_isi(cs, env, 0x08000000);
 728                } else {
 729                    dsisr = 0x08000000;
 730                    if (rwx == 1) {
 731                        dsisr |= 0x02000000;
 732                    }
 733                    ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
 734                }
 735                return 1;
 736            }
 737        }
 738        tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
 739                     PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
 740                     TARGET_PAGE_SIZE);
 741        return 0;
 742    }
 743
 744    /* 2. Translation is on, so look up the SLB */
 745    slb = slb_lookup(cpu, eaddr);
 746    if (!slb) {
 747        if (rwx == 2) {
 748            cs->exception_index = POWERPC_EXCP_ISEG;
 749            env->error_code = 0;
 750        } else {
 751            cs->exception_index = POWERPC_EXCP_DSEG;
 752            env->error_code = 0;
 753            env->spr[SPR_DAR] = eaddr;
 754        }
 755        return 1;
 756    }
 757
 758skip_slb_search:
 759
 760    /* 3. Check for segment level no-execute violation */
 761    if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
 762        ppc_hash64_set_isi(cs, env, 0x10000000);
 763        return 1;
 764    }
 765
 766    /* 4. Locate the PTE in the hash table */
 767    pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
 768    if (pte_offset == -1) {
 769        dsisr = 0x40000000;
 770        if (rwx == 2) {
 771            ppc_hash64_set_isi(cs, env, dsisr);
 772        } else {
 773            if (rwx == 1) {
 774                dsisr |= 0x02000000;
 775            }
 776            ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
 777        }
 778        return 1;
 779    }
 780    qemu_log_mask(CPU_LOG_MMU,
 781                "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
 782
 783    /* 5. Check access permissions */
 784
 785    pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
 786    amr_prot = ppc_hash64_amr_prot(cpu, pte);
 787    prot = pp_prot & amr_prot;
 788
 789    if ((need_prot[rwx] & ~prot) != 0) {
 790        /* Access right violation */
 791        qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
 792        if (rwx == 2) {
 793            ppc_hash64_set_isi(cs, env, 0x08000000);
 794        } else {
 795            dsisr = 0;
 796            if (need_prot[rwx] & ~pp_prot) {
 797                dsisr |= 0x08000000;
 798            }
 799            if (rwx == 1) {
 800                dsisr |= 0x02000000;
 801            }
 802            if (need_prot[rwx] & ~amr_prot) {
 803                dsisr |= 0x00200000;
 804            }
 805            ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
 806        }
 807        return 1;
 808    }
 809
 810    qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
 811
 812    /* 6. Update PTE referenced and changed bits if necessary */
 813
 814    new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
 815    if (rwx == 1) {
 816        new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
 817    } else {
 818        /* Treat the page as read-only for now, so that a later write
 819         * will pass through this function again to set the C bit */
 820        prot &= ~PAGE_WRITE;
 821    }
 822
 823    if (new_pte1 != pte.pte1) {
 824        ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64,
 825                              pte.pte0, new_pte1);
 826    }
 827
 828    /* 7. Determine the real address from the PTE */
 829
 830    raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
 831
 832    tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
 833                 prot, mmu_idx, 1ULL << apshift);
 834
 835    return 0;
 836}
 837
 838hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
 839{
 840    CPUPPCState *env = &cpu->env;
 841    ppc_slb_t *slb;
 842    hwaddr pte_offset, raddr;
 843    ppc_hash_pte64_t pte;
 844    unsigned apshift;
 845
 846    /* Handle real mode */
 847    if (msr_dr == 0) {
 848        /* In real mode the top 4 effective address bits are ignored */
 849        raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
 850
 851        /* In HV mode, add HRMOR if top EA bit is clear */
 852        if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
 853            return raddr | env->spr[SPR_HRMOR];
 854        }
 855
 856        /* Otherwise, check VPM for RMA vs VRMA */
 857        if (env->spr[SPR_LPCR] & LPCR_VPM0) {
 858            slb = &env->vrma_slb;
 859            if (!slb->sps) {
 860                return -1;
 861            }
 862        } else if (raddr < env->rmls) {
 863            /* RMA. Check bounds in RMLS */
 864            return raddr | env->spr[SPR_RMOR];
 865        } else {
 866            return -1;
 867        }
 868    } else {
 869        slb = slb_lookup(cpu, addr);
 870        if (!slb) {
 871            return -1;
 872        }
 873    }
 874
 875    pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
 876    if (pte_offset == -1) {
 877        return -1;
 878    }
 879
 880    return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
 881        & TARGET_PAGE_MASK;
 882}
 883
 884void ppc_hash64_store_hpte(PowerPCCPU *cpu,
 885                           target_ulong pte_index,
 886                           target_ulong pte0, target_ulong pte1)
 887{
 888    CPUPPCState *env = &cpu->env;
 889
 890    if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
 891        kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
 892        return;
 893    }
 894
 895    pte_index *= HASH_PTE_SIZE_64;
 896    if (env->external_htab) {
 897        stq_p(env->external_htab + pte_index, pte0);
 898        stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
 899    } else {
 900        stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0);
 901        stq_phys(CPU(cpu)->as,
 902                 env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
 903    }
 904}
 905
 906void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu,
 907                               target_ulong pte_index,
 908                               target_ulong pte0, target_ulong pte1)
 909{
 910    /*
 911     * XXX: given the fact that there are too many segments to
 912     * invalidate, and we still don't have a tlb_flush_mask(env, n,
 913     * mask) in QEMU, we just invalidate all TLBs
 914     */
 915    cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
 916}
 917
 918void ppc_hash64_update_rmls(CPUPPCState *env)
 919{
 920    uint64_t lpcr = env->spr[SPR_LPCR];
 921
 922    /*
 923     * This is the full 4 bits encoding of POWER8. Previous
 924     * CPUs only support a subset of these but the filtering
 925     * is done when writing LPCR
 926     */
 927    switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
 928    case 0x8: /* 32MB */
 929        env->rmls = 0x2000000ull;
 930        break;
 931    case 0x3: /* 64MB */
 932        env->rmls = 0x4000000ull;
 933        break;
 934    case 0x7: /* 128MB */
 935        env->rmls = 0x8000000ull;
 936        break;
 937    case 0x4: /* 256MB */
 938        env->rmls = 0x10000000ull;
 939        break;
 940    case 0x2: /* 1GB */
 941        env->rmls = 0x40000000ull;
 942        break;
 943    case 0x1: /* 16GB */
 944        env->rmls = 0x400000000ull;
 945        break;
 946    default:
 947        /* What to do here ??? */
 948        env->rmls = 0;
 949    }
 950}
 951
 952void ppc_hash64_update_vrma(CPUPPCState *env)
 953{
 954    const struct ppc_one_seg_page_size *sps = NULL;
 955    target_ulong esid, vsid, lpcr;
 956    ppc_slb_t *slb = &env->vrma_slb;
 957    uint32_t vrmasd;
 958    int i;
 959
 960    /* First clear it */
 961    slb->esid = slb->vsid = 0;
 962    slb->sps = NULL;
 963
 964    /* Is VRMA enabled ? */
 965    lpcr = env->spr[SPR_LPCR];
 966    if (!(lpcr & LPCR_VPM0)) {
 967        return;
 968    }
 969
 970    /* Make one up. Mostly ignore the ESID which will not be
 971     * needed for translation
 972     */
 973    vsid = SLB_VSID_VRMA;
 974    vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
 975    vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
 976    esid = SLB_ESID_V;
 977
 978   for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 979        const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
 980
 981        if (!sps1->page_shift) {
 982            break;
 983        }
 984
 985        if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
 986            sps = sps1;
 987            break;
 988        }
 989    }
 990
 991    if (!sps) {
 992        error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
 993                     " vsid 0x"TARGET_FMT_lx, esid, vsid);
 994        return;
 995    }
 996
 997    slb->vsid = vsid;
 998    slb->esid = esid;
 999    slb->sps = sps;
1000}
1001
1002void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1003{
1004    uint64_t lpcr = 0;
1005
1006    /* Filter out bits */
1007    switch (env->mmu_model) {
1008    case POWERPC_MMU_64B: /* 970 */
1009        if (val & 0x40) {
1010            lpcr |= LPCR_LPES0;
1011        }
1012        if (val & 0x8000000000000000ull) {
1013            lpcr |= LPCR_LPES1;
1014        }
1015        if (val & 0x20) {
1016            lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
1017        }
1018        if (val & 0x4000000000000000ull) {
1019            lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
1020        }
1021        if (val & 0x2000000000000000ull) {
1022            lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
1023        }
1024        env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
1025
1026        /* XXX We could also write LPID from HID4 here
1027         * but since we don't tag any translation on it
1028         * it doesn't actually matter
1029         */
1030        /* XXX For proper emulation of 970 we also need
1031         * to dig HRMOR out of HID5
1032         */
1033        break;
1034    case POWERPC_MMU_2_03: /* P5p */
1035        lpcr = val & (LPCR_RMLS | LPCR_ILE |
1036                      LPCR_LPES0 | LPCR_LPES1 |
1037                      LPCR_RMI | LPCR_HDICE);
1038        break;
1039    case POWERPC_MMU_2_06: /* P7 */
1040        lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
1041                      LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1042                      LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
1043                      LPCR_MER | LPCR_TC |
1044                      LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
1045        break;
1046    case POWERPC_MMU_2_07: /* P8 */
1047        lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
1048                      LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1049                      LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
1050                      LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
1051                      LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
1052        break;
1053    default:
1054        ;
1055    }
1056    env->spr[SPR_LPCR] = lpcr;
1057    ppc_hash64_update_rmls(env);
1058    ppc_hash64_update_vrma(env);
1059}
1060