qemu/target-arm/internals.h
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU -- internal functions and types
   3 *
   4 * Copyright (c) 2014 Linaro Ltd
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 *
  20 * This header defines functions, types, etc which need to be shared
  21 * between different source files within target-arm/ but which are
  22 * private to it and not required by the rest of QEMU.
  23 */
  24
  25#ifndef TARGET_ARM_INTERNALS_H
  26#define TARGET_ARM_INTERNALS_H
  27
  28/* register banks for CPU modes */
  29#define BANK_USRSYS 0
  30#define BANK_SVC    1
  31#define BANK_ABT    2
  32#define BANK_UND    3
  33#define BANK_IRQ    4
  34#define BANK_FIQ    5
  35#define BANK_HYP    6
  36#define BANK_MON    7
  37
  38static inline bool excp_is_internal(int excp)
  39{
  40    /* Return true if this exception number represents a QEMU-internal
  41     * exception that will not be passed to the guest.
  42     */
  43    return excp == EXCP_INTERRUPT
  44        || excp == EXCP_HLT
  45        || excp == EXCP_DEBUG
  46        || excp == EXCP_HALTED
  47        || excp == EXCP_EXCEPTION_EXIT
  48        || excp == EXCP_KERNEL_TRAP
  49        || excp == EXCP_SEMIHOST;
  50}
  51
  52/* Exception names for debug logging; note that not all of these
  53 * precisely correspond to architectural exceptions.
  54 */
  55static const char * const excnames[] = {
  56    [EXCP_UDEF] = "Undefined Instruction",
  57    [EXCP_SWI] = "SVC",
  58    [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
  59    [EXCP_DATA_ABORT] = "Data Abort",
  60    [EXCP_IRQ] = "IRQ",
  61    [EXCP_FIQ] = "FIQ",
  62    [EXCP_BKPT] = "Breakpoint",
  63    [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
  64    [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
  65    [EXCP_HVC] = "Hypervisor Call",
  66    [EXCP_HYP_TRAP] = "Hypervisor Trap",
  67    [EXCP_SMC] = "Secure Monitor Call",
  68    [EXCP_VIRQ] = "Virtual IRQ",
  69    [EXCP_VFIQ] = "Virtual FIQ",
  70    [EXCP_SEMIHOST] = "Semihosting call",
  71    [EXCP_WFI] = "WFI",
  72};
  73
  74/* Scale factor for generic timers, ie number of ns per tick.
  75 * This gives a 62.5MHz timer.
  76 */
  77#define GTIMER_SCALE 16
  78
  79/*
  80 * For AArch64, map a given EL to an index in the banked_spsr array.
  81 * Note that this mapping and the AArch32 mapping defined in bank_number()
  82 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
  83 * mandated mapping between each other.
  84 */
  85static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
  86{
  87    static const unsigned int map[4] = {
  88        [1] = BANK_SVC, /* EL1.  */
  89        [2] = BANK_HYP, /* EL2.  */
  90        [3] = BANK_MON, /* EL3.  */
  91    };
  92    assert(el >= 1 && el <= 3);
  93    return map[el];
  94}
  95
  96/* Map CPU modes onto saved register banks.  */
  97static inline int bank_number(int mode)
  98{
  99    switch (mode) {
 100    case ARM_CPU_MODE_USR:
 101    case ARM_CPU_MODE_SYS:
 102        return BANK_USRSYS;
 103    case ARM_CPU_MODE_SVC:
 104        return BANK_SVC;
 105    case ARM_CPU_MODE_ABT:
 106        return BANK_ABT;
 107    case ARM_CPU_MODE_UND:
 108        return BANK_UND;
 109    case ARM_CPU_MODE_IRQ:
 110        return BANK_IRQ;
 111    case ARM_CPU_MODE_FIQ:
 112        return BANK_FIQ;
 113    case ARM_CPU_MODE_HYP:
 114        return BANK_HYP;
 115    case ARM_CPU_MODE_MON:
 116        return BANK_MON;
 117    }
 118    g_assert_not_reached();
 119}
 120
 121void switch_mode(CPUARMState *, int);
 122void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 123void arm_translate_init(void);
 124
 125enum arm_fprounding {
 126    FPROUNDING_TIEEVEN,
 127    FPROUNDING_POSINF,
 128    FPROUNDING_NEGINF,
 129    FPROUNDING_ZERO,
 130    FPROUNDING_TIEAWAY,
 131    FPROUNDING_ODD
 132};
 133
 134int arm_rmode_to_sf(int rmode);
 135
 136static inline void aarch64_save_sp(CPUARMState *env, int el)
 137{
 138    if (env->pstate & PSTATE_SP) {
 139        env->sp_el[el] = env->xregs[31];
 140    } else {
 141        env->sp_el[0] = env->xregs[31];
 142    }
 143}
 144
 145static inline void aarch64_restore_sp(CPUARMState *env, int el)
 146{
 147    if (env->pstate & PSTATE_SP) {
 148        env->xregs[31] = env->sp_el[el];
 149    } else {
 150        env->xregs[31] = env->sp_el[0];
 151    }
 152}
 153
 154static inline void update_spsel(CPUARMState *env, uint32_t imm)
 155{
 156    unsigned int cur_el = arm_current_el(env);
 157    /* Update PSTATE SPSel bit; this requires us to update the
 158     * working stack pointer in xregs[31].
 159     */
 160    if (!((imm ^ env->pstate) & PSTATE_SP)) {
 161        return;
 162    }
 163    aarch64_save_sp(env, cur_el);
 164    env->pstate = deposit32(env->pstate, 0, 1, imm);
 165
 166    /* We rely on illegal updates to SPsel from EL0 to get trapped
 167     * at translation time.
 168     */
 169    assert(cur_el >= 1 && cur_el <= 3);
 170    aarch64_restore_sp(env, cur_el);
 171}
 172
 173/*
 174 * arm_pamax
 175 * @cpu: ARMCPU
 176 *
 177 * Returns the implementation defined bit-width of physical addresses.
 178 * The ARMv8 reference manuals refer to this as PAMax().
 179 */
 180static inline unsigned int arm_pamax(ARMCPU *cpu)
 181{
 182    static const unsigned int pamax_map[] = {
 183        [0] = 32,
 184        [1] = 36,
 185        [2] = 40,
 186        [3] = 42,
 187        [4] = 44,
 188        [5] = 48,
 189    };
 190    unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
 191
 192    /* id_aa64mmfr0 is a read-only register so values outside of the
 193     * supported mappings can be considered an implementation error.  */
 194    assert(parange < ARRAY_SIZE(pamax_map));
 195    return pamax_map[parange];
 196}
 197
 198/* Return true if extended addresses are enabled.
 199 * This is always the case if our translation regime is 64 bit,
 200 * but depends on TTBCR.EAE for 32 bit.
 201 */
 202static inline bool extended_addresses_enabled_el(CPUARMState *env,
 203                                                 unsigned int el,
 204                                                 TCR *tcr)
 205{
 206    return arm_el_is_aa64(env, el) ||
 207           (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
 208}
 209
 210static inline bool extended_addresses_enabled(CPUARMState *env)
 211{
 212    unsigned int cur_el = arm_current_el(env);
 213    TCR *tcr;
 214
 215    if (cur_el == 0) {
 216        /* EL0 is under EL1's TCR control.  */
 217        cur_el = 1;
 218    }
 219
 220    tcr = &env->cp15.tcr_el[cur_el];
 221    return extended_addresses_enabled_el(env, cur_el, tcr);
 222}
 223
 224/* Valid Syndrome Register EC field values */
 225enum arm_exception_class {
 226    EC_UNCATEGORIZED          = 0x00,
 227    EC_WFX_TRAP               = 0x01,
 228    EC_CP15RTTRAP             = 0x03,
 229    EC_CP15RRTTRAP            = 0x04,
 230    EC_CP14RTTRAP             = 0x05,
 231    EC_CP14DTTRAP             = 0x06,
 232    EC_ADVSIMDFPACCESSTRAP    = 0x07,
 233    EC_FPIDTRAP               = 0x08,
 234    EC_CP14RRTTRAP            = 0x0c,
 235    EC_ILLEGALSTATE           = 0x0e,
 236    EC_AA32_SVC               = 0x11,
 237    EC_AA32_HVC               = 0x12,
 238    EC_AA32_SMC               = 0x13,
 239    EC_AA64_SVC               = 0x15,
 240    EC_AA64_HVC               = 0x16,
 241    EC_AA64_SMC               = 0x17,
 242    EC_SYSTEMREGISTERTRAP     = 0x18,
 243    EC_INSNABORT              = 0x20,
 244    EC_INSNABORT_SAME_EL      = 0x21,
 245    EC_PCALIGNMENT            = 0x22,
 246    EC_DATAABORT              = 0x24,
 247    EC_DATAABORT_SAME_EL      = 0x25,
 248    EC_SPALIGNMENT            = 0x26,
 249    EC_AA32_FPTRAP            = 0x28,
 250    EC_AA64_FPTRAP            = 0x2c,
 251    EC_SERROR                 = 0x2f,
 252    EC_BREAKPOINT             = 0x30,
 253    EC_BREAKPOINT_SAME_EL     = 0x31,
 254    EC_SOFTWARESTEP           = 0x32,
 255    EC_SOFTWARESTEP_SAME_EL   = 0x33,
 256    EC_WATCHPOINT             = 0x34,
 257    EC_WATCHPOINT_SAME_EL     = 0x35,
 258    EC_AA32_BKPT              = 0x38,
 259    EC_VECTORCATCH            = 0x3a,
 260    EC_AA64_BKPT              = 0x3c,
 261};
 262
 263#define ARM_EL_EC_SHIFT 26
 264#define ARM_EL_IL_SHIFT 25
 265#define ARM_EL_ISV_SHIFT 24
 266#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
 267#define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
 268
 269/* Utility functions for constructing various kinds of syndrome value.
 270 * Note that in general we follow the AArch64 syndrome values; in a
 271 * few cases the value in HSR for exceptions taken to AArch32 Hyp
 272 * mode differs slightly, so if we ever implemented Hyp mode then the
 273 * syndrome value would need some massaging on exception entry.
 274 * (One example of this is that AArch64 defaults to IL bit set for
 275 * exceptions which don't specifically indicate information about the
 276 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
 277 */
 278static inline uint32_t syn_uncategorized(void)
 279{
 280    return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 281}
 282
 283static inline uint32_t syn_aa64_svc(uint32_t imm16)
 284{
 285    return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 286}
 287
 288static inline uint32_t syn_aa64_hvc(uint32_t imm16)
 289{
 290    return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 291}
 292
 293static inline uint32_t syn_aa64_smc(uint32_t imm16)
 294{
 295    return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 296}
 297
 298static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
 299{
 300    return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 301        | (is_16bit ? 0 : ARM_EL_IL);
 302}
 303
 304static inline uint32_t syn_aa32_hvc(uint32_t imm16)
 305{
 306    return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 307}
 308
 309static inline uint32_t syn_aa32_smc(void)
 310{
 311    return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 312}
 313
 314static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
 315{
 316    return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 317}
 318
 319static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
 320{
 321    return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 322        | (is_16bit ? 0 : ARM_EL_IL);
 323}
 324
 325static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
 326                                           int crn, int crm, int rt,
 327                                           int isread)
 328{
 329    return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
 330        | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
 331        | (crm << 1) | isread;
 332}
 333
 334static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
 335                                        int crn, int crm, int rt, int isread,
 336                                        bool is_16bit)
 337{
 338    return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
 339        | (is_16bit ? 0 : ARM_EL_IL)
 340        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 341        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 342}
 343
 344static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
 345                                        int crn, int crm, int rt, int isread,
 346                                        bool is_16bit)
 347{
 348    return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
 349        | (is_16bit ? 0 : ARM_EL_IL)
 350        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 351        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 352}
 353
 354static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
 355                                         int rt, int rt2, int isread,
 356                                         bool is_16bit)
 357{
 358    return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
 359        | (is_16bit ? 0 : ARM_EL_IL)
 360        | (cv << 24) | (cond << 20) | (opc1 << 16)
 361        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 362}
 363
 364static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
 365                                         int rt, int rt2, int isread,
 366                                         bool is_16bit)
 367{
 368    return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
 369        | (is_16bit ? 0 : ARM_EL_IL)
 370        | (cv << 24) | (cond << 20) | (opc1 << 16)
 371        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 372}
 373
 374static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
 375{
 376    return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
 377        | (is_16bit ? 0 : ARM_EL_IL)
 378        | (cv << 24) | (cond << 20);
 379}
 380
 381static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
 382{
 383    return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 384        | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
 385}
 386
 387static inline uint32_t syn_data_abort_no_iss(int same_el,
 388                                             int ea, int cm, int s1ptw,
 389                                             int wnr, int fsc)
 390{
 391    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 392           | ARM_EL_IL
 393           | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 394}
 395
 396static inline uint32_t syn_data_abort_with_iss(int same_el,
 397                                               int sas, int sse, int srt,
 398                                               int sf, int ar,
 399                                               int ea, int cm, int s1ptw,
 400                                               int wnr, int fsc,
 401                                               bool is_16bit)
 402{
 403    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 404           | (is_16bit ? 0 : ARM_EL_IL)
 405           | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
 406           | (sf << 15) | (ar << 14)
 407           | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 408}
 409
 410static inline uint32_t syn_swstep(int same_el, int isv, int ex)
 411{
 412    return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 413        | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
 414}
 415
 416static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
 417{
 418    return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 419        | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
 420}
 421
 422static inline uint32_t syn_breakpoint(int same_el)
 423{
 424    return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 425        | ARM_EL_IL | 0x22;
 426}
 427
 428static inline uint32_t syn_wfx(int cv, int cond, int ti)
 429{
 430    return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL |
 431           (cv << 24) | (cond << 20) | ti;
 432}
 433
 434/* Update a QEMU watchpoint based on the information the guest has set in the
 435 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
 436 */
 437void hw_watchpoint_update(ARMCPU *cpu, int n);
 438/* Update the QEMU watchpoints for every guest watchpoint. This does a
 439 * complete delete-and-reinstate of the QEMU watchpoint list and so is
 440 * suitable for use after migration or on reset.
 441 */
 442void hw_watchpoint_update_all(ARMCPU *cpu);
 443/* Update a QEMU breakpoint based on the information the guest has set in the
 444 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
 445 */
 446void hw_breakpoint_update(ARMCPU *cpu, int n);
 447/* Update the QEMU breakpoints for every guest breakpoint. This does a
 448 * complete delete-and-reinstate of the QEMU breakpoint list and so is
 449 * suitable for use after migration or on reset.
 450 */
 451void hw_breakpoint_update_all(ARMCPU *cpu);
 452
 453/* Callback function for checking if a watchpoint should trigger. */
 454bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
 455
 456/* Callback function for when a watchpoint or breakpoint triggers. */
 457void arm_debug_excp_handler(CPUState *cs);
 458
 459#ifdef CONFIG_USER_ONLY
 460static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
 461{
 462    return false;
 463}
 464#else
 465/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
 466bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
 467/* Actually handle a PSCI call */
 468void arm_handle_psci_call(ARMCPU *cpu);
 469#endif
 470
 471/**
 472 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
 473 * @s2addr: Address that caused a fault at stage 2
 474 * @stage2: True if we faulted at stage 2
 475 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
 476 */
 477typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 478struct ARMMMUFaultInfo {
 479    target_ulong s2addr;
 480    bool stage2;
 481    bool s1ptw;
 482};
 483
 484/* Do a page table walk and add page to TLB if possible */
 485bool arm_tlb_fill(CPUState *cpu, vaddr address, int rw, int mmu_idx,
 486                  uint32_t *fsr, ARMMMUFaultInfo *fi);
 487
 488/* Return true if the stage 1 translation regime is using LPAE format page
 489 * tables */
 490bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 491
 492/* Raise a data fault alignment exception for the specified virtual address */
 493void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
 494                                 MMUAccessType access_type,
 495                                 int mmu_idx, uintptr_t retaddr);
 496
 497/* Call the EL change hook if one has been registered */
 498static inline void arm_call_el_change_hook(ARMCPU *cpu)
 499{
 500    if (cpu->el_change_hook) {
 501        cpu->el_change_hook(cpu, cpu->el_change_hook_opaque);
 502    }
 503}
 504
 505#endif
 506