qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include "exec/cpu-common.h"
  20#include "exec/hwaddr.h"
  21#include "exec/memattrs.h"
  22#include "exec/ramlist.h"
  23#include "qemu/queue.h"
  24#include "qemu/int128.h"
  25#include "qemu/notify.h"
  26#include "qom/object.h"
  27#include "qemu/rcu.h"
  28#include "hw/qdev-core.h"
  29
  30extern const char *machine_path;
  31#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  32
  33#define MAX_PHYS_ADDR_SPACE_BITS 62
  34#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  35
  36#define TYPE_MEMORY_REGION "qemu:memory-region"
  37#define MEMORY_REGION(obj) \
  38        OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
  39
  40#define TYPE_MEMORY_TRANSACTION_ATTR "qemu:memory-transaction-attr"
  41#define MEMORY_TRANSACTION_ATTR(obj) \
  42        OBJECT_CHECK(MemTxAttrs, (obj), TYPE_MEMORY_TRANSACTION_ATTR)
  43
  44#define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
  45#define IOMMU_MEMORY_REGION(obj) \
  46        OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
  47#define IOMMU_MEMORY_REGION_CLASS(klass) \
  48        OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
  49                         TYPE_IOMMU_MEMORY_REGION)
  50#define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
  51        OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
  52                         TYPE_IOMMU_MEMORY_REGION)
  53
  54typedef struct MemoryRegionOps MemoryRegionOps;
  55typedef struct MemoryRegionMmio MemoryRegionMmio;
  56
  57typedef struct MemoryTransaction
  58{
  59    union {
  60        /*
  61         * Data is passed by values up to 64bit sizes. Beyond
  62         * that, a pointer is passed in p8.
  63         *
  64         * Note that p8 has no alignment restrictions.
  65         */
  66        uint8_t *p8;
  67        uint64_t u64;
  68        uint32_t u32;
  69        uint16_t u16;
  70        uint8_t  u8;
  71    } data;
  72    bool rw;
  73    hwaddr addr;
  74    unsigned int size;
  75    MemTxAttrs attr;
  76    void *opaque;
  77} MemoryTransaction;
  78
  79struct MemoryRegionMmio {
  80    CPUReadMemoryFunc *read[3];
  81    CPUWriteMemoryFunc *write[3];
  82};
  83
  84typedef struct IOMMUTLBEntry IOMMUTLBEntry;
  85
  86/* See address_space_translate: bit 0 is read, bit 1 is write.  */
  87typedef enum {
  88    IOMMU_NONE = 0,
  89    IOMMU_RO   = 1,
  90    IOMMU_WO   = 2,
  91    IOMMU_RW   = 3,
  92} IOMMUAccessFlags;
  93
  94#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
  95
  96struct IOMMUTLBEntry {
  97    AddressSpace    *target_as;
  98    hwaddr           iova;
  99    hwaddr           translated_addr;
 100    hwaddr           addr_mask;  /* 0xfff = 4k translation */
 101    IOMMUAccessFlags perm;
 102};
 103
 104/*
 105 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
 106 * register with one or multiple IOMMU Notifier capability bit(s).
 107 */
 108typedef enum {
 109    IOMMU_NOTIFIER_NONE = 0,
 110    /* Notify cache invalidations */
 111    IOMMU_NOTIFIER_UNMAP = 0x1,
 112    /* Notify entry changes (newly created entries) */
 113    IOMMU_NOTIFIER_MAP = 0x2,
 114} IOMMUNotifierFlag;
 115
 116#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
 117
 118struct IOMMUNotifier;
 119typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
 120                            IOMMUTLBEntry *data);
 121
 122struct IOMMUNotifier {
 123    IOMMUNotify notify;
 124    IOMMUNotifierFlag notifier_flags;
 125    /* Notify for address space range start <= addr <= end */
 126    hwaddr start;
 127    hwaddr end;
 128    QLIST_ENTRY(IOMMUNotifier) node;
 129};
 130typedef struct IOMMUNotifier IOMMUNotifier;
 131
 132static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
 133                                       IOMMUNotifierFlag flags,
 134                                       hwaddr start, hwaddr end)
 135{
 136    n->notify = fn;
 137    n->notifier_flags = flags;
 138    n->start = start;
 139    n->end = end;
 140}
 141
 142/*
 143 * Memory region callbacks
 144 */
 145struct MemoryRegionOps {
 146    /* FIXME: Remove */
 147    void (*access)(MemoryTransaction *tr);
 148
 149    /* Read from the memory region. @addr is relative to @mr; @size is
 150     * in bytes. */
 151    uint64_t (*read)(void *opaque,
 152                     hwaddr addr,
 153                     unsigned size);
 154    /* Write to the memory region. @addr is relative to @mr; @size is
 155     * in bytes. */
 156    void (*write)(void *opaque,
 157                  hwaddr addr,
 158                  uint64_t data,
 159                  unsigned size);
 160
 161    MemTxResult (*read_with_attrs)(void *opaque,
 162                                   hwaddr addr,
 163                                   uint64_t *data,
 164                                   unsigned size,
 165                                   MemTxAttrs attrs);
 166    MemTxResult (*write_with_attrs)(void *opaque,
 167                                    hwaddr addr,
 168                                    uint64_t data,
 169                                    unsigned size,
 170                                    MemTxAttrs attrs);
 171    /* Instruction execution pre-callback:
 172     * @addr is the address of the access relative to the @mr.
 173     * @size is the size of the area returned by the callback.
 174     * @offset is the location of the pointer inside @mr.
 175     *
 176     * Returns a pointer to a location which contains guest code.
 177     */
 178    void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
 179                         unsigned *offset);
 180
 181    enum device_endian endianness;
 182    /* Guest-visible constraints: */
 183    struct {
 184        /* If nonzero, specify bounds on access sizes beyond which a machine
 185         * check is thrown.
 186         */
 187        unsigned min_access_size;
 188        unsigned max_access_size;
 189        /* If true, unaligned accesses are supported.  Otherwise unaligned
 190         * accesses throw machine checks.
 191         */
 192         bool unaligned;
 193        /*
 194         * If present, and returns #false, the transaction is not accepted
 195         * by the device (and results in machine dependent behaviour such
 196         * as a machine check exception).
 197         */
 198        bool (*accepts)(void *opaque, hwaddr addr,
 199                        unsigned size, bool is_write);
 200    } valid;
 201    /* Internal implementation constraints: */
 202    struct {
 203        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 204         * will be rounded upwards and a partial result will be returned.
 205         */
 206        unsigned min_access_size;
 207        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 208         * will be done as a series of accesses with smaller sizes.
 209         */
 210        unsigned max_access_size;
 211        /* If true, unaligned accesses are supported.  Otherwise all accesses
 212         * are converted to (possibly multiple) naturally aligned accesses.
 213         */
 214        bool unaligned;
 215    } impl;
 216
 217    /* If .read and .write are not present, old_mmio may be used for
 218     * backwards compatibility with old mmio registration
 219     */
 220    const MemoryRegionMmio old_mmio;
 221};
 222
 223typedef struct IOMMUMemoryRegionClass {
 224    /* private */
 225    struct DeviceClass parent_class;
 226
 227    /*
 228     * Return a TLB entry that contains a given address. Flag should
 229     * be the access permission of this translation operation. We can
 230     * set flag to IOMMU_NONE to mean that we don't need any
 231     * read/write permission checks, like, when for region replay.
 232     */
 233    IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
 234                               IOMMUAccessFlags flag);
 235    IOMMUTLBEntry (*translate_attr)(IOMMUMemoryRegion *iommu, hwaddr addr,
 236                                    bool is_write, MemTxAttrs *attr);
 237
 238    /* Returns minimum supported page size */
 239    uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
 240    /* Called when IOMMU Notifier flag changed */
 241    void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
 242                                IOMMUNotifierFlag old_flags,
 243                                IOMMUNotifierFlag new_flags);
 244    /* Set this up to provide customized IOMMU replay function */
 245    void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
 246} IOMMUMemoryRegionClass;
 247
 248typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 249typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 250
 251struct MemoryRegion {
 252    Object parent_obj;
 253
 254    /* All fields are private - violators will be prosecuted */
 255
 256    /* The following fields should fit in a cache line */
 257    bool romd_mode;
 258    uint8_t ram;
 259    bool subpage;
 260    bool readonly; /* For RAM regions */
 261    bool rom_device;
 262    bool flush_coalesced_mmio;
 263    bool global_locking;
 264    uint8_t dirty_log_mask;
 265    bool is_iommu;
 266    RAMBlock *ram_block;
 267    Object *owner;
 268
 269    const MemoryRegionOps *ops;
 270    void *opaque;
 271    MemoryRegion *container;
 272    Int128 size;
 273    hwaddr addr;
 274    void (*destructor)(MemoryRegion *mr);
 275    uint64_t align;
 276    bool terminates;
 277    bool ram_device;
 278    bool enabled;
 279    bool warning_printed; /* For reservations */
 280    uint8_t vga_logging_count;
 281    MemoryRegion *alias;
 282    hwaddr alias_offset;
 283    int32_t priority;
 284    bool may_overlap;
 285    QTAILQ_HEAD(subregions, MemoryRegion) subregions;
 286    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 287    QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
 288    const char *name;
 289    unsigned ioeventfd_nb;
 290    MemoryRegionIoeventfd *ioeventfds;
 291};
 292
 293struct IOMMUMemoryRegion {
 294    MemoryRegion parent_obj;
 295
 296    QLIST_HEAD(, IOMMUNotifier) iommu_notify;
 297    IOMMUNotifierFlag iommu_notify_flags;
 298};
 299
 300#define IOMMU_NOTIFIER_FOREACH(n, mr) \
 301    QLIST_FOREACH((n), &(mr)->iommu_notify, node)
 302
 303/**
 304 * MemoryListener: callbacks structure for updates to the physical memory map
 305 *
 306 * Allows a component to adjust to changes in the guest-visible memory map.
 307 * Use with memory_listener_register() and memory_listener_unregister().
 308 */
 309struct MemoryListener {
 310    void (*begin)(MemoryListener *listener);
 311    void (*commit)(MemoryListener *listener);
 312    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 313    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 314    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 315    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 316                      int old, int new);
 317    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 318                     int old, int new);
 319    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 320    void (*log_global_start)(MemoryListener *listener);
 321    void (*log_global_stop)(MemoryListener *listener);
 322    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 323                        bool match_data, uint64_t data, EventNotifier *e);
 324    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 325                        bool match_data, uint64_t data, EventNotifier *e);
 326    void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
 327                               hwaddr addr, hwaddr len);
 328    void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
 329                               hwaddr addr, hwaddr len);
 330    /* Lower = earlier (during add), later (during del) */
 331    unsigned priority;
 332    AddressSpace *address_space;
 333    QTAILQ_ENTRY(MemoryListener) link;
 334    QTAILQ_ENTRY(MemoryListener) link_as;
 335};
 336
 337/**
 338 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
 339 */
 340struct AddressSpace {
 341    /* All fields are private. */
 342    struct rcu_head rcu;
 343    char *name;
 344    MemoryRegion *root;
 345
 346    /* Accessed via RCU.  */
 347    struct FlatView *current_map;
 348
 349    int ioeventfd_nb;
 350    struct MemoryRegionIoeventfd *ioeventfds;
 351    QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
 352    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
 353};
 354
 355FlatView *address_space_to_flatview(AddressSpace *as);
 356
 357/**
 358 * MemoryRegionSection: describes a fragment of a #MemoryRegion
 359 *
 360 * @mr: the region, or %NULL if empty
 361 * @address_space: the address space the region is mapped in
 362 * @offset_within_region: the beginning of the section, relative to @mr's start
 363 * @size: the size of the section; will not exceed @mr's boundaries
 364 * @offset_within_address_space: the address of the first byte of the section
 365 *     relative to the region's address space
 366 * @readonly: writes to this section are ignored
 367 */
 368struct MemoryRegionSection {
 369    MemoryRegion *mr;
 370    FlatView *fv;
 371    hwaddr offset_within_region;
 372    Int128 size;
 373    hwaddr offset_within_address_space;
 374    bool readonly;
 375};
 376
 377/**
 378 * memory_region_init: Initialize a memory region
 379 *
 380 * The region typically acts as a container for other memory regions.  Use
 381 * memory_region_add_subregion() to add subregions.
 382 *
 383 * @mr: the #MemoryRegion to be initialized
 384 * @owner: the object that tracks the region's reference count
 385 * @name: used for debugging; not visible to the user or ABI
 386 * @size: size of the region; any subregions beyond this size will be clipped
 387 */
 388void memory_region_init(MemoryRegion *mr,
 389                        struct Object *owner,
 390                        const char *name,
 391                        uint64_t size);
 392
 393/**
 394 * memory_region_ref: Add 1 to a memory region's reference count
 395 *
 396 * Whenever memory regions are accessed outside the BQL, they need to be
 397 * preserved against hot-unplug.  MemoryRegions actually do not have their
 398 * own reference count; they piggyback on a QOM object, their "owner".
 399 * This function adds a reference to the owner.
 400 *
 401 * All MemoryRegions must have an owner if they can disappear, even if the
 402 * device they belong to operates exclusively under the BQL.  This is because
 403 * the region could be returned at any time by memory_region_find, and this
 404 * is usually under guest control.
 405 *
 406 * @mr: the #MemoryRegion
 407 */
 408void memory_region_ref(MemoryRegion *mr);
 409
 410/**
 411 * memory_region_unref: Remove 1 to a memory region's reference count
 412 *
 413 * Whenever memory regions are accessed outside the BQL, they need to be
 414 * preserved against hot-unplug.  MemoryRegions actually do not have their
 415 * own reference count; they piggyback on a QOM object, their "owner".
 416 * This function removes a reference to the owner and possibly destroys it.
 417 *
 418 * @mr: the #MemoryRegion
 419 */
 420void memory_region_unref(MemoryRegion *mr);
 421
 422/**
 423 * memory_region_init_io: Initialize an I/O memory region.
 424 *
 425 * Accesses into the region will cause the callbacks in @ops to be called.
 426 * if @size is nonzero, subregions will be clipped to @size.
 427 *
 428 * @mr: the #MemoryRegion to be initialized.
 429 * @owner: the object that tracks the region's reference count
 430 * @ops: a structure containing read and write callbacks to be used when
 431 *       I/O is performed on the region.
 432 * @opaque: passed to the read and write callbacks of the @ops structure.
 433 * @name: used for debugging; not visible to the user or ABI
 434 * @size: size of the region.
 435 */
 436void memory_region_init_io(MemoryRegion *mr,
 437                           struct Object *owner,
 438                           const MemoryRegionOps *ops,
 439                           void *opaque,
 440                           const char *name,
 441                           uint64_t size);
 442
 443/**
 444 * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
 445 *                                    into the region will modify memory
 446 *                                    directly.
 447 *
 448 * @mr: the #MemoryRegion to be initialized.
 449 * @owner: the object that tracks the region's reference count
 450 * @name: Region name, becomes part of RAMBlock name used in migration stream
 451 *        must be unique within any device
 452 * @size: size of the region.
 453 * @errp: pointer to Error*, to store an error if it happens.
 454 *
 455 * Note that this function does not do anything to cause the data in the
 456 * RAM memory region to be migrated; that is the responsibility of the caller.
 457 */
 458void memory_region_init_ram_nomigrate(MemoryRegion *mr,
 459                                      struct Object *owner,
 460                                      const char *name,
 461                                      uint64_t size,
 462                                      Error **errp);
 463
 464/**
 465 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
 466 *                                     RAM.  Accesses into the region will
 467 *                                     modify memory directly.  Only an initial
 468 *                                     portion of this RAM is actually used.
 469 *                                     The used size can change across reboots.
 470 *
 471 * @mr: the #MemoryRegion to be initialized.
 472 * @owner: the object that tracks the region's reference count
 473 * @name: Region name, becomes part of RAMBlock name used in migration stream
 474 *        must be unique within any device
 475 * @size: used size of the region.
 476 * @max_size: max size of the region.
 477 * @resized: callback to notify owner about used size change.
 478 * @errp: pointer to Error*, to store an error if it happens.
 479 *
 480 * Note that this function does not do anything to cause the data in the
 481 * RAM memory region to be migrated; that is the responsibility of the caller.
 482 */
 483void memory_region_init_resizeable_ram(MemoryRegion *mr,
 484                                       struct Object *owner,
 485                                       const char *name,
 486                                       uint64_t size,
 487                                       uint64_t max_size,
 488                                       void (*resized)(const char*,
 489                                                       uint64_t length,
 490                                                       void *host),
 491                                       Error **errp);
 492#ifdef __linux__
 493/**
 494 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
 495 *                                    mmap-ed backend.
 496 *
 497 * @mr: the #MemoryRegion to be initialized.
 498 * @owner: the object that tracks the region's reference count
 499 * @name: Region name, becomes part of RAMBlock name used in migration stream
 500 *        must be unique within any device
 501 * @size: size of the region.
 502 * @share: %true if memory must be mmaped with the MAP_SHARED flag
 503 * @path: the path in which to allocate the RAM.
 504 * @errp: pointer to Error*, to store an error if it happens.
 505 *
 506 * Note that this function does not do anything to cause the data in the
 507 * RAM memory region to be migrated; that is the responsibility of the caller.
 508 */
 509void memory_region_init_ram_from_file(MemoryRegion *mr,
 510                                      struct Object *owner,
 511                                      const char *name,
 512                                      uint64_t size,
 513                                      bool share,
 514                                      const char *path,
 515                                      Error **errp);
 516
 517/**
 518 * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
 519 *                                  mmap-ed backend.
 520 *
 521 * @mr: the #MemoryRegion to be initialized.
 522 * @owner: the object that tracks the region's reference count
 523 * @name: the name of the region.
 524 * @size: size of the region.
 525 * @share: %true if memory must be mmaped with the MAP_SHARED flag
 526 * @fd: the fd to mmap.
 527 * @errp: pointer to Error*, to store an error if it happens.
 528 *
 529 * Note that this function does not do anything to cause the data in the
 530 * RAM memory region to be migrated; that is the responsibility of the caller.
 531 */
 532void memory_region_init_ram_from_fd(MemoryRegion *mr,
 533                                    struct Object *owner,
 534                                    const char *name,
 535                                    uint64_t size,
 536                                    bool share,
 537                                    int fd,
 538                                    Error **errp);
 539#endif
 540
 541/**
 542 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
 543 *                              user-provided pointer.  Accesses into the
 544 *                              region will modify memory directly.
 545 *
 546 * @mr: the #MemoryRegion to be initialized.
 547 * @owner: the object that tracks the region's reference count
 548 * @name: Region name, becomes part of RAMBlock name used in migration stream
 549 *        must be unique within any device
 550 * @size: size of the region.
 551 * @ptr: memory to be mapped; must contain at least @size bytes.
 552 *
 553 * Note that this function does not do anything to cause the data in the
 554 * RAM memory region to be migrated; that is the responsibility of the caller.
 555 */
 556void memory_region_init_ram_ptr(MemoryRegion *mr,
 557                                struct Object *owner,
 558                                const char *name,
 559                                uint64_t size,
 560                                void *ptr);
 561
 562/**
 563 * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
 564 *                                     a user-provided pointer.
 565 *
 566 * A RAM device represents a mapping to a physical device, such as to a PCI
 567 * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
 568 * into the VM address space and access to the region will modify memory
 569 * directly.  However, the memory region should not be included in a memory
 570 * dump (device may not be enabled/mapped at the time of the dump), and
 571 * operations incompatible with manipulating MMIO should be avoided.  Replaces
 572 * skip_dump flag.
 573 *
 574 * @mr: the #MemoryRegion to be initialized.
 575 * @owner: the object that tracks the region's reference count
 576 * @name: the name of the region.
 577 * @size: size of the region.
 578 * @ptr: memory to be mapped; must contain at least @size bytes.
 579 *
 580 * Note that this function does not do anything to cause the data in the
 581 * RAM memory region to be migrated; that is the responsibility of the caller.
 582 * (For RAM device memory regions, migrating the contents rarely makes sense.)
 583 */
 584void memory_region_init_ram_device_ptr(MemoryRegion *mr,
 585                                       struct Object *owner,
 586                                       const char *name,
 587                                       uint64_t size,
 588                                       void *ptr);
 589
 590/**
 591 * memory_region_init_alias: Initialize a memory region that aliases all or a
 592 *                           part of another memory region.
 593 *
 594 * @mr: the #MemoryRegion to be initialized.
 595 * @owner: the object that tracks the region's reference count
 596 * @name: used for debugging; not visible to the user or ABI
 597 * @orig: the region to be referenced; @mr will be equivalent to
 598 *        @orig between @offset and @offset + @size - 1.
 599 * @offset: start of the section in @orig to be referenced.
 600 * @size: size of the region.
 601 */
 602void memory_region_init_alias(MemoryRegion *mr,
 603                              struct Object *owner,
 604                              const char *name,
 605                              MemoryRegion *orig,
 606                              hwaddr offset,
 607                              uint64_t size);
 608
 609/**
 610 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
 611 *
 612 * This has the same effect as calling memory_region_init_ram_nomigrate()
 613 * and then marking the resulting region read-only with
 614 * memory_region_set_readonly().
 615 *
 616 * Note that this function does not do anything to cause the data in the
 617 * RAM side of the memory region to be migrated; that is the responsibility
 618 * of the caller.
 619 *
 620 * @mr: the #MemoryRegion to be initialized.
 621 * @owner: the object that tracks the region's reference count
 622 * @name: Region name, becomes part of RAMBlock name used in migration stream
 623 *        must be unique within any device
 624 * @size: size of the region.
 625 * @errp: pointer to Error*, to store an error if it happens.
 626 */
 627void memory_region_init_rom_nomigrate(MemoryRegion *mr,
 628                                      struct Object *owner,
 629                                      const char *name,
 630                                      uint64_t size,
 631                                      Error **errp);
 632
 633/**
 634 * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
 635 *                                 Writes are handled via callbacks.
 636 *
 637 * Note that this function does not do anything to cause the data in the
 638 * RAM side of the memory region to be migrated; that is the responsibility
 639 * of the caller.
 640 *
 641 * @mr: the #MemoryRegion to be initialized.
 642 * @owner: the object that tracks the region's reference count
 643 * @ops: callbacks for write access handling (must not be NULL).
 644 * @name: Region name, becomes part of RAMBlock name used in migration stream
 645 *        must be unique within any device
 646 * @size: size of the region.
 647 * @errp: pointer to Error*, to store an error if it happens.
 648 */
 649void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
 650                                             struct Object *owner,
 651                                             const MemoryRegionOps *ops,
 652                                             void *opaque,
 653                                             const char *name,
 654                                             uint64_t size,
 655                                             Error **errp);
 656
 657/**
 658 * memory_region_init_reservation: Initialize a memory region that reserves
 659 *                                 I/O space.
 660 *
 661 * A reservation region primariy serves debugging purposes.  It claims I/O
 662 * space that is not supposed to be handled by QEMU itself.  Any access via
 663 * the memory API will cause an abort().
 664 * This function is deprecated. Use memory_region_init_io() with NULL
 665 * callbacks instead.
 666 *
 667 * @mr: the #MemoryRegion to be initialized
 668 * @owner: the object that tracks the region's reference count
 669 * @name: used for debugging; not visible to the user or ABI
 670 * @size: size of the region.
 671 */
 672static inline void memory_region_init_reservation(MemoryRegion *mr,
 673                                    Object *owner,
 674                                    const char *name,
 675                                    uint64_t size)
 676{
 677    memory_region_init_io(mr, owner, NULL, mr, name, size);
 678}
 679
 680/**
 681 * memory_region_init_iommu: Initialize a memory region of a custom type
 682 * that translates addresses
 683 *
 684 * An IOMMU region translates addresses and forwards accesses to a target
 685 * memory region.
 686 *
 687 * @typename: QOM class name
 688 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
 689 * @instance_size: the IOMMUMemoryRegion subclass instance size
 690 * @owner: the object that tracks the region's reference count
 691 * @ops: a function that translates addresses into the @target region
 692 * @name: used for debugging; not visible to the user or ABI
 693 * @size: size of the region.
 694 */
 695void memory_region_init_iommu(void *_iommu_mr,
 696                              size_t instance_size,
 697                              const char *mrtypename,
 698                              Object *owner,
 699                              const char *name,
 700                              uint64_t size);
 701
 702/**
 703 * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
 704 *                          region will modify memory directly.
 705 *
 706 * @mr: the #MemoryRegion to be initialized
 707 * @owner: the object that tracks the region's reference count (must be
 708 *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
 709 * @name: name of the memory region
 710 * @size: size of the region in bytes
 711 * @errp: pointer to Error*, to store an error if it happens.
 712 *
 713 * This function allocates RAM for a board model or device, and
 714 * arranges for it to be migrated (by calling vmstate_register_ram()
 715 * if @owner is a DeviceState, or vmstate_register_ram_global() if
 716 * @owner is NULL).
 717 *
 718 * TODO: Currently we restrict @owner to being either NULL (for
 719 * global RAM regions with no owner) or devices, so that we can
 720 * give the RAM block a unique name for migration purposes.
 721 * We should lift this restriction and allow arbitrary Objects.
 722 * If you pass a non-NULL non-device @owner then we will assert.
 723 */
 724void memory_region_init_ram(MemoryRegion *mr,
 725                            struct Object *owner,
 726                            const char *name,
 727                            uint64_t size,
 728                            Error **errp);
 729
 730/**
 731 * memory_region_init_rom: Initialize a ROM memory region.
 732 *
 733 * This has the same effect as calling memory_region_init_ram()
 734 * and then marking the resulting region read-only with
 735 * memory_region_set_readonly(). This includes arranging for the
 736 * contents to be migrated.
 737 *
 738 * TODO: Currently we restrict @owner to being either NULL (for
 739 * global RAM regions with no owner) or devices, so that we can
 740 * give the RAM block a unique name for migration purposes.
 741 * We should lift this restriction and allow arbitrary Objects.
 742 * If you pass a non-NULL non-device @owner then we will assert.
 743 *
 744 * @mr: the #MemoryRegion to be initialized.
 745 * @owner: the object that tracks the region's reference count
 746 * @name: Region name, becomes part of RAMBlock name used in migration stream
 747 *        must be unique within any device
 748 * @size: size of the region.
 749 * @errp: pointer to Error*, to store an error if it happens.
 750 */
 751void memory_region_init_rom(MemoryRegion *mr,
 752                            struct Object *owner,
 753                            const char *name,
 754                            uint64_t size,
 755                            Error **errp);
 756
 757/**
 758 * memory_region_init_rom_device:  Initialize a ROM memory region.
 759 *                                 Writes are handled via callbacks.
 760 *
 761 * This function initializes a memory region backed by RAM for reads
 762 * and callbacks for writes, and arranges for the RAM backing to
 763 * be migrated (by calling vmstate_register_ram()
 764 * if @owner is a DeviceState, or vmstate_register_ram_global() if
 765 * @owner is NULL).
 766 *
 767 * TODO: Currently we restrict @owner to being either NULL (for
 768 * global RAM regions with no owner) or devices, so that we can
 769 * give the RAM block a unique name for migration purposes.
 770 * We should lift this restriction and allow arbitrary Objects.
 771 * If you pass a non-NULL non-device @owner then we will assert.
 772 *
 773 * @mr: the #MemoryRegion to be initialized.
 774 * @owner: the object that tracks the region's reference count
 775 * @ops: callbacks for write access handling (must not be NULL).
 776 * @name: Region name, becomes part of RAMBlock name used in migration stream
 777 *        must be unique within any device
 778 * @size: size of the region.
 779 * @errp: pointer to Error*, to store an error if it happens.
 780 */
 781void memory_region_init_rom_device(MemoryRegion *mr,
 782                                   struct Object *owner,
 783                                   const MemoryRegionOps *ops,
 784                                   void *opaque,
 785                                   const char *name,
 786                                   uint64_t size,
 787                                   Error **errp);
 788
 789
 790/**
 791 * memory_region_owner: get a memory region's owner.
 792 *
 793 * @mr: the memory region being queried.
 794 */
 795struct Object *memory_region_owner(MemoryRegion *mr);
 796
 797/**
 798 * memory_region_size: get a memory region's size.
 799 *
 800 * @mr: the memory region being queried.
 801 */
 802uint64_t memory_region_size(MemoryRegion *mr);
 803
 804/**
 805 * memory_region_is_ram: check whether a memory region is random access
 806 *
 807 * Returns %true is a memory region is random access.
 808 *
 809 * @mr: the memory region being queried
 810 */
 811static inline bool memory_region_is_ram(MemoryRegion *mr)
 812{
 813    return mr->ram;
 814}
 815
 816/**
 817 * memory_region_is_ram_device: check whether a memory region is a ram device
 818 *
 819 * Returns %true is a memory region is a device backed ram region
 820 *
 821 * @mr: the memory region being queried
 822 */
 823bool memory_region_is_ram_device(MemoryRegion *mr);
 824
 825/**
 826 * memory_region_is_romd: check whether a memory region is in ROMD mode
 827 *
 828 * Returns %true if a memory region is a ROM device and currently set to allow
 829 * direct reads.
 830 *
 831 * @mr: the memory region being queried
 832 */
 833static inline bool memory_region_is_romd(MemoryRegion *mr)
 834{
 835    return mr->rom_device && mr->romd_mode;
 836}
 837
 838/**
 839 * memory_region_get_iommu: check whether a memory region is an iommu
 840 *
 841 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
 842 * otherwise NULL.
 843 *
 844 * @mr: the memory region being queried
 845 */
 846static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
 847{
 848    if (mr->alias) {
 849        return memory_region_get_iommu(mr->alias);
 850    }
 851    if (mr->is_iommu) {
 852        return (IOMMUMemoryRegion *) mr;
 853    }
 854    return NULL;
 855}
 856
 857/**
 858 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
 859 *   if an iommu or NULL if not
 860 *
 861 * Returns pointer to IOMMUMemoryRegioniClass if a memory region is an iommu,
 862 * otherwise NULL. This is fast path avoinding QOM checking, use with caution.
 863 *
 864 * @mr: the memory region being queried
 865 */
 866static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
 867        IOMMUMemoryRegion *iommu_mr)
 868{
 869    return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
 870}
 871
 872#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
 873
 874/**
 875 * memory_region_iommu_get_min_page_size: get minimum supported page size
 876 * for an iommu
 877 *
 878 * Returns minimum supported page size for an iommu.
 879 *
 880 * @iommu_mr: the memory region being queried
 881 */
 882uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
 883
 884/**
 885 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
 886 *
 887 * The notification type will be decided by entry.perm bits:
 888 *
 889 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
 890 * - For MAP (newly added entry) notifies: set entry.perm to the
 891 *   permission of the page (which is definitely !IOMMU_NONE).
 892 *
 893 * Note: for any IOMMU implementation, an in-place mapping change
 894 * should be notified with an UNMAP followed by a MAP.
 895 *
 896 * @iommu_mr: the memory region that was changed
 897 * @entry: the new entry in the IOMMU translation table.  The entry
 898 *         replaces all old entries for the same virtual I/O address range.
 899 *         Deleted entries have .@perm == 0.
 900 */
 901void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
 902                                IOMMUTLBEntry entry);
 903
 904/**
 905 * memory_region_notify_one: notify a change in an IOMMU translation
 906 *                           entry to a single notifier
 907 *
 908 * This works just like memory_region_notify_iommu(), but it only
 909 * notifies a specific notifier, not all of them.
 910 *
 911 * @notifier: the notifier to be notified
 912 * @entry: the new entry in the IOMMU translation table.  The entry
 913 *         replaces all old entries for the same virtual I/O address range.
 914 *         Deleted entries have .@perm == 0.
 915 */
 916void memory_region_notify_one(IOMMUNotifier *notifier,
 917                              IOMMUTLBEntry *entry);
 918
 919/**
 920 * memory_region_register_iommu_notifier: register a notifier for changes to
 921 * IOMMU translation entries.
 922 *
 923 * @mr: the memory region to observe
 924 * @n: the IOMMUNotifier to be added; the notify callback receives a
 925 *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
 926 *     ceases to be valid on exit from the notifier.
 927 */
 928void memory_region_register_iommu_notifier(MemoryRegion *mr,
 929                                           IOMMUNotifier *n);
 930
 931/**
 932 * memory_region_iommu_replay: replay existing IOMMU translations to
 933 * a notifier with the minimum page granularity returned by
 934 * mr->iommu_ops->get_page_size().
 935 *
 936 * @iommu_mr: the memory region to observe
 937 * @n: the notifier to which to replay iommu mappings
 938 */
 939void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
 940
 941/**
 942 * memory_region_iommu_replay_all: replay existing IOMMU translations
 943 * to all the notifiers registered.
 944 *
 945 * @iommu_mr: the memory region to observe
 946 */
 947void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
 948
 949/**
 950 * memory_region_unregister_iommu_notifier: unregister a notifier for
 951 * changes to IOMMU translation entries.
 952 *
 953 * @mr: the memory region which was observed and for which notity_stopped()
 954 *      needs to be called
 955 * @n: the notifier to be removed.
 956 */
 957void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
 958                                             IOMMUNotifier *n);
 959
 960/**
 961 * memory_region_name: get a memory region's name
 962 *
 963 * Returns the string that was used to initialize the memory region.
 964 *
 965 * @mr: the memory region being queried
 966 */
 967const char *memory_region_name(const MemoryRegion *mr);
 968
 969/**
 970 * memory_region_is_logging: return whether a memory region is logging writes
 971 *
 972 * Returns %true if the memory region is logging writes for the given client
 973 *
 974 * @mr: the memory region being queried
 975 * @client: the client being queried
 976 */
 977bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
 978
 979/**
 980 * memory_region_get_dirty_log_mask: return the clients for which a
 981 * memory region is logging writes.
 982 *
 983 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
 984 * are the bit indices.
 985 *
 986 * @mr: the memory region being queried
 987 */
 988uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
 989
 990/**
 991 * memory_region_is_rom: check whether a memory region is ROM
 992 *
 993 * Returns %true is a memory region is read-only memory.
 994 *
 995 * @mr: the memory region being queried
 996 */
 997static inline bool memory_region_is_rom(MemoryRegion *mr)
 998{
 999    return mr->ram && mr->readonly;
1000}
1001
1002
1003/**
1004 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1005 *
1006 * Returns a file descriptor backing a file-based RAM memory region,
1007 * or -1 if the region is not a file-based RAM memory region.
1008 *
1009 * @mr: the RAM or alias memory region being queried.
1010 */
1011int memory_region_get_fd(MemoryRegion *mr);
1012
1013/**
1014 * memory_region_from_host: Convert a pointer into a RAM memory region
1015 * and an offset within it.
1016 *
1017 * Given a host pointer inside a RAM memory region (created with
1018 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1019 * the MemoryRegion and the offset within it.
1020 *
1021 * Use with care; by the time this function returns, the returned pointer is
1022 * not protected by RCU anymore.  If the caller is not within an RCU critical
1023 * section and does not hold the iothread lock, it must have other means of
1024 * protecting the pointer, such as a reference to the region that includes
1025 * the incoming ram_addr_t.
1026 *
1027 * @mr: the memory region being queried.
1028 */
1029MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1030
1031/**
1032 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1033 *
1034 * Returns a host pointer to a RAM memory region (created with
1035 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1036 *
1037 * Use with care; by the time this function returns, the returned pointer is
1038 * not protected by RCU anymore.  If the caller is not within an RCU critical
1039 * section and does not hold the iothread lock, it must have other means of
1040 * protecting the pointer, such as a reference to the region that includes
1041 * the incoming ram_addr_t.
1042 *
1043 * @mr: the memory region being queried.
1044 */
1045void *memory_region_get_ram_ptr(MemoryRegion *mr);
1046
1047/* memory_region_ram_resize: Resize a RAM region.
1048 *
1049 * Only legal before guest might have detected the memory size: e.g. on
1050 * incoming migration, or right after reset.
1051 *
1052 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1053 * @newsize: the new size the region
1054 * @errp: pointer to Error*, to store an error if it happens.
1055 */
1056void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1057                              Error **errp);
1058
1059/**
1060 * memory_region_set_log: Turn dirty logging on or off for a region.
1061 *
1062 * Turns dirty logging on or off for a specified client (display, migration).
1063 * Only meaningful for RAM regions.
1064 *
1065 * @mr: the memory region being updated.
1066 * @log: whether dirty logging is to be enabled or disabled.
1067 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1068 */
1069void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1070
1071/**
1072 * memory_region_get_dirty: Check whether a range of bytes is dirty
1073 *                          for a specified client.
1074 *
1075 * Checks whether a range of bytes has been written to since the last
1076 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1077 * must be enabled.
1078 *
1079 * @mr: the memory region being queried.
1080 * @addr: the address (relative to the start of the region) being queried.
1081 * @size: the size of the range being queried.
1082 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1083 *          %DIRTY_MEMORY_VGA.
1084 */
1085bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1086                             hwaddr size, unsigned client);
1087
1088/**
1089 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1090 *
1091 * Marks a range of bytes as dirty, after it has been dirtied outside
1092 * guest code.
1093 *
1094 * @mr: the memory region being dirtied.
1095 * @addr: the address (relative to the start of the region) being dirtied.
1096 * @size: size of the range being dirtied.
1097 */
1098void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1099                             hwaddr size);
1100
1101/**
1102 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
1103 *                                     for a specified client. It clears them.
1104 *
1105 * Checks whether a range of bytes has been written to since the last
1106 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1107 * must be enabled.
1108 *
1109 * @mr: the memory region being queried.
1110 * @addr: the address (relative to the start of the region) being queried.
1111 * @size: the size of the range being queried.
1112 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1113 *          %DIRTY_MEMORY_VGA.
1114 */
1115bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1116                                        hwaddr size, unsigned client);
1117
1118/**
1119 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1120 *                                         bitmap and clear it.
1121 *
1122 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1123 * returns the snapshot.  The snapshot can then be used to query dirty
1124 * status, using memory_region_snapshot_get_dirty.  Unlike
1125 * memory_region_test_and_clear_dirty this allows to query the same
1126 * page multiple times, which is especially useful for display updates
1127 * where the scanlines often are not page aligned.
1128 *
1129 * The dirty bitmap region which gets copyed into the snapshot (and
1130 * cleared afterwards) can be larger than requested.  The boundaries
1131 * are rounded up/down so complete bitmap longs (covering 64 pages on
1132 * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1133 * isn't a problem for display updates as the extra pages are outside
1134 * the visible area, and in case the visible area changes a full
1135 * display redraw is due anyway.  Should other use cases for this
1136 * function emerge we might have to revisit this implementation
1137 * detail.
1138 *
1139 * Use g_free to release DirtyBitmapSnapshot.
1140 *
1141 * @mr: the memory region being queried.
1142 * @addr: the address (relative to the start of the region) being queried.
1143 * @size: the size of the range being queried.
1144 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1145 */
1146DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1147                                                            hwaddr addr,
1148                                                            hwaddr size,
1149                                                            unsigned client);
1150
1151/**
1152 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1153 *                                   in the specified dirty bitmap snapshot.
1154 *
1155 * @mr: the memory region being queried.
1156 * @snap: the dirty bitmap snapshot
1157 * @addr: the address (relative to the start of the region) being queried.
1158 * @size: the size of the range being queried.
1159 */
1160bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1161                                      DirtyBitmapSnapshot *snap,
1162                                      hwaddr addr, hwaddr size);
1163
1164/**
1165 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
1166 *                                  any external TLBs (e.g. kvm)
1167 *
1168 * Flushes dirty information from accelerators such as kvm and vhost-net
1169 * and makes it available to users of the memory API.
1170 *
1171 * @mr: the region being flushed.
1172 */
1173void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
1174
1175/**
1176 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1177 *                            client.
1178 *
1179 * Marks a range of pages as no longer dirty.
1180 *
1181 * @mr: the region being updated.
1182 * @addr: the start of the subrange being cleaned.
1183 * @size: the size of the subrange being cleaned.
1184 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1185 *          %DIRTY_MEMORY_VGA.
1186 */
1187void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1188                               hwaddr size, unsigned client);
1189
1190/**
1191 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1192 *
1193 * Allows a memory region to be marked as read-only (turning it into a ROM).
1194 * only useful on RAM regions.
1195 *
1196 * @mr: the region being updated.
1197 * @readonly: whether rhe region is to be ROM or RAM.
1198 */
1199void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1200
1201/**
1202 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1203 *
1204 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1205 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1206 * device is mapped to guest memory and satisfies read access directly.
1207 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1208 * Writes are always handled by the #MemoryRegion.write function.
1209 *
1210 * @mr: the memory region to be updated
1211 * @romd_mode: %true to put the region into ROMD mode
1212 */
1213void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1214
1215/**
1216 * memory_region_set_coalescing: Enable memory coalescing for the region.
1217 *
1218 * Enabled writes to a region to be queued for later processing. MMIO ->write
1219 * callbacks may be delayed until a non-coalesced MMIO is issued.
1220 * Only useful for IO regions.  Roughly similar to write-combining hardware.
1221 *
1222 * @mr: the memory region to be write coalesced
1223 */
1224void memory_region_set_coalescing(MemoryRegion *mr);
1225
1226/**
1227 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1228 *                               a region.
1229 *
1230 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1231 * Multiple calls can be issued coalesced disjoint ranges.
1232 *
1233 * @mr: the memory region to be updated.
1234 * @offset: the start of the range within the region to be coalesced.
1235 * @size: the size of the subrange to be coalesced.
1236 */
1237void memory_region_add_coalescing(MemoryRegion *mr,
1238                                  hwaddr offset,
1239                                  uint64_t size);
1240
1241/**
1242 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1243 *
1244 * Disables any coalescing caused by memory_region_set_coalescing() or
1245 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1246 * hardware.
1247 *
1248 * @mr: the memory region to be updated.
1249 */
1250void memory_region_clear_coalescing(MemoryRegion *mr);
1251
1252/**
1253 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1254 *                                    accesses.
1255 *
1256 * Ensure that pending coalesced MMIO request are flushed before the memory
1257 * region is accessed. This property is automatically enabled for all regions
1258 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1259 *
1260 * @mr: the memory region to be updated.
1261 */
1262void memory_region_set_flush_coalesced(MemoryRegion *mr);
1263
1264/**
1265 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1266 *                                      accesses.
1267 *
1268 * Clear the automatic coalesced MMIO flushing enabled via
1269 * memory_region_set_flush_coalesced. Note that this service has no effect on
1270 * memory regions that have MMIO coalescing enabled for themselves. For them,
1271 * automatic flushing will stop once coalescing is disabled.
1272 *
1273 * @mr: the memory region to be updated.
1274 */
1275void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1276
1277/**
1278 * memory_region_set_global_locking: Declares the access processing requires
1279 *                                   QEMU's global lock.
1280 *
1281 * When this is invoked, accesses to the memory region will be processed while
1282 * holding the global lock of QEMU. This is the default behavior of memory
1283 * regions.
1284 *
1285 * @mr: the memory region to be updated.
1286 */
1287void memory_region_set_global_locking(MemoryRegion *mr);
1288
1289/**
1290 * memory_region_clear_global_locking: Declares that access processing does
1291 *                                     not depend on the QEMU global lock.
1292 *
1293 * By clearing this property, accesses to the memory region will be processed
1294 * outside of QEMU's global lock (unless the lock is held on when issuing the
1295 * access request). In this case, the device model implementing the access
1296 * handlers is responsible for synchronization of concurrency.
1297 *
1298 * @mr: the memory region to be updated.
1299 */
1300void memory_region_clear_global_locking(MemoryRegion *mr);
1301
1302/**
1303 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1304 *                            is written to a location.
1305 *
1306 * Marks a word in an IO region (initialized with memory_region_init_io())
1307 * as a trigger for an eventfd event.  The I/O callback will not be called.
1308 * The caller must be prepared to handle failure (that is, take the required
1309 * action if the callback _is_ called).
1310 *
1311 * @mr: the memory region being updated.
1312 * @addr: the address within @mr that is to be monitored
1313 * @size: the size of the access to trigger the eventfd
1314 * @match_data: whether to match against @data, instead of just @addr
1315 * @data: the data to match against the guest write
1316 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1317 **/
1318void memory_region_add_eventfd(MemoryRegion *mr,
1319                               hwaddr addr,
1320                               unsigned size,
1321                               bool match_data,
1322                               uint64_t data,
1323                               EventNotifier *e);
1324
1325/**
1326 * memory_region_del_eventfd: Cancel an eventfd.
1327 *
1328 * Cancels an eventfd trigger requested by a previous
1329 * memory_region_add_eventfd() call.
1330 *
1331 * @mr: the memory region being updated.
1332 * @addr: the address within @mr that is to be monitored
1333 * @size: the size of the access to trigger the eventfd
1334 * @match_data: whether to match against @data, instead of just @addr
1335 * @data: the data to match against the guest write
1336 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1337 */
1338void memory_region_del_eventfd(MemoryRegion *mr,
1339                               hwaddr addr,
1340                               unsigned size,
1341                               bool match_data,
1342                               uint64_t data,
1343                               EventNotifier *e);
1344
1345/**
1346 * memory_region_add_subregion: Add a subregion to a container.
1347 *
1348 * Adds a subregion at @offset.  The subregion may not overlap with other
1349 * subregions (except for those explicitly marked as overlapping).  A region
1350 * may only be added once as a subregion (unless removed with
1351 * memory_region_del_subregion()); use memory_region_init_alias() if you
1352 * want a region to be a subregion in multiple locations.
1353 *
1354 * @mr: the region to contain the new subregion; must be a container
1355 *      initialized with memory_region_init().
1356 * @offset: the offset relative to @mr where @subregion is added.
1357 * @subregion: the subregion to be added.
1358 */
1359void memory_region_add_subregion(MemoryRegion *mr,
1360                                 hwaddr offset,
1361                                 MemoryRegion *subregion);
1362/**
1363 * memory_region_add_subregion_overlap: Add a subregion to a container
1364 *                                      with overlap.
1365 *
1366 * Adds a subregion at @offset.  The subregion may overlap with other
1367 * subregions.  Conflicts are resolved by having a higher @priority hide a
1368 * lower @priority. Subregions without priority are taken as @priority 0.
1369 * A region may only be added once as a subregion (unless removed with
1370 * memory_region_del_subregion()); use memory_region_init_alias() if you
1371 * want a region to be a subregion in multiple locations.
1372 *
1373 * @mr: the region to contain the new subregion; must be a container
1374 *      initialized with memory_region_init().
1375 * @offset: the offset relative to @mr where @subregion is added.
1376 * @subregion: the subregion to be added.
1377 * @priority: used for resolving overlaps; highest priority wins.
1378 */
1379void memory_region_add_subregion_overlap(MemoryRegion *mr,
1380                                         hwaddr offset,
1381                                         MemoryRegion *subregion,
1382                                         int priority);
1383
1384/**
1385 * memory_region_get_ram_addr: Get the ram address associated with a memory
1386 *                             region
1387 */
1388ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1389
1390uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1391/**
1392 * memory_region_del_subregion: Remove a subregion.
1393 *
1394 * Removes a subregion from its container.
1395 *
1396 * @mr: the container to be updated.
1397 * @subregion: the region being removed; must be a current subregion of @mr.
1398 */
1399void memory_region_del_subregion(MemoryRegion *mr,
1400                                 MemoryRegion *subregion);
1401
1402/*
1403 * memory_region_set_enabled: dynamically enable or disable a region
1404 *
1405 * Enables or disables a memory region.  A disabled memory region
1406 * ignores all accesses to itself and its subregions.  It does not
1407 * obscure sibling subregions with lower priority - it simply behaves as
1408 * if it was removed from the hierarchy.
1409 *
1410 * Regions default to being enabled.
1411 *
1412 * @mr: the region to be updated
1413 * @enabled: whether to enable or disable the region
1414 */
1415void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1416
1417/*
1418 * memory_region_set_address: dynamically update the address of a region
1419 *
1420 * Dynamically updates the address of a region, relative to its container.
1421 * May be used on regions are currently part of a memory hierarchy.
1422 *
1423 * @mr: the region to be updated
1424 * @addr: new address, relative to container region
1425 */
1426void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1427
1428/*
1429 * memory_region_set_size: dynamically update the size of a region.
1430 *
1431 * Dynamically updates the size of a region.
1432 *
1433 * @mr: the region to be updated
1434 * @size: used size of the region.
1435 */
1436void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1437
1438/*
1439 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1440 *
1441 * Dynamically updates the offset into the target region that an alias points
1442 * to, as if the fourth argument to memory_region_init_alias() has changed.
1443 *
1444 * @mr: the #MemoryRegion to be updated; should be an alias.
1445 * @offset: the new offset into the target memory region
1446 */
1447void memory_region_set_alias_offset(MemoryRegion *mr,
1448                                    hwaddr offset);
1449
1450/**
1451 * memory_region_present: checks if an address relative to a @container
1452 * translates into #MemoryRegion within @container
1453 *
1454 * Answer whether a #MemoryRegion within @container covers the address
1455 * @addr.
1456 *
1457 * @container: a #MemoryRegion within which @addr is a relative address
1458 * @addr: the area within @container to be searched
1459 */
1460bool memory_region_present(MemoryRegion *container, hwaddr addr);
1461
1462/**
1463 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1464 * into any address space.
1465 *
1466 * @mr: a #MemoryRegion which should be checked if it's mapped
1467 */
1468bool memory_region_is_mapped(MemoryRegion *mr);
1469
1470/**
1471 * memory_region_find: translate an address/size relative to a
1472 * MemoryRegion into a #MemoryRegionSection.
1473 *
1474 * Locates the first #MemoryRegion within @mr that overlaps the range
1475 * given by @addr and @size.
1476 *
1477 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1478 * It will have the following characteristics:
1479 *    .@size = 0 iff no overlap was found
1480 *    .@mr is non-%NULL iff an overlap was found
1481 *
1482 * Remember that in the return value the @offset_within_region is
1483 * relative to the returned region (in the .@mr field), not to the
1484 * @mr argument.
1485 *
1486 * Similarly, the .@offset_within_address_space is relative to the
1487 * address space that contains both regions, the passed and the
1488 * returned one.  However, in the special case where the @mr argument
1489 * has no container (and thus is the root of the address space), the
1490 * following will hold:
1491 *    .@offset_within_address_space >= @addr
1492 *    .@offset_within_address_space + .@size <= @addr + @size
1493 *
1494 * @mr: a MemoryRegion within which @addr is a relative address
1495 * @addr: start of the area within @as to be searched
1496 * @size: size of the area to be searched
1497 */
1498MemoryRegionSection memory_region_find(MemoryRegion *mr,
1499                                       hwaddr addr, uint64_t size);
1500
1501/**
1502 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1503 *
1504 * Synchronizes the dirty page log for all address spaces.
1505 */
1506void memory_global_dirty_log_sync(void);
1507
1508/**
1509 * memory_region_transaction_begin: Start a transaction.
1510 *
1511 * During a transaction, changes will be accumulated and made visible
1512 * only when the transaction ends (is committed).
1513 */
1514void memory_region_transaction_begin(void);
1515
1516/**
1517 * memory_region_transaction_commit: Commit a transaction and make changes
1518 *                                   visible to the guest.
1519 */
1520void memory_region_transaction_commit(void);
1521
1522/**
1523 * memory_listener_register: register callbacks to be called when memory
1524 *                           sections are mapped or unmapped into an address
1525 *                           space
1526 *
1527 * @listener: an object containing the callbacks to be called
1528 * @filter: if non-%NULL, only regions in this address space will be observed
1529 */
1530void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1531
1532/**
1533 * memory_listener_unregister: undo the effect of memory_listener_register()
1534 *
1535 * @listener: an object containing the callbacks to be removed
1536 */
1537void memory_listener_unregister(MemoryListener *listener);
1538
1539/**
1540 * memory_global_dirty_log_start: begin dirty logging for all regions
1541 */
1542void memory_global_dirty_log_start(void);
1543
1544/**
1545 * memory_global_dirty_log_stop: end dirty logging for all regions
1546 */
1547void memory_global_dirty_log_stop(void);
1548
1549void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1550                bool dispatch_tree);
1551
1552/**
1553 * memory_region_request_mmio_ptr: request a pointer to an mmio
1554 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1555 * When the device wants to invalidate the pointer it will call
1556 * memory_region_invalidate_mmio_ptr.
1557 *
1558 * @mr: #MemoryRegion to check
1559 * @addr: address within that region
1560 *
1561 * Returns true on success, false otherwise.
1562 */
1563bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1564
1565/**
1566 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1567 * previously requested.
1568 * In the end that means that if something wants to execute from this area it
1569 * will need to request the pointer again.
1570 *
1571 * @mr: #MemoryRegion associated to the pointer.
1572 * @addr: address within that region
1573 * @size: size of that area.
1574 */
1575void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1576                                       unsigned size);
1577
1578/**
1579 * memory_region_dispatch_read: perform a read directly to the specified
1580 * MemoryRegion.
1581 *
1582 * @mr: #MemoryRegion to access
1583 * @addr: address within that region
1584 * @pval: pointer to uint64_t which the data is written to
1585 * @size: size of the access in bytes
1586 * @attrs: memory transaction attributes to use for the access
1587 */
1588MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1589                                        hwaddr addr,
1590                                        uint64_t *pval,
1591                                        unsigned size,
1592                                        MemTxAttrs attrs);
1593/**
1594 * memory_region_dispatch_write: perform a write directly to the specified
1595 * MemoryRegion.
1596 *
1597 * @mr: #MemoryRegion to access
1598 * @addr: address within that region
1599 * @data: data to write
1600 * @size: size of the access in bytes
1601 * @attrs: memory transaction attributes to use for the access
1602 */
1603MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1604                                         hwaddr addr,
1605                                         uint64_t data,
1606                                         unsigned size,
1607                                         MemTxAttrs attrs);
1608
1609/**
1610 * address_space_init: initializes an address space
1611 *
1612 * @as: an uninitialized #AddressSpace
1613 * @root: a #MemoryRegion that routes addresses for the address space
1614 * @name: an address space name.  The name is only used for debugging
1615 *        output.
1616 */
1617void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1618
1619/* Remove this */
1620AddressSpace *address_space_init_shareable(MemoryRegion *root,
1621                                           const char *name);
1622
1623/**
1624 * address_space_destroy: destroy an address space
1625 *
1626 * Releases all resources associated with an address space.  After an address space
1627 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1628 * as well.
1629 *
1630 * @as: address space to be destroyed
1631 */
1632void address_space_destroy(AddressSpace *as);
1633
1634/**
1635 * address_space_rw: read from or write to an address space.
1636 *
1637 * Return a MemTxResult indicating whether the operation succeeded
1638 * or failed (eg unassigned memory, device rejected the transaction,
1639 * IOMMU fault).
1640 *
1641 * @as: #AddressSpace to be accessed
1642 * @addr: address within that address space
1643 * @attrs: memory transaction attributes
1644 * @buf: buffer with the data transferred
1645 * @is_write: indicates the transfer direction
1646 */
1647MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1648                             MemTxAttrs attrs, uint8_t *buf,
1649                             int len, bool is_write);
1650
1651/**
1652 * address_space_write: write to address space.
1653 *
1654 * Return a MemTxResult indicating whether the operation succeeded
1655 * or failed (eg unassigned memory, device rejected the transaction,
1656 * IOMMU fault).
1657 *
1658 * @as: #AddressSpace to be accessed
1659 * @addr: address within that address space
1660 * @attrs: memory transaction attributes
1661 * @buf: buffer with the data transferred
1662 */
1663MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1664                                MemTxAttrs attrs,
1665                                const uint8_t *buf, int len);
1666
1667/* address_space_ld*: load from an address space
1668 * address_space_st*: store to an address space
1669 *
1670 * These functions perform a load or store of the byte, word,
1671 * longword or quad to the specified address within the AddressSpace.
1672 * The _le suffixed functions treat the data as little endian;
1673 * _be indicates big endian; no suffix indicates "same endianness
1674 * as guest CPU".
1675 *
1676 * The "guest CPU endianness" accessors are deprecated for use outside
1677 * target-* code; devices should be CPU-agnostic and use either the LE
1678 * or the BE accessors.
1679 *
1680 * @as #AddressSpace to be accessed
1681 * @addr: address within that address space
1682 * @val: data value, for stores
1683 * @attrs: memory transaction attributes
1684 * @result: location to write the success/failure of the transaction;
1685 *   if NULL, this information is discarded
1686 */
1687uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1688                            MemTxAttrs attrs, MemTxResult *result);
1689uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1690                            MemTxAttrs attrs, MemTxResult *result);
1691uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1692                            MemTxAttrs attrs, MemTxResult *result);
1693uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1694                            MemTxAttrs attrs, MemTxResult *result);
1695uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1696                            MemTxAttrs attrs, MemTxResult *result);
1697uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1698                            MemTxAttrs attrs, MemTxResult *result);
1699uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1700                            MemTxAttrs attrs, MemTxResult *result);
1701void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1702                            MemTxAttrs attrs, MemTxResult *result);
1703void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1704                            MemTxAttrs attrs, MemTxResult *result);
1705void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1706                            MemTxAttrs attrs, MemTxResult *result);
1707void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1708                            MemTxAttrs attrs, MemTxResult *result);
1709void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1710                            MemTxAttrs attrs, MemTxResult *result);
1711void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1712                            MemTxAttrs attrs, MemTxResult *result);
1713void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1714                            MemTxAttrs attrs, MemTxResult *result);
1715
1716uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1717uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1718uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1719uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1720uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1721uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1722uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1723void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1724void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1725void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1726void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1727void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1728void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1729void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1730
1731struct MemoryRegionCache {
1732    hwaddr xlat;
1733    hwaddr len;
1734    AddressSpace *as;
1735};
1736
1737#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1738
1739/* address_space_cache_init: prepare for repeated access to a physical
1740 * memory region
1741 *
1742 * @cache: #MemoryRegionCache to be filled
1743 * @as: #AddressSpace to be accessed
1744 * @addr: address within that address space
1745 * @len: length of buffer
1746 * @is_write: indicates the transfer direction
1747 *
1748 * Will only work with RAM, and may map a subset of the requested range by
1749 * returning a value that is less than @len.  On failure, return a negative
1750 * errno value.
1751 *
1752 * Because it only works with RAM, this function can be used for
1753 * read-modify-write operations.  In this case, is_write should be %true.
1754 *
1755 * Note that addresses passed to the address_space_*_cached functions
1756 * are relative to @addr.
1757 */
1758int64_t address_space_cache_init(MemoryRegionCache *cache,
1759                                 AddressSpace *as,
1760                                 hwaddr addr,
1761                                 hwaddr len,
1762                                 bool is_write);
1763
1764/**
1765 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1766 *
1767 * @cache: The #MemoryRegionCache to operate on.
1768 * @addr: The first physical address that was written, relative to the
1769 * address that was passed to @address_space_cache_init.
1770 * @access_len: The number of bytes that were written starting at @addr.
1771 */
1772void address_space_cache_invalidate(MemoryRegionCache *cache,
1773                                    hwaddr addr,
1774                                    hwaddr access_len);
1775
1776/**
1777 * address_space_cache_destroy: free a #MemoryRegionCache
1778 *
1779 * @cache: The #MemoryRegionCache whose memory should be released.
1780 */
1781void address_space_cache_destroy(MemoryRegionCache *cache);
1782
1783/* address_space_ld*_cached: load from a cached #MemoryRegion
1784 * address_space_st*_cached: store into a cached #MemoryRegion
1785 *
1786 * These functions perform a load or store of the byte, word,
1787 * longword or quad to the specified address.  The address is
1788 * a physical address in the AddressSpace, but it must lie within
1789 * a #MemoryRegion that was mapped with address_space_cache_init.
1790 *
1791 * The _le suffixed functions treat the data as little endian;
1792 * _be indicates big endian; no suffix indicates "same endianness
1793 * as guest CPU".
1794 *
1795 * The "guest CPU endianness" accessors are deprecated for use outside
1796 * target-* code; devices should be CPU-agnostic and use either the LE
1797 * or the BE accessors.
1798 *
1799 * @cache: previously initialized #MemoryRegionCache to be accessed
1800 * @addr: address within the address space
1801 * @val: data value, for stores
1802 * @attrs: memory transaction attributes
1803 * @result: location to write the success/failure of the transaction;
1804 *   if NULL, this information is discarded
1805 */
1806uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1807                            MemTxAttrs attrs, MemTxResult *result);
1808uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1809                            MemTxAttrs attrs, MemTxResult *result);
1810uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1811                            MemTxAttrs attrs, MemTxResult *result);
1812uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1813                            MemTxAttrs attrs, MemTxResult *result);
1814uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1815                            MemTxAttrs attrs, MemTxResult *result);
1816uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1817                            MemTxAttrs attrs, MemTxResult *result);
1818uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1819                            MemTxAttrs attrs, MemTxResult *result);
1820void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1821                            MemTxAttrs attrs, MemTxResult *result);
1822void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1823                            MemTxAttrs attrs, MemTxResult *result);
1824void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1825                            MemTxAttrs attrs, MemTxResult *result);
1826void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1827                            MemTxAttrs attrs, MemTxResult *result);
1828void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1829                            MemTxAttrs attrs, MemTxResult *result);
1830void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1831                            MemTxAttrs attrs, MemTxResult *result);
1832void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1833                            MemTxAttrs attrs, MemTxResult *result);
1834
1835uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1836uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1837uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1838uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1839uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1840uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1841uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1842void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1843void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1844void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1845void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1846void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1847void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1848void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1849/* address_space_get_iotlb_entry: translate an address into an IOTLB
1850 * entry. Should be called from an RCU critical section.
1851 */
1852IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1853                                            bool is_write);
1854
1855/* address_space_translate: translate an address range into an address space
1856 * into a MemoryRegion and an address range into that section.  Should be
1857 * called from an RCU critical section, to avoid that the last reference
1858 * to the returned region disappears after address_space_translate returns.
1859 *
1860 * @as: #AddressSpace to be accessed
1861 * @addr: address within that address space
1862 * @xlat: pointer to address within the returned memory region section's
1863 * #MemoryRegion.
1864 * @len: pointer to length
1865 * @is_write: indicates the transfer direction
1866 */
1867MemoryRegion *flatview_translate(FlatView *fv,
1868                                 hwaddr addr, hwaddr *xlat,
1869                                 hwaddr *len, bool is_write,
1870                                 MemTxAttrs *attr);
1871
1872static inline MemoryRegion *address_space_translate(AddressSpace *as,
1873                                                    hwaddr addr, hwaddr *xlat,
1874                                                    hwaddr *len, bool is_write)
1875{
1876    return flatview_translate(address_space_to_flatview(as),
1877                              addr, xlat, len, is_write,
1878                              &MEMTXATTRS_UNSPECIFIED);
1879}
1880
1881MemoryRegion *address_space_translate_attr(AddressSpace *as, hwaddr addr,
1882                                      hwaddr *xlat, hwaddr *plen,
1883                                      bool is_write, MemTxAttrs *attr);
1884
1885/* address_space_access_valid: check for validity of accessing an address
1886 * space range
1887 *
1888 * Check whether memory is assigned to the given address space range, and
1889 * access is permitted by any IOMMU regions that are active for the address
1890 * space.
1891 *
1892 * For now, addr and len should be aligned to a page size.  This limitation
1893 * will be lifted in the future.
1894 *
1895 * @as: #AddressSpace to be accessed
1896 * @addr: address within that address space
1897 * @len: length of the area to be checked
1898 * @is_write: indicates the transfer direction
1899 */
1900bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1901
1902/* address_space_map: map a physical memory region into a host virtual address
1903 *
1904 * May map a subset of the requested range, given by and returned in @plen.
1905 * May return %NULL if resources needed to perform the mapping are exhausted.
1906 * Use only for reads OR writes - not for read-modify-write operations.
1907 * Use cpu_register_map_client() to know when retrying the map operation is
1908 * likely to succeed.
1909 *
1910 * @as: #AddressSpace to be accessed
1911 * @addr: address within that address space
1912 * @plen: pointer to length of buffer; updated on return
1913 * @is_write: indicates the transfer direction
1914 */
1915void *address_space_map(AddressSpace *as, hwaddr addr,
1916                        hwaddr *plen, bool is_write);
1917
1918/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1919 *
1920 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1921 * the amount of memory that was actually read or written by the caller.
1922 *
1923 * @as: #AddressSpace used
1924 * @addr: address within that address space
1925 * @len: buffer length as returned by address_space_map()
1926 * @access_len: amount of data actually transferred
1927 * @is_write: indicates the transfer direction
1928 */
1929void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1930                         int is_write, hwaddr access_len);
1931
1932
1933/* Internal functions, part of the implementation of address_space_read.  */
1934MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
1935                                   MemTxAttrs attrs, uint8_t *buf,
1936                                   int len, hwaddr addr1, hwaddr l,
1937                                   MemoryRegion *mr);
1938
1939MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
1940                               MemTxAttrs attrs, uint8_t *buf, int len);
1941void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1942
1943static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1944{
1945    if (is_write) {
1946        return memory_region_is_ram(mr) &&
1947               !mr->readonly && !memory_region_is_ram_device(mr);
1948    } else {
1949        return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1950               memory_region_is_romd(mr);
1951    }
1952}
1953
1954/**
1955 * address_space_read: read from an address space.
1956 *
1957 * Return a MemTxResult indicating whether the operation succeeded
1958 * or failed (eg unassigned memory, device rejected the transaction,
1959 * IOMMU fault).
1960 *
1961 * @as: #AddressSpace to be accessed
1962 * @addr: address within that address space
1963 * @attrs: memory transaction attributes
1964 * @buf: buffer with the data transferred
1965 */
1966static inline __attribute__((__always_inline__))
1967MemTxResult flatview_read(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
1968                          uint8_t *buf, int len)
1969{
1970    MemTxResult result = MEMTX_OK;
1971    hwaddr l, addr1;
1972    void *ptr;
1973    MemoryRegion *mr;
1974
1975    if (__builtin_constant_p(len)) {
1976        if (len) {
1977            rcu_read_lock();
1978            l = len;
1979            mr = flatview_translate(fv, addr, &addr1, &l, false, &attrs);
1980            if (len == l && memory_access_is_direct(mr, false)) {
1981                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1982                memcpy(buf, ptr, len);
1983            } else {
1984                result = flatview_read_continue(fv, addr, attrs, buf, len,
1985                                                addr1, l, mr);
1986            }
1987            rcu_read_unlock();
1988        }
1989    } else {
1990        result = flatview_read_full(fv, addr, attrs, buf, len);
1991    }
1992    return result;
1993}
1994
1995static inline MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
1996                                             MemTxAttrs attrs, uint8_t *buf,
1997                                             int len)
1998{
1999    return flatview_read(address_space_to_flatview(as), addr, attrs, buf, len);
2000}
2001
2002/**
2003 * address_space_read_cached: read from a cached RAM region
2004 *
2005 * @cache: Cached region to be addressed
2006 * @addr: address relative to the base of the RAM region
2007 * @buf: buffer with the data transferred
2008 * @len: length of the data transferred
2009 */
2010static inline void
2011address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2012                          void *buf, int len)
2013{
2014    assert(addr < cache->len && len <= cache->len - addr);
2015    address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
2016}
2017
2018/**
2019 * address_space_write_cached: write to a cached RAM region
2020 *
2021 * @cache: Cached region to be addressed
2022 * @addr: address relative to the base of the RAM region
2023 * @buf: buffer with the data transferred
2024 * @len: length of the data transferred
2025 */
2026static inline void
2027address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2028                           void *buf, int len)
2029{
2030    assert(addr < cache->len && len <= cache->len - addr);
2031    address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
2032}
2033
2034#endif
2035
2036#endif
2037