1/* 2 * Bitops Module 3 * 4 * Copyright (C) 2010 Corentin Chary <corentin.chary@gmail.com> 5 * 6 * Mostly inspired by (stolen from) linux/bitmap.h and linux/bitops.h 7 * 8 * This work is licensed under the terms of the GNU LGPL, version 2.1 or later. 9 * See the COPYING.LIB file in the top-level directory. 10 */ 11 12#ifndef BITOPS_H 13#define BITOPS_H 14 15 16#include "host-utils.h" 17#include "atomic.h" 18 19#define BITS_PER_BYTE CHAR_BIT 20#define BITS_PER_LONG (sizeof (unsigned long) * BITS_PER_BYTE) 21 22#define BIT(nr) (1UL << (nr)) 23#define BIT_MASK(nr) (1UL << ((nr) % BITS_PER_LONG)) 24#define BIT_WORD(nr) ((nr) / BITS_PER_LONG) 25#define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long)) 26 27#define MAKE_64BIT_MASK(shift, length) \ 28 (((~0ULL) >> (64 - (length))) << (shift)) 29 30/** 31 * set_bit - Set a bit in memory 32 * @nr: the bit to set 33 * @addr: the address to start counting from 34 */ 35static inline void set_bit(long nr, unsigned long *addr) 36{ 37 unsigned long mask = BIT_MASK(nr); 38 unsigned long *p = addr + BIT_WORD(nr); 39 40 *p |= mask; 41} 42 43/** 44 * set_bit_atomic - Set a bit in memory atomically 45 * @nr: the bit to set 46 * @addr: the address to start counting from 47 */ 48static inline void set_bit_atomic(long nr, unsigned long *addr) 49{ 50 unsigned long mask = BIT_MASK(nr); 51 unsigned long *p = addr + BIT_WORD(nr); 52 53 atomic_or(p, mask); 54} 55 56/** 57 * clear_bit - Clears a bit in memory 58 * @nr: Bit to clear 59 * @addr: Address to start counting from 60 */ 61static inline void clear_bit(long nr, unsigned long *addr) 62{ 63 unsigned long mask = BIT_MASK(nr); 64 unsigned long *p = addr + BIT_WORD(nr); 65 66 *p &= ~mask; 67} 68 69/** 70 * change_bit - Toggle a bit in memory 71 * @nr: Bit to change 72 * @addr: Address to start counting from 73 */ 74static inline void change_bit(long nr, unsigned long *addr) 75{ 76 unsigned long mask = BIT_MASK(nr); 77 unsigned long *p = addr + BIT_WORD(nr); 78 79 *p ^= mask; 80} 81 82/** 83 * test_and_set_bit - Set a bit and return its old value 84 * @nr: Bit to set 85 * @addr: Address to count from 86 */ 87static inline int test_and_set_bit(long nr, unsigned long *addr) 88{ 89 unsigned long mask = BIT_MASK(nr); 90 unsigned long *p = addr + BIT_WORD(nr); 91 unsigned long old = *p; 92 93 *p = old | mask; 94 return (old & mask) != 0; 95} 96 97/** 98 * test_and_clear_bit - Clear a bit and return its old value 99 * @nr: Bit to clear 100 * @addr: Address to count from 101 */ 102static inline int test_and_clear_bit(long nr, unsigned long *addr) 103{ 104 unsigned long mask = BIT_MASK(nr); 105 unsigned long *p = addr + BIT_WORD(nr); 106 unsigned long old = *p; 107 108 *p = old & ~mask; 109 return (old & mask) != 0; 110} 111 112/** 113 * test_and_change_bit - Change a bit and return its old value 114 * @nr: Bit to change 115 * @addr: Address to count from 116 */ 117static inline int test_and_change_bit(long nr, unsigned long *addr) 118{ 119 unsigned long mask = BIT_MASK(nr); 120 unsigned long *p = addr + BIT_WORD(nr); 121 unsigned long old = *p; 122 123 *p = old ^ mask; 124 return (old & mask) != 0; 125} 126 127/** 128 * test_bit - Determine whether a bit is set 129 * @nr: bit number to test 130 * @addr: Address to start counting from 131 */ 132static inline int test_bit(long nr, const unsigned long *addr) 133{ 134 return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1))); 135} 136 137/** 138 * find_last_bit - find the last set bit in a memory region 139 * @addr: The address to start the search at 140 * @size: The maximum size to search 141 * 142 * Returns the bit number of the first set bit, or size. 143 */ 144unsigned long find_last_bit(const unsigned long *addr, 145 unsigned long size); 146 147/** 148 * find_next_bit - find the next set bit in a memory region 149 * @addr: The address to base the search on 150 * @offset: The bitnumber to start searching at 151 * @size: The bitmap size in bits 152 */ 153unsigned long find_next_bit(const unsigned long *addr, 154 unsigned long size, 155 unsigned long offset); 156 157/** 158 * find_next_zero_bit - find the next cleared bit in a memory region 159 * @addr: The address to base the search on 160 * @offset: The bitnumber to start searching at 161 * @size: The bitmap size in bits 162 */ 163 164unsigned long find_next_zero_bit(const unsigned long *addr, 165 unsigned long size, 166 unsigned long offset); 167 168/** 169 * find_first_bit - find the first set bit in a memory region 170 * @addr: The address to start the search at 171 * @size: The maximum size to search 172 * 173 * Returns the bit number of the first set bit. 174 */ 175static inline unsigned long find_first_bit(const unsigned long *addr, 176 unsigned long size) 177{ 178 unsigned long result, tmp; 179 180 for (result = 0; result < size; result += BITS_PER_LONG) { 181 tmp = *addr++; 182 if (tmp) { 183 result += ctzl(tmp); 184 return result < size ? result : size; 185 } 186 } 187 /* Not found */ 188 return size; 189} 190 191/** 192 * find_first_zero_bit - find the first cleared bit in a memory region 193 * @addr: The address to start the search at 194 * @size: The maximum size to search 195 * 196 * Returns the bit number of the first cleared bit. 197 */ 198static inline unsigned long find_first_zero_bit(const unsigned long *addr, 199 unsigned long size) 200{ 201 return find_next_zero_bit(addr, size, 0); 202} 203 204/** 205 * rol8 - rotate an 8-bit value left 206 * @word: value to rotate 207 * @shift: bits to roll 208 */ 209static inline uint8_t rol8(uint8_t word, unsigned int shift) 210{ 211 return (word << shift) | (word >> ((8 - shift) & 7)); 212} 213 214/** 215 * ror8 - rotate an 8-bit value right 216 * @word: value to rotate 217 * @shift: bits to roll 218 */ 219static inline uint8_t ror8(uint8_t word, unsigned int shift) 220{ 221 return (word >> shift) | (word << ((8 - shift) & 7)); 222} 223 224/** 225 * rol16 - rotate a 16-bit value left 226 * @word: value to rotate 227 * @shift: bits to roll 228 */ 229static inline uint16_t rol16(uint16_t word, unsigned int shift) 230{ 231 return (word << shift) | (word >> ((16 - shift) & 15)); 232} 233 234/** 235 * ror16 - rotate a 16-bit value right 236 * @word: value to rotate 237 * @shift: bits to roll 238 */ 239static inline uint16_t ror16(uint16_t word, unsigned int shift) 240{ 241 return (word >> shift) | (word << ((16 - shift) & 15)); 242} 243 244/** 245 * rol32 - rotate a 32-bit value left 246 * @word: value to rotate 247 * @shift: bits to roll 248 */ 249static inline uint32_t rol32(uint32_t word, unsigned int shift) 250{ 251 return (word << shift) | (word >> ((32 - shift) & 31)); 252} 253 254/** 255 * ror32 - rotate a 32-bit value right 256 * @word: value to rotate 257 * @shift: bits to roll 258 */ 259static inline uint32_t ror32(uint32_t word, unsigned int shift) 260{ 261 return (word >> shift) | (word << ((32 - shift) & 31)); 262} 263 264/** 265 * rol64 - rotate a 64-bit value left 266 * @word: value to rotate 267 * @shift: bits to roll 268 */ 269static inline uint64_t rol64(uint64_t word, unsigned int shift) 270{ 271 return (word << shift) | (word >> ((64 - shift) & 63)); 272} 273 274/** 275 * ror64 - rotate a 64-bit value right 276 * @word: value to rotate 277 * @shift: bits to roll 278 */ 279static inline uint64_t ror64(uint64_t word, unsigned int shift) 280{ 281 return (word >> shift) | (word << ((64 - shift) & 63)); 282} 283 284/** 285 * extract32: 286 * @value: the value to extract the bit field from 287 * @start: the lowest bit in the bit field (numbered from 0) 288 * @length: the length of the bit field 289 * 290 * Extract from the 32 bit input @value the bit field specified by the 291 * @start and @length parameters, and return it. The bit field must 292 * lie entirely within the 32 bit word. It is valid to request that 293 * all 32 bits are returned (ie @length 32 and @start 0). 294 * 295 * Returns: the value of the bit field extracted from the input value. 296 */ 297static inline uint32_t extract32(uint32_t value, int start, int length) 298{ 299 assert(start >= 0 && length > 0 && length <= 32 - start); 300 return (value >> start) & (~0U >> (32 - length)); 301} 302 303/** 304 * extract64: 305 * @value: the value to extract the bit field from 306 * @start: the lowest bit in the bit field (numbered from 0) 307 * @length: the length of the bit field 308 * 309 * Extract from the 64 bit input @value the bit field specified by the 310 * @start and @length parameters, and return it. The bit field must 311 * lie entirely within the 64 bit word. It is valid to request that 312 * all 64 bits are returned (ie @length 64 and @start 0). 313 * 314 * Returns: the value of the bit field extracted from the input value. 315 */ 316static inline uint64_t extract64(uint64_t value, int start, int length) 317{ 318 assert(start >= 0 && length > 0 && length <= 64 - start); 319 return (value >> start) & (~0ULL >> (64 - length)); 320} 321 322/** 323 * sextract32: 324 * @value: the value to extract the bit field from 325 * @start: the lowest bit in the bit field (numbered from 0) 326 * @length: the length of the bit field 327 * 328 * Extract from the 32 bit input @value the bit field specified by the 329 * @start and @length parameters, and return it, sign extended to 330 * an int32_t (ie with the most significant bit of the field propagated 331 * to all the upper bits of the return value). The bit field must lie 332 * entirely within the 32 bit word. It is valid to request that 333 * all 32 bits are returned (ie @length 32 and @start 0). 334 * 335 * Returns: the sign extended value of the bit field extracted from the 336 * input value. 337 */ 338static inline int32_t sextract32(uint32_t value, int start, int length) 339{ 340 assert(start >= 0 && length > 0 && length <= 32 - start); 341 /* Note that this implementation relies on right shift of signed 342 * integers being an arithmetic shift. 343 */ 344 return ((int32_t)(value << (32 - length - start))) >> (32 - length); 345} 346 347/** 348 * sextract64: 349 * @value: the value to extract the bit field from 350 * @start: the lowest bit in the bit field (numbered from 0) 351 * @length: the length of the bit field 352 * 353 * Extract from the 64 bit input @value the bit field specified by the 354 * @start and @length parameters, and return it, sign extended to 355 * an int64_t (ie with the most significant bit of the field propagated 356 * to all the upper bits of the return value). The bit field must lie 357 * entirely within the 64 bit word. It is valid to request that 358 * all 64 bits are returned (ie @length 64 and @start 0). 359 * 360 * Returns: the sign extended value of the bit field extracted from the 361 * input value. 362 */ 363static inline int64_t sextract64(uint64_t value, int start, int length) 364{ 365 assert(start >= 0 && length > 0 && length <= 64 - start); 366 /* Note that this implementation relies on right shift of signed 367 * integers being an arithmetic shift. 368 */ 369 return ((int64_t)(value << (64 - length - start))) >> (64 - length); 370} 371 372/** 373 * deposit32: 374 * @value: initial value to insert bit field into 375 * @start: the lowest bit in the bit field (numbered from 0) 376 * @length: the length of the bit field 377 * @fieldval: the value to insert into the bit field 378 * 379 * Deposit @fieldval into the 32 bit @value at the bit field specified 380 * by the @start and @length parameters, and return the modified 381 * @value. Bits of @value outside the bit field are not modified. 382 * Bits of @fieldval above the least significant @length bits are 383 * ignored. The bit field must lie entirely within the 32 bit word. 384 * It is valid to request that all 32 bits are modified (ie @length 385 * 32 and @start 0). 386 * 387 * Returns: the modified @value. 388 */ 389static inline uint32_t deposit32(uint32_t value, int start, int length, 390 uint32_t fieldval) 391{ 392 uint32_t mask; 393 assert(start >= 0 && length > 0 && length <= 32 - start); 394 mask = (~0U >> (32 - length)) << start; 395 return (value & ~mask) | ((fieldval << start) & mask); 396} 397 398/** 399 * deposit64: 400 * @value: initial value to insert bit field into 401 * @start: the lowest bit in the bit field (numbered from 0) 402 * @length: the length of the bit field 403 * @fieldval: the value to insert into the bit field 404 * 405 * Deposit @fieldval into the 64 bit @value at the bit field specified 406 * by the @start and @length parameters, and return the modified 407 * @value. Bits of @value outside the bit field are not modified. 408 * Bits of @fieldval above the least significant @length bits are 409 * ignored. The bit field must lie entirely within the 64 bit word. 410 * It is valid to request that all 64 bits are modified (ie @length 411 * 64 and @start 0). 412 * 413 * Returns: the modified @value. 414 */ 415static inline uint64_t deposit64(uint64_t value, int start, int length, 416 uint64_t fieldval) 417{ 418 uint64_t mask; 419 assert(start >= 0 && length > 0 && length <= 64 - start); 420 mask = (~0ULL >> (64 - length)) << start; 421 return (value & ~mask) | ((fieldval << start) & mask); 422} 423 424/** 425 * half_shuffle32: 426 * @value: 32-bit value (of which only the bottom 16 bits are of interest) 427 * 428 * Given an input value: 429 * xxxx xxxx xxxx xxxx ABCD EFGH IJKL MNOP 430 * return the value where the bottom 16 bits are spread out into 431 * the odd bits in the word, and the even bits are zeroed: 432 * 0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N 0O0P 433 * 434 * Any bits set in the top half of the input are ignored. 435 * 436 * Returns: the shuffled bits. 437 */ 438static inline uint32_t half_shuffle32(uint32_t x) 439{ 440 /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits". 441 * It ignores any bits set in the top half of the input. 442 */ 443 x = ((x & 0xFF00) << 8) | (x & 0x00FF); 444 x = ((x << 4) | x) & 0x0F0F0F0F; 445 x = ((x << 2) | x) & 0x33333333; 446 x = ((x << 1) | x) & 0x55555555; 447 return x; 448} 449 450/** 451 * half_shuffle64: 452 * @value: 64-bit value (of which only the bottom 32 bits are of interest) 453 * 454 * Given an input value: 455 * xxxx xxxx xxxx .... xxxx xxxx ABCD EFGH IJKL MNOP QRST UVWX YZab cdef 456 * return the value where the bottom 32 bits are spread out into 457 * the odd bits in the word, and the even bits are zeroed: 458 * 0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N .... 0U0V 0W0X 0Y0Z 0a0b 0c0d 0e0f 459 * 460 * Any bits set in the top half of the input are ignored. 461 * 462 * Returns: the shuffled bits. 463 */ 464static inline uint64_t half_shuffle64(uint64_t x) 465{ 466 /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits". 467 * It ignores any bits set in the top half of the input. 468 */ 469 x = ((x & 0xFFFF0000ULL) << 16) | (x & 0xFFFF); 470 x = ((x << 8) | x) & 0x00FF00FF00FF00FFULL; 471 x = ((x << 4) | x) & 0x0F0F0F0F0F0F0F0FULL; 472 x = ((x << 2) | x) & 0x3333333333333333ULL; 473 x = ((x << 1) | x) & 0x5555555555555555ULL; 474 return x; 475} 476 477/** 478 * half_unshuffle32: 479 * @value: 32-bit value (of which only the odd bits are of interest) 480 * 481 * Given an input value: 482 * xAxB xCxD xExF xGxH xIxJ xKxL xMxN xOxP 483 * return the value where all the odd bits are compressed down 484 * into the low half of the word, and the high half is zeroed: 485 * 0000 0000 0000 0000 ABCD EFGH IJKL MNOP 486 * 487 * Any even bits set in the input are ignored. 488 * 489 * Returns: the unshuffled bits. 490 */ 491static inline uint32_t half_unshuffle32(uint32_t x) 492{ 493 /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits". 494 * where it is called an inverse half shuffle. 495 */ 496 x &= 0x55555555; 497 x = ((x >> 1) | x) & 0x33333333; 498 x = ((x >> 2) | x) & 0x0F0F0F0F; 499 x = ((x >> 4) | x) & 0x00FF00FF; 500 x = ((x >> 8) | x) & 0x0000FFFF; 501 return x; 502} 503 504/** 505 * half_unshuffle64: 506 * @value: 64-bit value (of which only the odd bits are of interest) 507 * 508 * Given an input value: 509 * xAxB xCxD xExF xGxH xIxJ xKxL xMxN .... xUxV xWxX xYxZ xaxb xcxd xexf 510 * return the value where all the odd bits are compressed down 511 * into the low half of the word, and the high half is zeroed: 512 * 0000 0000 0000 .... 0000 0000 ABCD EFGH IJKL MNOP QRST UVWX YZab cdef 513 * 514 * Any even bits set in the input are ignored. 515 * 516 * Returns: the unshuffled bits. 517 */ 518static inline uint64_t half_unshuffle64(uint64_t x) 519{ 520 /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits". 521 * where it is called an inverse half shuffle. 522 */ 523 x &= 0x5555555555555555ULL; 524 x = ((x >> 1) | x) & 0x3333333333333333ULL; 525 x = ((x >> 2) | x) & 0x0F0F0F0F0F0F0F0FULL; 526 x = ((x >> 4) | x) & 0x00FF00FF00FF00FFULL; 527 x = ((x >> 8) | x) & 0x0000FFFF0000FFFFULL; 528 x = ((x >> 16) | x) & 0x00000000FFFFFFFFULL; 529 return x; 530} 531 532#endif 533