qemu/target/s390x/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU S390x KVM implementation
   3 *
   4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
   5 * Copyright IBM Corp. 2012
   6 *
   7 * This library is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU Lesser General Public
   9 * License as published by the Free Software Foundation; either
  10 * version 2 of the License, or (at your option) any later version.
  11 *
  12 * This library is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * Lesser General Public License for more details.
  16 *
  17 * Contributions after 2012-10-29 are licensed under the terms of the
  18 * GNU GPL, version 2 or (at your option) any later version.
  19 *
  20 * You should have received a copy of the GNU (Lesser) General Public
  21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include <sys/ioctl.h>
  26
  27#include <linux/kvm.h>
  28#include <asm/ptrace.h>
  29
  30#include "qemu-common.h"
  31#include "cpu.h"
  32#include "internal.h"
  33#include "kvm_s390x.h"
  34#include "qemu/error-report.h"
  35#include "qemu/timer.h"
  36#include "sysemu/sysemu.h"
  37#include "sysemu/hw_accel.h"
  38#include "hw/hw.h"
  39#include "sysemu/device_tree.h"
  40#include "qapi/qmp/qjson.h"
  41#include "exec/gdbstub.h"
  42#include "exec/address-spaces.h"
  43#include "trace.h"
  44#include "qapi-event.h"
  45#include "hw/s390x/s390-pci-inst.h"
  46#include "hw/s390x/s390-pci-bus.h"
  47#include "hw/s390x/ipl.h"
  48#include "hw/s390x/ebcdic.h"
  49#include "exec/memattrs.h"
  50#include "hw/s390x/s390-virtio-ccw.h"
  51#include "hw/s390x/s390-virtio-hcall.h"
  52
  53#ifndef DEBUG_KVM
  54#define DEBUG_KVM  0
  55#endif
  56
  57#define DPRINTF(fmt, ...) do {                \
  58    if (DEBUG_KVM) {                          \
  59        fprintf(stderr, fmt, ## __VA_ARGS__); \
  60    }                                         \
  61} while (0);
  62
  63#define kvm_vm_check_mem_attr(s, attr) \
  64    kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
  65
  66#define IPA0_DIAG                       0x8300
  67#define IPA0_SIGP                       0xae00
  68#define IPA0_B2                         0xb200
  69#define IPA0_B9                         0xb900
  70#define IPA0_EB                         0xeb00
  71#define IPA0_E3                         0xe300
  72
  73#define PRIV_B2_SCLP_CALL               0x20
  74#define PRIV_B2_CSCH                    0x30
  75#define PRIV_B2_HSCH                    0x31
  76#define PRIV_B2_MSCH                    0x32
  77#define PRIV_B2_SSCH                    0x33
  78#define PRIV_B2_STSCH                   0x34
  79#define PRIV_B2_TSCH                    0x35
  80#define PRIV_B2_TPI                     0x36
  81#define PRIV_B2_SAL                     0x37
  82#define PRIV_B2_RSCH                    0x38
  83#define PRIV_B2_STCRW                   0x39
  84#define PRIV_B2_STCPS                   0x3a
  85#define PRIV_B2_RCHP                    0x3b
  86#define PRIV_B2_SCHM                    0x3c
  87#define PRIV_B2_CHSC                    0x5f
  88#define PRIV_B2_SIGA                    0x74
  89#define PRIV_B2_XSCH                    0x76
  90
  91#define PRIV_EB_SQBS                    0x8a
  92#define PRIV_EB_PCISTB                  0xd0
  93#define PRIV_EB_SIC                     0xd1
  94
  95#define PRIV_B9_EQBS                    0x9c
  96#define PRIV_B9_CLP                     0xa0
  97#define PRIV_B9_PCISTG                  0xd0
  98#define PRIV_B9_PCILG                   0xd2
  99#define PRIV_B9_RPCIT                   0xd3
 100
 101#define PRIV_E3_MPCIFC                  0xd0
 102#define PRIV_E3_STPCIFC                 0xd4
 103
 104#define DIAG_TIMEREVENT                 0x288
 105#define DIAG_IPL                        0x308
 106#define DIAG_KVM_HYPERCALL              0x500
 107#define DIAG_KVM_BREAKPOINT             0x501
 108
 109#define ICPT_INSTRUCTION                0x04
 110#define ICPT_PROGRAM                    0x08
 111#define ICPT_EXT_INT                    0x14
 112#define ICPT_WAITPSW                    0x1c
 113#define ICPT_SOFT_INTERCEPT             0x24
 114#define ICPT_CPU_STOP                   0x28
 115#define ICPT_OPEREXC                    0x2c
 116#define ICPT_IO                         0x40
 117
 118#define NR_LOCAL_IRQS 32
 119/*
 120 * Needs to be big enough to contain max_cpus emergency signals
 121 * and in addition NR_LOCAL_IRQS interrupts
 122 */
 123#define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
 124                           (max_cpus + NR_LOCAL_IRQS))
 125
 126static CPUWatchpoint hw_watchpoint;
 127/*
 128 * We don't use a list because this structure is also used to transmit the
 129 * hardware breakpoints to the kernel.
 130 */
 131static struct kvm_hw_breakpoint *hw_breakpoints;
 132static int nb_hw_breakpoints;
 133
 134const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
 135    KVM_CAP_LAST_INFO
 136};
 137
 138static int cap_sync_regs;
 139static int cap_async_pf;
 140static int cap_mem_op;
 141static int cap_s390_irq;
 142static int cap_ri;
 143static int cap_gs;
 144
 145static int active_cmma;
 146
 147static void *legacy_s390_alloc(size_t size, uint64_t *align);
 148
 149static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
 150{
 151    struct kvm_device_attr attr = {
 152        .group = KVM_S390_VM_MEM_CTRL,
 153        .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
 154        .addr = (uint64_t) memory_limit,
 155    };
 156
 157    return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 158}
 159
 160int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
 161{
 162    int rc;
 163
 164    struct kvm_device_attr attr = {
 165        .group = KVM_S390_VM_MEM_CTRL,
 166        .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
 167        .addr = (uint64_t) &new_limit,
 168    };
 169
 170    if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
 171        return 0;
 172    }
 173
 174    rc = kvm_s390_query_mem_limit(hw_limit);
 175    if (rc) {
 176        return rc;
 177    } else if (*hw_limit < new_limit) {
 178        return -E2BIG;
 179    }
 180
 181    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 182}
 183
 184int kvm_s390_cmma_active(void)
 185{
 186    return active_cmma;
 187}
 188
 189static bool kvm_s390_cmma_available(void)
 190{
 191    static bool initialized, value;
 192
 193    if (!initialized) {
 194        initialized = true;
 195        value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
 196                kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
 197    }
 198    return value;
 199}
 200
 201void kvm_s390_cmma_reset(void)
 202{
 203    int rc;
 204    struct kvm_device_attr attr = {
 205        .group = KVM_S390_VM_MEM_CTRL,
 206        .attr = KVM_S390_VM_MEM_CLR_CMMA,
 207    };
 208
 209    if (!kvm_s390_cmma_active()) {
 210        return;
 211    }
 212
 213    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 214    trace_kvm_clear_cmma(rc);
 215}
 216
 217static void kvm_s390_enable_cmma(void)
 218{
 219    int rc;
 220    struct kvm_device_attr attr = {
 221        .group = KVM_S390_VM_MEM_CTRL,
 222        .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
 223    };
 224
 225    if (mem_path) {
 226        warn_report("CMM will not be enabled because it is not "
 227                    "compatible with hugetlbfs.");
 228        return;
 229    }
 230    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 231    active_cmma = !rc;
 232    trace_kvm_enable_cmma(rc);
 233}
 234
 235static void kvm_s390_set_attr(uint64_t attr)
 236{
 237    struct kvm_device_attr attribute = {
 238        .group = KVM_S390_VM_CRYPTO,
 239        .attr  = attr,
 240    };
 241
 242    int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
 243
 244    if (ret) {
 245        error_report("Failed to set crypto device attribute %lu: %s",
 246                     attr, strerror(-ret));
 247    }
 248}
 249
 250static void kvm_s390_init_aes_kw(void)
 251{
 252    uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
 253
 254    if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
 255                                 NULL)) {
 256            attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
 257    }
 258
 259    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
 260            kvm_s390_set_attr(attr);
 261    }
 262}
 263
 264static void kvm_s390_init_dea_kw(void)
 265{
 266    uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
 267
 268    if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
 269                                 NULL)) {
 270            attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
 271    }
 272
 273    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
 274            kvm_s390_set_attr(attr);
 275    }
 276}
 277
 278void kvm_s390_crypto_reset(void)
 279{
 280    if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
 281        kvm_s390_init_aes_kw();
 282        kvm_s390_init_dea_kw();
 283    }
 284}
 285
 286int kvm_arch_init(MachineState *ms, KVMState *s)
 287{
 288    MachineClass *mc = MACHINE_GET_CLASS(ms);
 289
 290    mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
 291    cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
 292    cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
 293    cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
 294    cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
 295
 296    if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
 297        || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
 298        phys_mem_set_alloc(legacy_s390_alloc);
 299    }
 300
 301    kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
 302    kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
 303    kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
 304    if (ri_allowed()) {
 305        if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
 306            cap_ri = 1;
 307        }
 308    }
 309    if (cpu_model_allowed()) {
 310        if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) {
 311            cap_gs = 1;
 312        }
 313    }
 314
 315    /*
 316     * The migration interface for ais was introduced with kernel 4.13
 317     * but the capability itself had been active since 4.12. As migration
 318     * support is considered necessary let's disable ais in the 2.10
 319     * machine.
 320     */
 321    /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */
 322
 323    return 0;
 324}
 325
 326int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
 327{
 328    return 0;
 329}
 330
 331unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 332{
 333    return cpu->cpu_index;
 334}
 335
 336int kvm_arch_init_vcpu(CPUState *cs)
 337{
 338    S390CPU *cpu = S390_CPU(cs);
 339    kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
 340    cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE);
 341    return 0;
 342}
 343
 344void kvm_s390_reset_vcpu(S390CPU *cpu)
 345{
 346    CPUState *cs = CPU(cpu);
 347
 348    /* The initial reset call is needed here to reset in-kernel
 349     * vcpu data that we can't access directly from QEMU
 350     * (i.e. with older kernels which don't support sync_regs/ONE_REG).
 351     * Before this ioctl cpu_synchronize_state() is called in common kvm
 352     * code (kvm-all) */
 353    if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
 354        error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
 355    }
 356}
 357
 358static int can_sync_regs(CPUState *cs, int regs)
 359{
 360    return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
 361}
 362
 363int kvm_arch_put_registers(CPUState *cs, int level)
 364{
 365    S390CPU *cpu = S390_CPU(cs);
 366    CPUS390XState *env = &cpu->env;
 367    struct kvm_sregs sregs;
 368    struct kvm_regs regs;
 369    struct kvm_fpu fpu = {};
 370    int r;
 371    int i;
 372
 373    /* always save the PSW  and the GPRS*/
 374    cs->kvm_run->psw_addr = env->psw.addr;
 375    cs->kvm_run->psw_mask = env->psw.mask;
 376
 377    if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
 378        for (i = 0; i < 16; i++) {
 379            cs->kvm_run->s.regs.gprs[i] = env->regs[i];
 380            cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
 381        }
 382    } else {
 383        for (i = 0; i < 16; i++) {
 384            regs.gprs[i] = env->regs[i];
 385        }
 386        r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
 387        if (r < 0) {
 388            return r;
 389        }
 390    }
 391
 392    if (can_sync_regs(cs, KVM_SYNC_VRS)) {
 393        for (i = 0; i < 32; i++) {
 394            cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll;
 395            cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll;
 396        }
 397        cs->kvm_run->s.regs.fpc = env->fpc;
 398        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
 399    } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
 400        for (i = 0; i < 16; i++) {
 401            cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll;
 402        }
 403        cs->kvm_run->s.regs.fpc = env->fpc;
 404        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
 405    } else {
 406        /* Floating point */
 407        for (i = 0; i < 16; i++) {
 408            fpu.fprs[i] = get_freg(env, i)->ll;
 409        }
 410        fpu.fpc = env->fpc;
 411
 412        r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
 413        if (r < 0) {
 414            return r;
 415        }
 416    }
 417
 418    /* Do we need to save more than that? */
 419    if (level == KVM_PUT_RUNTIME_STATE) {
 420        return 0;
 421    }
 422
 423    if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
 424        cs->kvm_run->s.regs.cputm = env->cputm;
 425        cs->kvm_run->s.regs.ckc = env->ckc;
 426        cs->kvm_run->s.regs.todpr = env->todpr;
 427        cs->kvm_run->s.regs.gbea = env->gbea;
 428        cs->kvm_run->s.regs.pp = env->pp;
 429        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
 430    } else {
 431        /*
 432         * These ONE_REGS are not protected by a capability. As they are only
 433         * necessary for migration we just trace a possible error, but don't
 434         * return with an error return code.
 435         */
 436        kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
 437        kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
 438        kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
 439        kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
 440        kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
 441    }
 442
 443    if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
 444        memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
 445        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
 446    }
 447
 448    /* pfault parameters */
 449    if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
 450        cs->kvm_run->s.regs.pft = env->pfault_token;
 451        cs->kvm_run->s.regs.pfs = env->pfault_select;
 452        cs->kvm_run->s.regs.pfc = env->pfault_compare;
 453        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
 454    } else if (cap_async_pf) {
 455        r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
 456        if (r < 0) {
 457            return r;
 458        }
 459        r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
 460        if (r < 0) {
 461            return r;
 462        }
 463        r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
 464        if (r < 0) {
 465            return r;
 466        }
 467    }
 468
 469    /* access registers and control registers*/
 470    if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
 471        for (i = 0; i < 16; i++) {
 472            cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
 473            cs->kvm_run->s.regs.crs[i] = env->cregs[i];
 474        }
 475        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
 476        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
 477    } else {
 478        for (i = 0; i < 16; i++) {
 479            sregs.acrs[i] = env->aregs[i];
 480            sregs.crs[i] = env->cregs[i];
 481        }
 482        r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
 483        if (r < 0) {
 484            return r;
 485        }
 486    }
 487
 488    if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
 489        memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
 490        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
 491    }
 492
 493    if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
 494        cs->kvm_run->s.regs.bpbc = env->bpbc;
 495        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
 496    }
 497
 498    /* Finally the prefix */
 499    if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
 500        cs->kvm_run->s.regs.prefix = env->psa;
 501        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
 502    } else {
 503        /* prefix is only supported via sync regs */
 504    }
 505    return 0;
 506}
 507
 508int kvm_arch_get_registers(CPUState *cs)
 509{
 510    S390CPU *cpu = S390_CPU(cs);
 511    CPUS390XState *env = &cpu->env;
 512    struct kvm_sregs sregs;
 513    struct kvm_regs regs;
 514    struct kvm_fpu fpu;
 515    int i, r;
 516
 517    /* get the PSW */
 518    env->psw.addr = cs->kvm_run->psw_addr;
 519    env->psw.mask = cs->kvm_run->psw_mask;
 520
 521    /* the GPRS */
 522    if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
 523        for (i = 0; i < 16; i++) {
 524            env->regs[i] = cs->kvm_run->s.regs.gprs[i];
 525        }
 526    } else {
 527        r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
 528        if (r < 0) {
 529            return r;
 530        }
 531         for (i = 0; i < 16; i++) {
 532            env->regs[i] = regs.gprs[i];
 533        }
 534    }
 535
 536    /* The ACRS and CRS */
 537    if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
 538        for (i = 0; i < 16; i++) {
 539            env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
 540            env->cregs[i] = cs->kvm_run->s.regs.crs[i];
 541        }
 542    } else {
 543        r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
 544        if (r < 0) {
 545            return r;
 546        }
 547         for (i = 0; i < 16; i++) {
 548            env->aregs[i] = sregs.acrs[i];
 549            env->cregs[i] = sregs.crs[i];
 550        }
 551    }
 552
 553    /* Floating point and vector registers */
 554    if (can_sync_regs(cs, KVM_SYNC_VRS)) {
 555        for (i = 0; i < 32; i++) {
 556            env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0];
 557            env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1];
 558        }
 559        env->fpc = cs->kvm_run->s.regs.fpc;
 560    } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
 561        for (i = 0; i < 16; i++) {
 562            get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i];
 563        }
 564        env->fpc = cs->kvm_run->s.regs.fpc;
 565    } else {
 566        r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
 567        if (r < 0) {
 568            return r;
 569        }
 570        for (i = 0; i < 16; i++) {
 571            get_freg(env, i)->ll = fpu.fprs[i];
 572        }
 573        env->fpc = fpu.fpc;
 574    }
 575
 576    /* The prefix */
 577    if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
 578        env->psa = cs->kvm_run->s.regs.prefix;
 579    }
 580
 581    if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
 582        env->cputm = cs->kvm_run->s.regs.cputm;
 583        env->ckc = cs->kvm_run->s.regs.ckc;
 584        env->todpr = cs->kvm_run->s.regs.todpr;
 585        env->gbea = cs->kvm_run->s.regs.gbea;
 586        env->pp = cs->kvm_run->s.regs.pp;
 587    } else {
 588        /*
 589         * These ONE_REGS are not protected by a capability. As they are only
 590         * necessary for migration we just trace a possible error, but don't
 591         * return with an error return code.
 592         */
 593        kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
 594        kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
 595        kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
 596        kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
 597        kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
 598    }
 599
 600    if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
 601        memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
 602    }
 603
 604    if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
 605        memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
 606    }
 607
 608    if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
 609        env->bpbc = cs->kvm_run->s.regs.bpbc;
 610    }
 611
 612    /* pfault parameters */
 613    if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
 614        env->pfault_token = cs->kvm_run->s.regs.pft;
 615        env->pfault_select = cs->kvm_run->s.regs.pfs;
 616        env->pfault_compare = cs->kvm_run->s.regs.pfc;
 617    } else if (cap_async_pf) {
 618        r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
 619        if (r < 0) {
 620            return r;
 621        }
 622        r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
 623        if (r < 0) {
 624            return r;
 625        }
 626        r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
 627        if (r < 0) {
 628            return r;
 629        }
 630    }
 631
 632    return 0;
 633}
 634
 635int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
 636{
 637    int r;
 638    struct kvm_device_attr attr = {
 639        .group = KVM_S390_VM_TOD,
 640        .attr = KVM_S390_VM_TOD_LOW,
 641        .addr = (uint64_t)tod_low,
 642    };
 643
 644    r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 645    if (r) {
 646        return r;
 647    }
 648
 649    attr.attr = KVM_S390_VM_TOD_HIGH;
 650    attr.addr = (uint64_t)tod_high;
 651    return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 652}
 653
 654int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
 655{
 656    int r;
 657    struct kvm_s390_vm_tod_clock gtod;
 658    struct kvm_device_attr attr = {
 659        .group = KVM_S390_VM_TOD,
 660        .attr = KVM_S390_VM_TOD_EXT,
 661        .addr = (uint64_t)&gtod,
 662    };
 663
 664    r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 665    *tod_high = gtod.epoch_idx;
 666    *tod_low  = gtod.tod;
 667
 668    return r;
 669}
 670
 671int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low)
 672{
 673    int r;
 674    struct kvm_device_attr attr = {
 675        .group = KVM_S390_VM_TOD,
 676        .attr = KVM_S390_VM_TOD_LOW,
 677        .addr = (uint64_t)tod_low,
 678    };
 679
 680    r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 681    if (r) {
 682        return r;
 683    }
 684
 685    attr.attr = KVM_S390_VM_TOD_HIGH;
 686    attr.addr = (uint64_t)tod_high;
 687    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 688}
 689
 690int kvm_s390_set_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
 691{
 692    struct kvm_s390_vm_tod_clock gtod = {
 693        .epoch_idx = *tod_high,
 694        .tod  = *tod_low,
 695    };
 696    struct kvm_device_attr attr = {
 697        .group = KVM_S390_VM_TOD,
 698        .attr = KVM_S390_VM_TOD_EXT,
 699        .addr = (uint64_t)&gtod,
 700    };
 701
 702    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 703}
 704
 705/**
 706 * kvm_s390_mem_op:
 707 * @addr:      the logical start address in guest memory
 708 * @ar:        the access register number
 709 * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
 710 * @len:       length that should be transferred
 711 * @is_write:  true = write, false = read
 712 * Returns:    0 on success, non-zero if an exception or error occurred
 713 *
 714 * Use KVM ioctl to read/write from/to guest memory. An access exception
 715 * is injected into the vCPU in case of translation errors.
 716 */
 717int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
 718                    int len, bool is_write)
 719{
 720    struct kvm_s390_mem_op mem_op = {
 721        .gaddr = addr,
 722        .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
 723        .size = len,
 724        .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
 725                       : KVM_S390_MEMOP_LOGICAL_READ,
 726        .buf = (uint64_t)hostbuf,
 727        .ar = ar,
 728    };
 729    int ret;
 730
 731    if (!cap_mem_op) {
 732        return -ENOSYS;
 733    }
 734    if (!hostbuf) {
 735        mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
 736    }
 737
 738    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
 739    if (ret < 0) {
 740        error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret));
 741    }
 742    return ret;
 743}
 744
 745/*
 746 * Legacy layout for s390:
 747 * Older S390 KVM requires the topmost vma of the RAM to be
 748 * smaller than an system defined value, which is at least 256GB.
 749 * Larger systems have larger values. We put the guest between
 750 * the end of data segment (system break) and this value. We
 751 * use 32GB as a base to have enough room for the system break
 752 * to grow. We also have to use MAP parameters that avoid
 753 * read-only mapping of guest pages.
 754 */
 755static void *legacy_s390_alloc(size_t size, uint64_t *align)
 756{
 757    void *mem;
 758
 759    mem = mmap((void *) 0x800000000ULL, size,
 760               PROT_EXEC|PROT_READ|PROT_WRITE,
 761               MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
 762    return mem == MAP_FAILED ? NULL : mem;
 763}
 764
 765static uint8_t const *sw_bp_inst;
 766static uint8_t sw_bp_ilen;
 767
 768static void determine_sw_breakpoint_instr(void)
 769{
 770        /* DIAG 501 is used for sw breakpoints with old kernels */
 771        static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
 772        /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
 773        static const uint8_t instr_0x0000[] = {0x00, 0x00};
 774
 775        if (sw_bp_inst) {
 776            return;
 777        }
 778        if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
 779            sw_bp_inst = diag_501;
 780            sw_bp_ilen = sizeof(diag_501);
 781            DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
 782        } else {
 783            sw_bp_inst = instr_0x0000;
 784            sw_bp_ilen = sizeof(instr_0x0000);
 785            DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
 786        }
 787}
 788
 789int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 790{
 791    determine_sw_breakpoint_instr();
 792
 793    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
 794                            sw_bp_ilen, 0) ||
 795        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
 796        return -EINVAL;
 797    }
 798    return 0;
 799}
 800
 801int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 802{
 803    uint8_t t[MAX_ILEN];
 804
 805    if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
 806        return -EINVAL;
 807    } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
 808        return -EINVAL;
 809    } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
 810                                   sw_bp_ilen, 1)) {
 811        return -EINVAL;
 812    }
 813
 814    return 0;
 815}
 816
 817static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
 818                                                    int len, int type)
 819{
 820    int n;
 821
 822    for (n = 0; n < nb_hw_breakpoints; n++) {
 823        if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
 824            (hw_breakpoints[n].len == len || len == -1)) {
 825            return &hw_breakpoints[n];
 826        }
 827    }
 828
 829    return NULL;
 830}
 831
 832static int insert_hw_breakpoint(target_ulong addr, int len, int type)
 833{
 834    int size;
 835
 836    if (find_hw_breakpoint(addr, len, type)) {
 837        return -EEXIST;
 838    }
 839
 840    size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
 841
 842    if (!hw_breakpoints) {
 843        nb_hw_breakpoints = 0;
 844        hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
 845    } else {
 846        hw_breakpoints =
 847            (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
 848    }
 849
 850    if (!hw_breakpoints) {
 851        nb_hw_breakpoints = 0;
 852        return -ENOMEM;
 853    }
 854
 855    hw_breakpoints[nb_hw_breakpoints].addr = addr;
 856    hw_breakpoints[nb_hw_breakpoints].len = len;
 857    hw_breakpoints[nb_hw_breakpoints].type = type;
 858
 859    nb_hw_breakpoints++;
 860
 861    return 0;
 862}
 863
 864int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 865                                  target_ulong len, int type)
 866{
 867    switch (type) {
 868    case GDB_BREAKPOINT_HW:
 869        type = KVM_HW_BP;
 870        break;
 871    case GDB_WATCHPOINT_WRITE:
 872        if (len < 1) {
 873            return -EINVAL;
 874        }
 875        type = KVM_HW_WP_WRITE;
 876        break;
 877    default:
 878        return -ENOSYS;
 879    }
 880    return insert_hw_breakpoint(addr, len, type);
 881}
 882
 883int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 884                                  target_ulong len, int type)
 885{
 886    int size;
 887    struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
 888
 889    if (bp == NULL) {
 890        return -ENOENT;
 891    }
 892
 893    nb_hw_breakpoints--;
 894    if (nb_hw_breakpoints > 0) {
 895        /*
 896         * In order to trim the array, move the last element to the position to
 897         * be removed - if necessary.
 898         */
 899        if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
 900            *bp = hw_breakpoints[nb_hw_breakpoints];
 901        }
 902        size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
 903        hw_breakpoints =
 904             (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
 905    } else {
 906        g_free(hw_breakpoints);
 907        hw_breakpoints = NULL;
 908    }
 909
 910    return 0;
 911}
 912
 913void kvm_arch_remove_all_hw_breakpoints(void)
 914{
 915    nb_hw_breakpoints = 0;
 916    g_free(hw_breakpoints);
 917    hw_breakpoints = NULL;
 918}
 919
 920void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
 921{
 922    int i;
 923
 924    if (nb_hw_breakpoints > 0) {
 925        dbg->arch.nr_hw_bp = nb_hw_breakpoints;
 926        dbg->arch.hw_bp = hw_breakpoints;
 927
 928        for (i = 0; i < nb_hw_breakpoints; ++i) {
 929            hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
 930                                                       hw_breakpoints[i].addr);
 931        }
 932        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
 933    } else {
 934        dbg->arch.nr_hw_bp = 0;
 935        dbg->arch.hw_bp = NULL;
 936    }
 937}
 938
 939void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
 940{
 941}
 942
 943MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 944{
 945    return MEMTXATTRS_UNSPECIFIED;
 946}
 947
 948int kvm_arch_process_async_events(CPUState *cs)
 949{
 950    return cs->halted;
 951}
 952
 953static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
 954                                     struct kvm_s390_interrupt *interrupt)
 955{
 956    int r = 0;
 957
 958    interrupt->type = irq->type;
 959    switch (irq->type) {
 960    case KVM_S390_INT_VIRTIO:
 961        interrupt->parm = irq->u.ext.ext_params;
 962        /* fall through */
 963    case KVM_S390_INT_PFAULT_INIT:
 964    case KVM_S390_INT_PFAULT_DONE:
 965        interrupt->parm64 = irq->u.ext.ext_params2;
 966        break;
 967    case KVM_S390_PROGRAM_INT:
 968        interrupt->parm = irq->u.pgm.code;
 969        break;
 970    case KVM_S390_SIGP_SET_PREFIX:
 971        interrupt->parm = irq->u.prefix.address;
 972        break;
 973    case KVM_S390_INT_SERVICE:
 974        interrupt->parm = irq->u.ext.ext_params;
 975        break;
 976    case KVM_S390_MCHK:
 977        interrupt->parm = irq->u.mchk.cr14;
 978        interrupt->parm64 = irq->u.mchk.mcic;
 979        break;
 980    case KVM_S390_INT_EXTERNAL_CALL:
 981        interrupt->parm = irq->u.extcall.code;
 982        break;
 983    case KVM_S390_INT_EMERGENCY:
 984        interrupt->parm = irq->u.emerg.code;
 985        break;
 986    case KVM_S390_SIGP_STOP:
 987    case KVM_S390_RESTART:
 988        break; /* These types have no parameters */
 989    case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
 990        interrupt->parm = irq->u.io.subchannel_id << 16;
 991        interrupt->parm |= irq->u.io.subchannel_nr;
 992        interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
 993        interrupt->parm64 |= irq->u.io.io_int_word;
 994        break;
 995    default:
 996        r = -EINVAL;
 997        break;
 998    }
 999    return r;
1000}
1001
1002static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1003{
1004    struct kvm_s390_interrupt kvmint = {};
1005    int r;
1006
1007    r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1008    if (r < 0) {
1009        fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1010        exit(1);
1011    }
1012
1013    r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1014    if (r < 0) {
1015        fprintf(stderr, "KVM failed to inject interrupt\n");
1016        exit(1);
1017    }
1018}
1019
1020void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1021{
1022    CPUState *cs = CPU(cpu);
1023    int r;
1024
1025    if (cap_s390_irq) {
1026        r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1027        if (!r) {
1028            return;
1029        }
1030        error_report("KVM failed to inject interrupt %llx", irq->type);
1031        exit(1);
1032    }
1033
1034    inject_vcpu_irq_legacy(cs, irq);
1035}
1036
1037static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
1038{
1039    struct kvm_s390_interrupt kvmint = {};
1040    int r;
1041
1042    r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1043    if (r < 0) {
1044        fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1045        exit(1);
1046    }
1047
1048    r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1049    if (r < 0) {
1050        fprintf(stderr, "KVM failed to inject interrupt\n");
1051        exit(1);
1052    }
1053}
1054
1055void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
1056{
1057    static bool use_flic = true;
1058    int r;
1059
1060    if (use_flic) {
1061        r = kvm_s390_inject_flic(irq);
1062        if (r == -ENOSYS) {
1063            use_flic = false;
1064        }
1065        if (!r) {
1066            return;
1067        }
1068    }
1069    __kvm_s390_floating_interrupt(irq);
1070}
1071
1072void kvm_s390_service_interrupt(uint32_t parm)
1073{
1074    struct kvm_s390_irq irq = {
1075        .type = KVM_S390_INT_SERVICE,
1076        .u.ext.ext_params = parm,
1077    };
1078
1079    kvm_s390_floating_interrupt(&irq);
1080}
1081
1082void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1083{
1084    struct kvm_s390_irq irq = {
1085        .type = KVM_S390_PROGRAM_INT,
1086        .u.pgm.code = code,
1087    };
1088
1089    kvm_s390_vcpu_interrupt(cpu, &irq);
1090}
1091
1092void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1093{
1094    struct kvm_s390_irq irq = {
1095        .type = KVM_S390_PROGRAM_INT,
1096        .u.pgm.code = code,
1097        .u.pgm.trans_exc_code = te_code,
1098        .u.pgm.exc_access_id = te_code & 3,
1099    };
1100
1101    kvm_s390_vcpu_interrupt(cpu, &irq);
1102}
1103
1104static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1105                                 uint16_t ipbh0)
1106{
1107    CPUS390XState *env = &cpu->env;
1108    uint64_t sccb;
1109    uint32_t code;
1110    int r = 0;
1111
1112    cpu_synchronize_state(CPU(cpu));
1113    sccb = env->regs[ipbh0 & 0xf];
1114    code = env->regs[(ipbh0 & 0xf0) >> 4];
1115
1116    r = sclp_service_call(env, sccb, code);
1117    if (r < 0) {
1118        kvm_s390_program_interrupt(cpu, -r);
1119    } else {
1120        setcc(cpu, r);
1121    }
1122
1123    return 0;
1124}
1125
1126static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1127{
1128    CPUS390XState *env = &cpu->env;
1129    int rc = 0;
1130    uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1131
1132    cpu_synchronize_state(CPU(cpu));
1133
1134    switch (ipa1) {
1135    case PRIV_B2_XSCH:
1136        ioinst_handle_xsch(cpu, env->regs[1]);
1137        break;
1138    case PRIV_B2_CSCH:
1139        ioinst_handle_csch(cpu, env->regs[1]);
1140        break;
1141    case PRIV_B2_HSCH:
1142        ioinst_handle_hsch(cpu, env->regs[1]);
1143        break;
1144    case PRIV_B2_MSCH:
1145        ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb);
1146        break;
1147    case PRIV_B2_SSCH:
1148        ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb);
1149        break;
1150    case PRIV_B2_STCRW:
1151        ioinst_handle_stcrw(cpu, run->s390_sieic.ipb);
1152        break;
1153    case PRIV_B2_STSCH:
1154        ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb);
1155        break;
1156    case PRIV_B2_TSCH:
1157        /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1158        fprintf(stderr, "Spurious tsch intercept\n");
1159        break;
1160    case PRIV_B2_CHSC:
1161        ioinst_handle_chsc(cpu, run->s390_sieic.ipb);
1162        break;
1163    case PRIV_B2_TPI:
1164        /* This should have been handled by kvm already. */
1165        fprintf(stderr, "Spurious tpi intercept\n");
1166        break;
1167    case PRIV_B2_SCHM:
1168        ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1169                           run->s390_sieic.ipb);
1170        break;
1171    case PRIV_B2_RSCH:
1172        ioinst_handle_rsch(cpu, env->regs[1]);
1173        break;
1174    case PRIV_B2_RCHP:
1175        ioinst_handle_rchp(cpu, env->regs[1]);
1176        break;
1177    case PRIV_B2_STCPS:
1178        /* We do not provide this instruction, it is suppressed. */
1179        break;
1180    case PRIV_B2_SAL:
1181        ioinst_handle_sal(cpu, env->regs[1]);
1182        break;
1183    case PRIV_B2_SIGA:
1184        /* Not provided, set CC = 3 for subchannel not operational */
1185        setcc(cpu, 3);
1186        break;
1187    case PRIV_B2_SCLP_CALL:
1188        rc = kvm_sclp_service_call(cpu, run, ipbh0);
1189        break;
1190    default:
1191        rc = -1;
1192        DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1193        break;
1194    }
1195
1196    return rc;
1197}
1198
1199static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1200                                  uint8_t *ar)
1201{
1202    CPUS390XState *env = &cpu->env;
1203    uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1204    uint32_t base2 = run->s390_sieic.ipb >> 28;
1205    uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1206                     ((run->s390_sieic.ipb & 0xff00) << 4);
1207
1208    if (disp2 & 0x80000) {
1209        disp2 += 0xfff00000;
1210    }
1211    if (ar) {
1212        *ar = base2;
1213    }
1214
1215    return (base2 ? env->regs[base2] : 0) +
1216           (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1217}
1218
1219static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1220                                  uint8_t *ar)
1221{
1222    CPUS390XState *env = &cpu->env;
1223    uint32_t base2 = run->s390_sieic.ipb >> 28;
1224    uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1225                     ((run->s390_sieic.ipb & 0xff00) << 4);
1226
1227    if (disp2 & 0x80000) {
1228        disp2 += 0xfff00000;
1229    }
1230    if (ar) {
1231        *ar = base2;
1232    }
1233
1234    return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1235}
1236
1237static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1238{
1239    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1240
1241    if (s390_has_feat(S390_FEAT_ZPCI)) {
1242        return clp_service_call(cpu, r2);
1243    } else {
1244        return -1;
1245    }
1246}
1247
1248static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1249{
1250    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1251    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1252
1253    if (s390_has_feat(S390_FEAT_ZPCI)) {
1254        return pcilg_service_call(cpu, r1, r2);
1255    } else {
1256        return -1;
1257    }
1258}
1259
1260static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1261{
1262    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1263    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1264
1265    if (s390_has_feat(S390_FEAT_ZPCI)) {
1266        return pcistg_service_call(cpu, r1, r2);
1267    } else {
1268        return -1;
1269    }
1270}
1271
1272static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1273{
1274    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1275    uint64_t fiba;
1276    uint8_t ar;
1277
1278    if (s390_has_feat(S390_FEAT_ZPCI)) {
1279        cpu_synchronize_state(CPU(cpu));
1280        fiba = get_base_disp_rxy(cpu, run, &ar);
1281
1282        return stpcifc_service_call(cpu, r1, fiba, ar);
1283    } else {
1284        return -1;
1285    }
1286}
1287
1288static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1289{
1290    CPUS390XState *env = &cpu->env;
1291    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1292    uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1293    uint8_t isc;
1294    uint16_t mode;
1295    int r;
1296
1297    cpu_synchronize_state(CPU(cpu));
1298    mode = env->regs[r1] & 0xffff;
1299    isc = (env->regs[r3] >> 27) & 0x7;
1300    r = css_do_sic(env, isc, mode);
1301    if (r) {
1302        kvm_s390_program_interrupt(cpu, -r);
1303    }
1304
1305    return 0;
1306}
1307
1308static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1309{
1310    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1311    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1312
1313    if (s390_has_feat(S390_FEAT_ZPCI)) {
1314        return rpcit_service_call(cpu, r1, r2);
1315    } else {
1316        return -1;
1317    }
1318}
1319
1320static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1321{
1322    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1323    uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1324    uint64_t gaddr;
1325    uint8_t ar;
1326
1327    if (s390_has_feat(S390_FEAT_ZPCI)) {
1328        cpu_synchronize_state(CPU(cpu));
1329        gaddr = get_base_disp_rsy(cpu, run, &ar);
1330
1331        return pcistb_service_call(cpu, r1, r3, gaddr, ar);
1332    } else {
1333        return -1;
1334    }
1335}
1336
1337static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1338{
1339    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1340    uint64_t fiba;
1341    uint8_t ar;
1342
1343    if (s390_has_feat(S390_FEAT_ZPCI)) {
1344        cpu_synchronize_state(CPU(cpu));
1345        fiba = get_base_disp_rxy(cpu, run, &ar);
1346
1347        return mpcifc_service_call(cpu, r1, fiba, ar);
1348    } else {
1349        return -1;
1350    }
1351}
1352
1353static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1354{
1355    int r = 0;
1356
1357    switch (ipa1) {
1358    case PRIV_B9_CLP:
1359        r = kvm_clp_service_call(cpu, run);
1360        break;
1361    case PRIV_B9_PCISTG:
1362        r = kvm_pcistg_service_call(cpu, run);
1363        break;
1364    case PRIV_B9_PCILG:
1365        r = kvm_pcilg_service_call(cpu, run);
1366        break;
1367    case PRIV_B9_RPCIT:
1368        r = kvm_rpcit_service_call(cpu, run);
1369        break;
1370    case PRIV_B9_EQBS:
1371        /* just inject exception */
1372        r = -1;
1373        break;
1374    default:
1375        r = -1;
1376        DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1377        break;
1378    }
1379
1380    return r;
1381}
1382
1383static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1384{
1385    int r = 0;
1386
1387    switch (ipbl) {
1388    case PRIV_EB_PCISTB:
1389        r = kvm_pcistb_service_call(cpu, run);
1390        break;
1391    case PRIV_EB_SIC:
1392        r = kvm_sic_service_call(cpu, run);
1393        break;
1394    case PRIV_EB_SQBS:
1395        /* just inject exception */
1396        r = -1;
1397        break;
1398    default:
1399        r = -1;
1400        DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1401        break;
1402    }
1403
1404    return r;
1405}
1406
1407static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1408{
1409    int r = 0;
1410
1411    switch (ipbl) {
1412    case PRIV_E3_MPCIFC:
1413        r = kvm_mpcifc_service_call(cpu, run);
1414        break;
1415    case PRIV_E3_STPCIFC:
1416        r = kvm_stpcifc_service_call(cpu, run);
1417        break;
1418    default:
1419        r = -1;
1420        DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1421        break;
1422    }
1423
1424    return r;
1425}
1426
1427static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1428{
1429    CPUS390XState *env = &cpu->env;
1430    int ret;
1431
1432    cpu_synchronize_state(CPU(cpu));
1433    ret = s390_virtio_hypercall(env);
1434    if (ret == -EINVAL) {
1435        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1436        return 0;
1437    }
1438
1439    return ret;
1440}
1441
1442static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1443{
1444    uint64_t r1, r3;
1445    int rc;
1446
1447    cpu_synchronize_state(CPU(cpu));
1448    r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1449    r3 = run->s390_sieic.ipa & 0x000f;
1450    rc = handle_diag_288(&cpu->env, r1, r3);
1451    if (rc) {
1452        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1453    }
1454}
1455
1456static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1457{
1458    uint64_t r1, r3;
1459
1460    cpu_synchronize_state(CPU(cpu));
1461    r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1462    r3 = run->s390_sieic.ipa & 0x000f;
1463    handle_diag_308(&cpu->env, r1, r3);
1464}
1465
1466static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1467{
1468    CPUS390XState *env = &cpu->env;
1469    unsigned long pc;
1470
1471    cpu_synchronize_state(CPU(cpu));
1472
1473    pc = env->psw.addr - sw_bp_ilen;
1474    if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1475        env->psw.addr = pc;
1476        return EXCP_DEBUG;
1477    }
1478
1479    return -ENOENT;
1480}
1481
1482#define DIAG_KVM_CODE_MASK 0x000000000000ffff
1483
1484static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1485{
1486    int r = 0;
1487    uint16_t func_code;
1488
1489    /*
1490     * For any diagnose call we support, bits 48-63 of the resulting
1491     * address specify the function code; the remainder is ignored.
1492     */
1493    func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1494    switch (func_code) {
1495    case DIAG_TIMEREVENT:
1496        kvm_handle_diag_288(cpu, run);
1497        break;
1498    case DIAG_IPL:
1499        kvm_handle_diag_308(cpu, run);
1500        break;
1501    case DIAG_KVM_HYPERCALL:
1502        r = handle_hypercall(cpu, run);
1503        break;
1504    case DIAG_KVM_BREAKPOINT:
1505        r = handle_sw_breakpoint(cpu, run);
1506        break;
1507    default:
1508        DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1509        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1510        break;
1511    }
1512
1513    return r;
1514}
1515
1516static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1517{
1518    CPUS390XState *env = &cpu->env;
1519    const uint8_t r1 = ipa1 >> 4;
1520    const uint8_t r3 = ipa1 & 0x0f;
1521    int ret;
1522    uint8_t order;
1523
1524    cpu_synchronize_state(CPU(cpu));
1525
1526    /* get order code */
1527    order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1528
1529    ret = handle_sigp(env, order, r1, r3);
1530    setcc(cpu, ret);
1531    return 0;
1532}
1533
1534static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1535{
1536    unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1537    uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1538    int r = -1;
1539
1540    DPRINTF("handle_instruction 0x%x 0x%x\n",
1541            run->s390_sieic.ipa, run->s390_sieic.ipb);
1542    switch (ipa0) {
1543    case IPA0_B2:
1544        r = handle_b2(cpu, run, ipa1);
1545        break;
1546    case IPA0_B9:
1547        r = handle_b9(cpu, run, ipa1);
1548        break;
1549    case IPA0_EB:
1550        r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1551        break;
1552    case IPA0_E3:
1553        r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1554        break;
1555    case IPA0_DIAG:
1556        r = handle_diag(cpu, run, run->s390_sieic.ipb);
1557        break;
1558    case IPA0_SIGP:
1559        r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1560        break;
1561    }
1562
1563    if (r < 0) {
1564        r = 0;
1565        kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1566    }
1567
1568    return r;
1569}
1570
1571static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset)
1572{
1573    CPUState *cs = CPU(cpu);
1574
1575    error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1576                 str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset),
1577                 ldq_phys(cs->as, cpu->env.psa + pswoffset + 8));
1578    s390_cpu_halt(cpu);
1579    qemu_system_guest_panicked(NULL);
1580}
1581
1582/* try to detect pgm check loops */
1583static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1584{
1585    CPUState *cs = CPU(cpu);
1586    PSW oldpsw, newpsw;
1587
1588    cpu_synchronize_state(cs);
1589    newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1590                           offsetof(LowCore, program_new_psw));
1591    newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1592                           offsetof(LowCore, program_new_psw) + 8);
1593    oldpsw.mask  = run->psw_mask;
1594    oldpsw.addr  = run->psw_addr;
1595    /*
1596     * Avoid endless loops of operation exceptions, if the pgm new
1597     * PSW will cause a new operation exception.
1598     * The heuristic checks if the pgm new psw is within 6 bytes before
1599     * the faulting psw address (with same DAT, AS settings) and the
1600     * new psw is not a wait psw and the fault was not triggered by
1601     * problem state. In that case go into crashed state.
1602     */
1603
1604    if (oldpsw.addr - newpsw.addr <= 6 &&
1605        !(newpsw.mask & PSW_MASK_WAIT) &&
1606        !(oldpsw.mask & PSW_MASK_PSTATE) &&
1607        (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1608        (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1609        unmanageable_intercept(cpu, "operation exception loop",
1610                               offsetof(LowCore, program_new_psw));
1611        return EXCP_HALTED;
1612    }
1613    return 0;
1614}
1615
1616static int handle_intercept(S390CPU *cpu)
1617{
1618    CPUState *cs = CPU(cpu);
1619    struct kvm_run *run = cs->kvm_run;
1620    int icpt_code = run->s390_sieic.icptcode;
1621    int r = 0;
1622
1623    DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1624            (long)cs->kvm_run->psw_addr);
1625    switch (icpt_code) {
1626        case ICPT_INSTRUCTION:
1627            r = handle_instruction(cpu, run);
1628            break;
1629        case ICPT_PROGRAM:
1630            unmanageable_intercept(cpu, "program interrupt",
1631                                   offsetof(LowCore, program_new_psw));
1632            r = EXCP_HALTED;
1633            break;
1634        case ICPT_EXT_INT:
1635            unmanageable_intercept(cpu, "external interrupt",
1636                                   offsetof(LowCore, external_new_psw));
1637            r = EXCP_HALTED;
1638            break;
1639        case ICPT_WAITPSW:
1640            /* disabled wait, since enabled wait is handled in kernel */
1641            cpu_synchronize_state(cs);
1642            s390_handle_wait(cpu);
1643            r = EXCP_HALTED;
1644            break;
1645        case ICPT_CPU_STOP:
1646            do_stop_interrupt(&cpu->env);
1647            r = EXCP_HALTED;
1648            break;
1649        case ICPT_OPEREXC:
1650            /* check for break points */
1651            r = handle_sw_breakpoint(cpu, run);
1652            if (r == -ENOENT) {
1653                /* Then check for potential pgm check loops */
1654                r = handle_oper_loop(cpu, run);
1655                if (r == 0) {
1656                    kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1657                }
1658            }
1659            break;
1660        case ICPT_SOFT_INTERCEPT:
1661            fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1662            exit(1);
1663            break;
1664        case ICPT_IO:
1665            fprintf(stderr, "KVM unimplemented icpt IO\n");
1666            exit(1);
1667            break;
1668        default:
1669            fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1670            exit(1);
1671            break;
1672    }
1673
1674    return r;
1675}
1676
1677static int handle_tsch(S390CPU *cpu)
1678{
1679    CPUState *cs = CPU(cpu);
1680    struct kvm_run *run = cs->kvm_run;
1681    int ret;
1682
1683    cpu_synchronize_state(cs);
1684
1685    ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb);
1686    if (ret < 0) {
1687        /*
1688         * Failure.
1689         * If an I/O interrupt had been dequeued, we have to reinject it.
1690         */
1691        if (run->s390_tsch.dequeued) {
1692            kvm_s390_io_interrupt(run->s390_tsch.subchannel_id,
1693                                  run->s390_tsch.subchannel_nr,
1694                                  run->s390_tsch.io_int_parm,
1695                                  run->s390_tsch.io_int_word);
1696        }
1697        ret = 0;
1698    }
1699    return ret;
1700}
1701
1702static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1703{
1704    struct sysib_322 sysib;
1705    int del;
1706
1707    if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1708        return;
1709    }
1710    /* Shift the stack of Extended Names to prepare for our own data */
1711    memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1712            sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1713    /* First virt level, that doesn't provide Ext Names delimits stack. It is
1714     * assumed it's not capable of managing Extended Names for lower levels.
1715     */
1716    for (del = 1; del < sysib.count; del++) {
1717        if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1718            break;
1719        }
1720    }
1721    if (del < sysib.count) {
1722        memset(sysib.ext_names[del], 0,
1723               sizeof(sysib.ext_names[0]) * (sysib.count - del));
1724    }
1725    /* Insert short machine name in EBCDIC, padded with blanks */
1726    if (qemu_name) {
1727        memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1728        ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1729                                                    strlen(qemu_name)));
1730    }
1731    sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1732    memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1733    /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1734     * considered by s390 as not capable of providing any Extended Name.
1735     * Therefore if no name was specified on qemu invocation, we go with the
1736     * same "KVMguest" default, which KVM has filled into short name field.
1737     */
1738    if (qemu_name) {
1739        strncpy((char *)sysib.ext_names[0], qemu_name,
1740                sizeof(sysib.ext_names[0]));
1741    } else {
1742        strcpy((char *)sysib.ext_names[0], "KVMguest");
1743    }
1744    /* Insert UUID */
1745    memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1746
1747    s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1748}
1749
1750static int handle_stsi(S390CPU *cpu)
1751{
1752    CPUState *cs = CPU(cpu);
1753    struct kvm_run *run = cs->kvm_run;
1754
1755    switch (run->s390_stsi.fc) {
1756    case 3:
1757        if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1758            return 0;
1759        }
1760        /* Only sysib 3.2.2 needs post-handling for now. */
1761        insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1762        return 0;
1763    default:
1764        return 0;
1765    }
1766}
1767
1768static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1769{
1770    CPUState *cs = CPU(cpu);
1771    struct kvm_run *run = cs->kvm_run;
1772
1773    int ret = 0;
1774    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1775
1776    switch (arch_info->type) {
1777    case KVM_HW_WP_WRITE:
1778        if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1779            cs->watchpoint_hit = &hw_watchpoint;
1780            hw_watchpoint.vaddr = arch_info->addr;
1781            hw_watchpoint.flags = BP_MEM_WRITE;
1782            ret = EXCP_DEBUG;
1783        }
1784        break;
1785    case KVM_HW_BP:
1786        if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1787            ret = EXCP_DEBUG;
1788        }
1789        break;
1790    case KVM_SINGLESTEP:
1791        if (cs->singlestep_enabled) {
1792            ret = EXCP_DEBUG;
1793        }
1794        break;
1795    default:
1796        ret = -ENOSYS;
1797    }
1798
1799    return ret;
1800}
1801
1802int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1803{
1804    S390CPU *cpu = S390_CPU(cs);
1805    int ret = 0;
1806
1807    qemu_mutex_lock_iothread();
1808
1809    switch (run->exit_reason) {
1810        case KVM_EXIT_S390_SIEIC:
1811            ret = handle_intercept(cpu);
1812            break;
1813        case KVM_EXIT_S390_RESET:
1814            s390_reipl_request();
1815            break;
1816        case KVM_EXIT_S390_TSCH:
1817            ret = handle_tsch(cpu);
1818            break;
1819        case KVM_EXIT_S390_STSI:
1820            ret = handle_stsi(cpu);
1821            break;
1822        case KVM_EXIT_DEBUG:
1823            ret = kvm_arch_handle_debug_exit(cpu);
1824            break;
1825        default:
1826            fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1827            break;
1828    }
1829    qemu_mutex_unlock_iothread();
1830
1831    if (ret == 0) {
1832        ret = EXCP_INTERRUPT;
1833    }
1834    return ret;
1835}
1836
1837bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1838{
1839    return true;
1840}
1841
1842void kvm_s390_io_interrupt(uint16_t subchannel_id,
1843                           uint16_t subchannel_nr, uint32_t io_int_parm,
1844                           uint32_t io_int_word)
1845{
1846    struct kvm_s390_irq irq = {
1847        .u.io.subchannel_id = subchannel_id,
1848        .u.io.subchannel_nr = subchannel_nr,
1849        .u.io.io_int_parm = io_int_parm,
1850        .u.io.io_int_word = io_int_word,
1851    };
1852
1853    if (io_int_word & IO_INT_WORD_AI) {
1854        irq.type = KVM_S390_INT_IO(1, 0, 0, 0);
1855    } else {
1856        irq.type = KVM_S390_INT_IO(0, (subchannel_id & 0xff00) >> 8,
1857                                      (subchannel_id & 0x0006),
1858                                      subchannel_nr);
1859    }
1860    kvm_s390_floating_interrupt(&irq);
1861}
1862
1863static uint64_t build_channel_report_mcic(void)
1864{
1865    uint64_t mcic;
1866
1867    /* subclass: indicate channel report pending */
1868    mcic = MCIC_SC_CP |
1869    /* subclass modifiers: none */
1870    /* storage errors: none */
1871    /* validity bits: no damage */
1872        MCIC_VB_WP | MCIC_VB_MS | MCIC_VB_PM | MCIC_VB_IA | MCIC_VB_FP |
1873        MCIC_VB_GR | MCIC_VB_CR | MCIC_VB_ST | MCIC_VB_AR | MCIC_VB_PR |
1874        MCIC_VB_FC | MCIC_VB_CT | MCIC_VB_CC;
1875    if (s390_has_feat(S390_FEAT_VECTOR)) {
1876        mcic |= MCIC_VB_VR;
1877    }
1878    if (s390_has_feat(S390_FEAT_GUARDED_STORAGE)) {
1879        mcic |= MCIC_VB_GS;
1880    }
1881    return mcic;
1882}
1883
1884void kvm_s390_crw_mchk(void)
1885{
1886    struct kvm_s390_irq irq = {
1887        .type = KVM_S390_MCHK,
1888        .u.mchk.cr14 = 1 << 28,
1889        .u.mchk.mcic = build_channel_report_mcic(),
1890    };
1891    kvm_s390_floating_interrupt(&irq);
1892}
1893
1894void kvm_s390_enable_css_support(S390CPU *cpu)
1895{
1896    int r;
1897
1898    /* Activate host kernel channel subsystem support. */
1899    r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1900    assert(r == 0);
1901}
1902
1903void kvm_arch_init_irq_routing(KVMState *s)
1904{
1905    /*
1906     * Note that while irqchip capabilities generally imply that cpustates
1907     * are handled in-kernel, it is not true for s390 (yet); therefore, we
1908     * have to override the common code kvm_halt_in_kernel_allowed setting.
1909     */
1910    if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1911        kvm_gsi_routing_allowed = true;
1912        kvm_halt_in_kernel_allowed = false;
1913    }
1914}
1915
1916int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1917                                    int vq, bool assign)
1918{
1919    struct kvm_ioeventfd kick = {
1920        .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1921        KVM_IOEVENTFD_FLAG_DATAMATCH,
1922        .fd = event_notifier_get_fd(notifier),
1923        .datamatch = vq,
1924        .addr = sch,
1925        .len = 8,
1926    };
1927    if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1928        return -ENOSYS;
1929    }
1930    if (!assign) {
1931        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1932    }
1933    return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1934}
1935
1936int kvm_s390_get_memslot_count(void)
1937{
1938    return kvm_check_extension(kvm_state, KVM_CAP_NR_MEMSLOTS);
1939}
1940
1941int kvm_s390_get_ri(void)
1942{
1943    return cap_ri;
1944}
1945
1946int kvm_s390_get_gs(void)
1947{
1948    return cap_gs;
1949}
1950
1951int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
1952{
1953    struct kvm_mp_state mp_state = {};
1954    int ret;
1955
1956    /* the kvm part might not have been initialized yet */
1957    if (CPU(cpu)->kvm_state == NULL) {
1958        return 0;
1959    }
1960
1961    switch (cpu_state) {
1962    case CPU_STATE_STOPPED:
1963        mp_state.mp_state = KVM_MP_STATE_STOPPED;
1964        break;
1965    case CPU_STATE_CHECK_STOP:
1966        mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
1967        break;
1968    case CPU_STATE_OPERATING:
1969        mp_state.mp_state = KVM_MP_STATE_OPERATING;
1970        break;
1971    case CPU_STATE_LOAD:
1972        mp_state.mp_state = KVM_MP_STATE_LOAD;
1973        break;
1974    default:
1975        error_report("Requested CPU state is not a valid S390 CPU state: %u",
1976                     cpu_state);
1977        exit(1);
1978    }
1979
1980    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1981    if (ret) {
1982        trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
1983                                       strerror(-ret));
1984    }
1985
1986    return ret;
1987}
1988
1989void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
1990{
1991    struct kvm_s390_irq_state irq_state;
1992    CPUState *cs = CPU(cpu);
1993    int32_t bytes;
1994
1995    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
1996        return;
1997    }
1998
1999    irq_state.buf = (uint64_t) cpu->irqstate;
2000    irq_state.len = VCPU_IRQ_BUF_SIZE;
2001
2002    bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2003    if (bytes < 0) {
2004        cpu->irqstate_saved_size = 0;
2005        error_report("Migration of interrupt state failed");
2006        return;
2007    }
2008
2009    cpu->irqstate_saved_size = bytes;
2010}
2011
2012int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2013{
2014    CPUState *cs = CPU(cpu);
2015    struct kvm_s390_irq_state irq_state;
2016    int r;
2017
2018    if (cpu->irqstate_saved_size == 0) {
2019        return 0;
2020    }
2021
2022    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2023        return -ENOSYS;
2024    }
2025
2026    irq_state.buf = (uint64_t) cpu->irqstate;
2027    irq_state.len = cpu->irqstate_saved_size;
2028
2029    r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2030    if (r) {
2031        error_report("Setting interrupt state failed %d", r);
2032    }
2033    return r;
2034}
2035
2036int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2037                             uint64_t address, uint32_t data, PCIDevice *dev)
2038{
2039    S390PCIBusDevice *pbdev;
2040    uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2041
2042    if (!dev) {
2043        DPRINTF("add_msi_route no pci device\n");
2044        return -ENODEV;
2045    }
2046
2047    pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2048    if (!pbdev) {
2049        DPRINTF("add_msi_route no zpci device\n");
2050        return -ENODEV;
2051    }
2052
2053    route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2054    route->flags = 0;
2055    route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2056    route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2057    route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2058    route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2059    route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2060    return 0;
2061}
2062
2063int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2064                                int vector, PCIDevice *dev)
2065{
2066    return 0;
2067}
2068
2069int kvm_arch_release_virq_post(int virq)
2070{
2071    return 0;
2072}
2073
2074int kvm_arch_msi_data_to_gsi(uint32_t data)
2075{
2076    abort();
2077}
2078
2079static int query_cpu_subfunc(S390FeatBitmap features)
2080{
2081    struct kvm_s390_vm_cpu_subfunc prop;
2082    struct kvm_device_attr attr = {
2083        .group = KVM_S390_VM_CPU_MODEL,
2084        .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2085        .addr = (uint64_t) &prop,
2086    };
2087    int rc;
2088
2089    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2090    if (rc) {
2091        return  rc;
2092    }
2093
2094    /*
2095     * We're going to add all subfunctions now, if the corresponding feature
2096     * is available that unlocks the query functions.
2097     */
2098    s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2099    if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2100        s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2101    }
2102    if (test_bit(S390_FEAT_MSA, features)) {
2103        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2104        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2105        s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2106        s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2107        s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2108    }
2109    if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2110        s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2111    }
2112    if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2113        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2114        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2115        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2116        s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2117    }
2118    if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2119        s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2120    }
2121    if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2122        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2123    }
2124    return 0;
2125}
2126
2127static int configure_cpu_subfunc(const S390FeatBitmap features)
2128{
2129    struct kvm_s390_vm_cpu_subfunc prop = {};
2130    struct kvm_device_attr attr = {
2131        .group = KVM_S390_VM_CPU_MODEL,
2132        .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2133        .addr = (uint64_t) &prop,
2134    };
2135
2136    if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2137                           KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2138        /* hardware support might be missing, IBC will handle most of this */
2139        return 0;
2140    }
2141
2142    s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2143    if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2144        s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2145    }
2146    if (test_bit(S390_FEAT_MSA, features)) {
2147        s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2148        s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2149        s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2150        s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2151        s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2152    }
2153    if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2154        s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2155    }
2156    if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2157        s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2158        s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2159        s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2160        s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2161    }
2162    if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2163        s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2164    }
2165    if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2166        s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2167    }
2168    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2169}
2170
2171static int kvm_to_feat[][2] = {
2172    { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2173    { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2174    { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2175    { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2176    { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2177    { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2178    { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2179    { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2180    { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2181    { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2182    { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2183    { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2184    { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2185    { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2186};
2187
2188static int query_cpu_feat(S390FeatBitmap features)
2189{
2190    struct kvm_s390_vm_cpu_feat prop;
2191    struct kvm_device_attr attr = {
2192        .group = KVM_S390_VM_CPU_MODEL,
2193        .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2194        .addr = (uint64_t) &prop,
2195    };
2196    int rc;
2197    int i;
2198
2199    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2200    if (rc) {
2201        return  rc;
2202    }
2203
2204    for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2205        if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2206            set_bit(kvm_to_feat[i][1], features);
2207        }
2208    }
2209    return 0;
2210}
2211
2212static int configure_cpu_feat(const S390FeatBitmap features)
2213{
2214    struct kvm_s390_vm_cpu_feat prop = {};
2215    struct kvm_device_attr attr = {
2216        .group = KVM_S390_VM_CPU_MODEL,
2217        .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2218        .addr = (uint64_t) &prop,
2219    };
2220    int i;
2221
2222    for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2223        if (test_bit(kvm_to_feat[i][1], features)) {
2224            set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2225        }
2226    }
2227    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2228}
2229
2230bool kvm_s390_cpu_models_supported(void)
2231{
2232    if (!cpu_model_allowed()) {
2233        /* compatibility machines interfere with the cpu model */
2234        return false;
2235    }
2236    return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2237                             KVM_S390_VM_CPU_MACHINE) &&
2238           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2239                             KVM_S390_VM_CPU_PROCESSOR) &&
2240           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2241                             KVM_S390_VM_CPU_MACHINE_FEAT) &&
2242           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2243                             KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2244           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2245                             KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2246}
2247
2248void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2249{
2250    struct kvm_s390_vm_cpu_machine prop = {};
2251    struct kvm_device_attr attr = {
2252        .group = KVM_S390_VM_CPU_MODEL,
2253        .attr = KVM_S390_VM_CPU_MACHINE,
2254        .addr = (uint64_t) &prop,
2255    };
2256    uint16_t unblocked_ibc = 0, cpu_type = 0;
2257    int rc;
2258
2259    memset(model, 0, sizeof(*model));
2260
2261    if (!kvm_s390_cpu_models_supported()) {
2262        error_setg(errp, "KVM doesn't support CPU models");
2263        return;
2264    }
2265
2266    /* query the basic cpu model properties */
2267    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2268    if (rc) {
2269        error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2270        return;
2271    }
2272
2273    cpu_type = cpuid_type(prop.cpuid);
2274    if (has_ibc(prop.ibc)) {
2275        model->lowest_ibc = lowest_ibc(prop.ibc);
2276        unblocked_ibc = unblocked_ibc(prop.ibc);
2277    }
2278    model->cpu_id = cpuid_id(prop.cpuid);
2279    model->cpu_id_format = cpuid_format(prop.cpuid);
2280    model->cpu_ver = 0xff;
2281
2282    /* get supported cpu features indicated via STFL(E) */
2283    s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2284                             (uint8_t *) prop.fac_mask);
2285    /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2286    if (test_bit(S390_FEAT_STFLE, model->features)) {
2287        set_bit(S390_FEAT_DAT_ENH_2, model->features);
2288    }
2289    /* get supported cpu features indicated e.g. via SCLP */
2290    rc = query_cpu_feat(model->features);
2291    if (rc) {
2292        error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2293        return;
2294    }
2295    /* get supported cpu subfunctions indicated via query / test bit */
2296    rc = query_cpu_subfunc(model->features);
2297    if (rc) {
2298        error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2299        return;
2300    }
2301
2302    /* with cpu model support, CMM is only indicated if really available */
2303    if (kvm_s390_cmma_available()) {
2304        set_bit(S390_FEAT_CMM, model->features);
2305    } else {
2306        /* no cmm -> no cmm nt */
2307        clear_bit(S390_FEAT_CMM_NT, model->features);
2308    }
2309
2310    /* bpb needs kernel support for migration, VSIE and reset */
2311    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2312        clear_bit(S390_FEAT_BPB, model->features);
2313    }
2314
2315    /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2316    if (pci_available) {
2317        set_bit(S390_FEAT_ZPCI, model->features);
2318    }
2319    set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2320
2321    if (s390_known_cpu_type(cpu_type)) {
2322        /* we want the exact model, even if some features are missing */
2323        model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2324                                       ibc_ec_ga(unblocked_ibc), NULL);
2325    } else {
2326        /* model unknown, e.g. too new - search using features */
2327        model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2328                                       ibc_ec_ga(unblocked_ibc),
2329                                       model->features);
2330    }
2331    if (!model->def) {
2332        error_setg(errp, "KVM: host CPU model could not be identified");
2333        return;
2334    }
2335    /* strip of features that are not part of the maximum model */
2336    bitmap_and(model->features, model->features, model->def->full_feat,
2337               S390_FEAT_MAX);
2338}
2339
2340void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2341{
2342    struct kvm_s390_vm_cpu_processor prop  = {
2343        .fac_list = { 0 },
2344    };
2345    struct kvm_device_attr attr = {
2346        .group = KVM_S390_VM_CPU_MODEL,
2347        .attr = KVM_S390_VM_CPU_PROCESSOR,
2348        .addr = (uint64_t) &prop,
2349    };
2350    int rc;
2351
2352    if (!model) {
2353        /* compatibility handling if cpu models are disabled */
2354        if (kvm_s390_cmma_available()) {
2355            kvm_s390_enable_cmma();
2356        }
2357        return;
2358    }
2359    if (!kvm_s390_cpu_models_supported()) {
2360        error_setg(errp, "KVM doesn't support CPU models");
2361        return;
2362    }
2363    prop.cpuid = s390_cpuid_from_cpu_model(model);
2364    prop.ibc = s390_ibc_from_cpu_model(model);
2365    /* configure cpu features indicated via STFL(e) */
2366    s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2367                         (uint8_t *) prop.fac_list);
2368    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2369    if (rc) {
2370        error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2371        return;
2372    }
2373    /* configure cpu features indicated e.g. via SCLP */
2374    rc = configure_cpu_feat(model->features);
2375    if (rc) {
2376        error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2377        return;
2378    }
2379    /* configure cpu subfunctions indicated via query / test bit */
2380    rc = configure_cpu_subfunc(model->features);
2381    if (rc) {
2382        error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2383        return;
2384    }
2385    /* enable CMM via CMMA */
2386    if (test_bit(S390_FEAT_CMM, model->features)) {
2387        kvm_s390_enable_cmma();
2388    }
2389}
2390
2391void kvm_s390_restart_interrupt(S390CPU *cpu)
2392{
2393    struct kvm_s390_irq irq = {
2394        .type = KVM_S390_RESTART,
2395    };
2396
2397    kvm_s390_vcpu_interrupt(cpu, &irq);
2398}
2399
2400void kvm_s390_stop_interrupt(S390CPU *cpu)
2401{
2402    struct kvm_s390_irq irq = {
2403        .type = KVM_S390_SIGP_STOP,
2404    };
2405
2406    kvm_s390_vcpu_interrupt(cpu, &irq);
2407}
2408