qemu/hw/ppc/spapr_hcall.c
<<
>>
Prefs
   1#include "qemu/osdep.h"
   2#include "qapi/error.h"
   3#include "sysemu/hw_accel.h"
   4#include "sysemu/sysemu.h"
   5#include "qemu/log.h"
   6#include "qemu/error-report.h"
   7#include "cpu.h"
   8#include "exec/exec-all.h"
   9#include "helper_regs.h"
  10#include "hw/ppc/spapr.h"
  11#include "mmu-hash64.h"
  12#include "cpu-models.h"
  13#include "trace.h"
  14#include "kvm_ppc.h"
  15#include "hw/ppc/spapr_ovec.h"
  16#include "qemu/error-report.h"
  17#include "mmu-book3s-v3.h"
  18
  19struct SPRSyncState {
  20    int spr;
  21    target_ulong value;
  22    target_ulong mask;
  23};
  24
  25static void do_spr_sync(CPUState *cs, run_on_cpu_data arg)
  26{
  27    struct SPRSyncState *s = arg.host_ptr;
  28    PowerPCCPU *cpu = POWERPC_CPU(cs);
  29    CPUPPCState *env = &cpu->env;
  30
  31    cpu_synchronize_state(cs);
  32    env->spr[s->spr] &= ~s->mask;
  33    env->spr[s->spr] |= s->value;
  34}
  35
  36static void set_spr(CPUState *cs, int spr, target_ulong value,
  37                    target_ulong mask)
  38{
  39    struct SPRSyncState s = {
  40        .spr = spr,
  41        .value = value,
  42        .mask = mask
  43    };
  44    run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s));
  45}
  46
  47static bool has_spr(PowerPCCPU *cpu, int spr)
  48{
  49    /* We can test whether the SPR is defined by checking for a valid name */
  50    return cpu->env.spr_cb[spr].name != NULL;
  51}
  52
  53static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
  54{
  55    /*
  56     * hash value/pteg group index is normalized by HPT mask
  57     */
  58    if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
  59        return false;
  60    }
  61    return true;
  62}
  63
  64static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
  65{
  66    MachineState *machine = MACHINE(spapr);
  67    MemoryHotplugState *hpms = &spapr->hotplug_memory;
  68
  69    if (addr < machine->ram_size) {
  70        return true;
  71    }
  72    if ((addr >= hpms->base)
  73        && ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
  74        return true;
  75    }
  76
  77    return false;
  78}
  79
  80static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
  81                            target_ulong opcode, target_ulong *args)
  82{
  83    target_ulong flags = args[0];
  84    target_ulong ptex = args[1];
  85    target_ulong pteh = args[2];
  86    target_ulong ptel = args[3];
  87    unsigned apshift;
  88    target_ulong raddr;
  89    target_ulong slot;
  90    const ppc_hash_pte64_t *hptes;
  91
  92    apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
  93    if (!apshift) {
  94        /* Bad page size encoding */
  95        return H_PARAMETER;
  96    }
  97
  98    raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
  99
 100    if (is_ram_address(spapr, raddr)) {
 101        /* Regular RAM - should have WIMG=0010 */
 102        if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
 103            return H_PARAMETER;
 104        }
 105    } else {
 106        target_ulong wimg_flags;
 107        /* Looks like an IO address */
 108        /* FIXME: What WIMG combinations could be sensible for IO?
 109         * For now we allow WIMG=010x, but are there others? */
 110        /* FIXME: Should we check against registered IO addresses? */
 111        wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
 112
 113        if (wimg_flags != HPTE64_R_I &&
 114            wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
 115            return H_PARAMETER;
 116        }
 117    }
 118
 119    pteh &= ~0x60ULL;
 120
 121    if (!valid_ptex(cpu, ptex)) {
 122        return H_PARAMETER;
 123    }
 124
 125    slot = ptex & 7ULL;
 126    ptex = ptex & ~7ULL;
 127
 128    if (likely((flags & H_EXACT) == 0)) {
 129        hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 130        for (slot = 0; slot < 8; slot++) {
 131            if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
 132                break;
 133            }
 134        }
 135        ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 136        if (slot == 8) {
 137            return H_PTEG_FULL;
 138        }
 139    } else {
 140        hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
 141        if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
 142            ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
 143            return H_PTEG_FULL;
 144        }
 145        ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 146    }
 147
 148    ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
 149
 150    args[0] = ptex + slot;
 151    return H_SUCCESS;
 152}
 153
 154typedef enum {
 155    REMOVE_SUCCESS = 0,
 156    REMOVE_NOT_FOUND = 1,
 157    REMOVE_PARM = 2,
 158    REMOVE_HW = 3,
 159} RemoveResult;
 160
 161static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
 162                                target_ulong avpn,
 163                                target_ulong flags,
 164                                target_ulong *vp, target_ulong *rp)
 165{
 166    const ppc_hash_pte64_t *hptes;
 167    target_ulong v, r;
 168
 169    if (!valid_ptex(cpu, ptex)) {
 170        return REMOVE_PARM;
 171    }
 172
 173    hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
 174    v = ppc_hash64_hpte0(cpu, hptes, 0);
 175    r = ppc_hash64_hpte1(cpu, hptes, 0);
 176    ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 177
 178    if ((v & HPTE64_V_VALID) == 0 ||
 179        ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
 180        ((flags & H_ANDCOND) && (v & avpn) != 0)) {
 181        return REMOVE_NOT_FOUND;
 182    }
 183    *vp = v;
 184    *rp = r;
 185    ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
 186    ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
 187    return REMOVE_SUCCESS;
 188}
 189
 190static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 191                             target_ulong opcode, target_ulong *args)
 192{
 193    CPUPPCState *env = &cpu->env;
 194    target_ulong flags = args[0];
 195    target_ulong ptex = args[1];
 196    target_ulong avpn = args[2];
 197    RemoveResult ret;
 198
 199    ret = remove_hpte(cpu, ptex, avpn, flags,
 200                      &args[0], &args[1]);
 201
 202    switch (ret) {
 203    case REMOVE_SUCCESS:
 204        check_tlb_flush(env, true);
 205        return H_SUCCESS;
 206
 207    case REMOVE_NOT_FOUND:
 208        return H_NOT_FOUND;
 209
 210    case REMOVE_PARM:
 211        return H_PARAMETER;
 212
 213    case REMOVE_HW:
 214        return H_HARDWARE;
 215    }
 216
 217    g_assert_not_reached();
 218}
 219
 220#define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
 221#define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
 222#define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
 223#define   H_BULK_REMOVE_END            0xc000000000000000ULL
 224#define H_BULK_REMOVE_CODE             0x3000000000000000ULL
 225#define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
 226#define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
 227#define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
 228#define   H_BULK_REMOVE_HW             0x3000000000000000ULL
 229#define H_BULK_REMOVE_RC               0x0c00000000000000ULL
 230#define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
 231#define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
 232#define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
 233#define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
 234#define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
 235
 236#define H_BULK_REMOVE_MAX_BATCH        4
 237
 238static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 239                                  target_ulong opcode, target_ulong *args)
 240{
 241    CPUPPCState *env = &cpu->env;
 242    int i;
 243    target_ulong rc = H_SUCCESS;
 244
 245    for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
 246        target_ulong *tsh = &args[i*2];
 247        target_ulong tsl = args[i*2 + 1];
 248        target_ulong v, r, ret;
 249
 250        if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
 251            break;
 252        } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
 253            return H_PARAMETER;
 254        }
 255
 256        *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
 257        *tsh |= H_BULK_REMOVE_RESPONSE;
 258
 259        if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
 260            *tsh |= H_BULK_REMOVE_PARM;
 261            return H_PARAMETER;
 262        }
 263
 264        ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
 265                          (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
 266                          &v, &r);
 267
 268        *tsh |= ret << 60;
 269
 270        switch (ret) {
 271        case REMOVE_SUCCESS:
 272            *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
 273            break;
 274
 275        case REMOVE_PARM:
 276            rc = H_PARAMETER;
 277            goto exit;
 278
 279        case REMOVE_HW:
 280            rc = H_HARDWARE;
 281            goto exit;
 282        }
 283    }
 284 exit:
 285    check_tlb_flush(env, true);
 286
 287    return rc;
 288}
 289
 290static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 291                              target_ulong opcode, target_ulong *args)
 292{
 293    CPUPPCState *env = &cpu->env;
 294    target_ulong flags = args[0];
 295    target_ulong ptex = args[1];
 296    target_ulong avpn = args[2];
 297    const ppc_hash_pte64_t *hptes;
 298    target_ulong v, r;
 299
 300    if (!valid_ptex(cpu, ptex)) {
 301        return H_PARAMETER;
 302    }
 303
 304    hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
 305    v = ppc_hash64_hpte0(cpu, hptes, 0);
 306    r = ppc_hash64_hpte1(cpu, hptes, 0);
 307    ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 308
 309    if ((v & HPTE64_V_VALID) == 0 ||
 310        ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
 311        return H_NOT_FOUND;
 312    }
 313
 314    r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
 315           HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
 316    r |= (flags << 55) & HPTE64_R_PP0;
 317    r |= (flags << 48) & HPTE64_R_KEY_HI;
 318    r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
 319    ppc_hash64_store_hpte(cpu, ptex,
 320                          (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
 321    ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
 322    /* Flush the tlb */
 323    check_tlb_flush(env, true);
 324    /* Don't need a memory barrier, due to qemu's global lock */
 325    ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
 326    return H_SUCCESS;
 327}
 328
 329static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 330                           target_ulong opcode, target_ulong *args)
 331{
 332    target_ulong flags = args[0];
 333    target_ulong ptex = args[1];
 334    uint8_t *hpte;
 335    int i, ridx, n_entries = 1;
 336
 337    if (!valid_ptex(cpu, ptex)) {
 338        return H_PARAMETER;
 339    }
 340
 341    if (flags & H_READ_4) {
 342        /* Clear the two low order bits */
 343        ptex &= ~(3ULL);
 344        n_entries = 4;
 345    }
 346
 347    hpte = spapr->htab + (ptex * HASH_PTE_SIZE_64);
 348
 349    for (i = 0, ridx = 0; i < n_entries; i++) {
 350        args[ridx++] = ldq_p(hpte);
 351        args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
 352        hpte += HASH_PTE_SIZE_64;
 353    }
 354
 355    return H_SUCCESS;
 356}
 357
 358struct sPAPRPendingHPT {
 359    /* These fields are read-only after initialization */
 360    int shift;
 361    QemuThread thread;
 362
 363    /* These fields are protected by the BQL */
 364    bool complete;
 365
 366    /* These fields are private to the preparation thread if
 367     * !complete, otherwise protected by the BQL */
 368    int ret;
 369    void *hpt;
 370};
 371
 372static void free_pending_hpt(sPAPRPendingHPT *pending)
 373{
 374    if (pending->hpt) {
 375        qemu_vfree(pending->hpt);
 376    }
 377
 378    g_free(pending);
 379}
 380
 381static void *hpt_prepare_thread(void *opaque)
 382{
 383    sPAPRPendingHPT *pending = opaque;
 384    size_t size = 1ULL << pending->shift;
 385
 386    pending->hpt = qemu_memalign(size, size);
 387    if (pending->hpt) {
 388        memset(pending->hpt, 0, size);
 389        pending->ret = H_SUCCESS;
 390    } else {
 391        pending->ret = H_NO_MEM;
 392    }
 393
 394    qemu_mutex_lock_iothread();
 395
 396    if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
 397        /* Ready to go */
 398        pending->complete = true;
 399    } else {
 400        /* We've been cancelled, clean ourselves up */
 401        free_pending_hpt(pending);
 402    }
 403
 404    qemu_mutex_unlock_iothread();
 405    return NULL;
 406}
 407
 408/* Must be called with BQL held */
 409static void cancel_hpt_prepare(sPAPRMachineState *spapr)
 410{
 411    sPAPRPendingHPT *pending = spapr->pending_hpt;
 412
 413    /* Let the thread know it's cancelled */
 414    spapr->pending_hpt = NULL;
 415
 416    if (!pending) {
 417        /* Nothing to do */
 418        return;
 419    }
 420
 421    if (!pending->complete) {
 422        /* thread will clean itself up */
 423        return;
 424    }
 425
 426    free_pending_hpt(pending);
 427}
 428
 429/* Convert a return code from the KVM ioctl()s implementing resize HPT
 430 * into a PAPR hypercall return code */
 431static target_ulong resize_hpt_convert_rc(int ret)
 432{
 433    if (ret >= 100000) {
 434        return H_LONG_BUSY_ORDER_100_SEC;
 435    } else if (ret >= 10000) {
 436        return H_LONG_BUSY_ORDER_10_SEC;
 437    } else if (ret >= 1000) {
 438        return H_LONG_BUSY_ORDER_1_SEC;
 439    } else if (ret >= 100) {
 440        return H_LONG_BUSY_ORDER_100_MSEC;
 441    } else if (ret >= 10) {
 442        return H_LONG_BUSY_ORDER_10_MSEC;
 443    } else if (ret > 0) {
 444        return H_LONG_BUSY_ORDER_1_MSEC;
 445    }
 446
 447    switch (ret) {
 448    case 0:
 449        return H_SUCCESS;
 450    case -EPERM:
 451        return H_AUTHORITY;
 452    case -EINVAL:
 453        return H_PARAMETER;
 454    case -ENXIO:
 455        return H_CLOSED;
 456    case -ENOSPC:
 457        return H_PTEG_FULL;
 458    case -EBUSY:
 459        return H_BUSY;
 460    case -ENOMEM:
 461        return H_NO_MEM;
 462    default:
 463        return H_HARDWARE;
 464    }
 465}
 466
 467static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
 468                                         sPAPRMachineState *spapr,
 469                                         target_ulong opcode,
 470                                         target_ulong *args)
 471{
 472    target_ulong flags = args[0];
 473    int shift = args[1];
 474    sPAPRPendingHPT *pending = spapr->pending_hpt;
 475    uint64_t current_ram_size;
 476    int rc;
 477
 478    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 479        return H_AUTHORITY;
 480    }
 481
 482    if (!spapr->htab_shift) {
 483        /* Radix guest, no HPT */
 484        return H_NOT_AVAILABLE;
 485    }
 486
 487    trace_spapr_h_resize_hpt_prepare(flags, shift);
 488
 489    if (flags != 0) {
 490        return H_PARAMETER;
 491    }
 492
 493    if (shift && ((shift < 18) || (shift > 46))) {
 494        return H_PARAMETER;
 495    }
 496
 497    current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
 498
 499    /* We only allow the guest to allocate an HPT one order above what
 500     * we'd normally give them (to stop a small guest claiming a huge
 501     * chunk of resources in the HPT */
 502    if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
 503        return H_RESOURCE;
 504    }
 505
 506    rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
 507    if (rc != -ENOSYS) {
 508        return resize_hpt_convert_rc(rc);
 509    }
 510
 511    if (pending) {
 512        /* something already in progress */
 513        if (pending->shift == shift) {
 514            /* and it's suitable */
 515            if (pending->complete) {
 516                return pending->ret;
 517            } else {
 518                return H_LONG_BUSY_ORDER_100_MSEC;
 519            }
 520        }
 521
 522        /* not suitable, cancel and replace */
 523        cancel_hpt_prepare(spapr);
 524    }
 525
 526    if (!shift) {
 527        /* nothing to do */
 528        return H_SUCCESS;
 529    }
 530
 531    /* start new prepare */
 532
 533    pending = g_new0(sPAPRPendingHPT, 1);
 534    pending->shift = shift;
 535    pending->ret = H_HARDWARE;
 536
 537    qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
 538                       hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
 539
 540    spapr->pending_hpt = pending;
 541
 542    /* In theory we could estimate the time more accurately based on
 543     * the new size, but there's not much point */
 544    return H_LONG_BUSY_ORDER_100_MSEC;
 545}
 546
 547static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
 548{
 549    uint8_t *addr = htab;
 550
 551    addr += pteg * HASH_PTEG_SIZE_64;
 552    addr += slot * HASH_PTE_SIZE_64;
 553    return  ldq_p(addr);
 554}
 555
 556static void new_hpte_store(void *htab, uint64_t pteg, int slot,
 557                           uint64_t pte0, uint64_t pte1)
 558{
 559    uint8_t *addr = htab;
 560
 561    addr += pteg * HASH_PTEG_SIZE_64;
 562    addr += slot * HASH_PTE_SIZE_64;
 563
 564    stq_p(addr, pte0);
 565    stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
 566}
 567
 568static int rehash_hpte(PowerPCCPU *cpu,
 569                       const ppc_hash_pte64_t *hptes,
 570                       void *old_hpt, uint64_t oldsize,
 571                       void *new_hpt, uint64_t newsize,
 572                       uint64_t pteg, int slot)
 573{
 574    uint64_t old_hash_mask = (oldsize >> 7) - 1;
 575    uint64_t new_hash_mask = (newsize >> 7) - 1;
 576    target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
 577    target_ulong pte1;
 578    uint64_t avpn;
 579    unsigned base_pg_shift;
 580    uint64_t hash, new_pteg, replace_pte0;
 581
 582    if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
 583        return H_SUCCESS;
 584    }
 585
 586    pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
 587
 588    base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
 589    assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
 590    avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
 591
 592    if (pte0 & HPTE64_V_SECONDARY) {
 593        pteg = ~pteg;
 594    }
 595
 596    if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
 597        uint64_t offset, vsid;
 598
 599        /* We only have 28 - 23 bits of offset in avpn */
 600        offset = (avpn & 0x1f) << 23;
 601        vsid = avpn >> 5;
 602        /* We can find more bits from the pteg value */
 603        if (base_pg_shift < 23) {
 604            offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
 605        }
 606
 607        hash = vsid ^ (offset >> base_pg_shift);
 608    } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
 609        uint64_t offset, vsid;
 610
 611        /* We only have 40 - 23 bits of seg_off in avpn */
 612        offset = (avpn & 0x1ffff) << 23;
 613        vsid = avpn >> 17;
 614        if (base_pg_shift < 23) {
 615            offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
 616                << base_pg_shift;
 617        }
 618
 619        hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
 620    } else {
 621        error_report("rehash_pte: Bad segment size in HPTE");
 622        return H_HARDWARE;
 623    }
 624
 625    new_pteg = hash & new_hash_mask;
 626    if (pte0 & HPTE64_V_SECONDARY) {
 627        assert(~pteg == (hash & old_hash_mask));
 628        new_pteg = ~new_pteg;
 629    } else {
 630        assert(pteg == (hash & old_hash_mask));
 631    }
 632    assert((oldsize != newsize) || (pteg == new_pteg));
 633    replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
 634    /*
 635     * Strictly speaking, we don't need all these tests, since we only
 636     * ever rehash bolted HPTEs.  We might in future handle non-bolted
 637     * HPTEs, though so make the logic correct for those cases as
 638     * well.
 639     */
 640    if (replace_pte0 & HPTE64_V_VALID) {
 641        assert(newsize < oldsize);
 642        if (replace_pte0 & HPTE64_V_BOLTED) {
 643            if (pte0 & HPTE64_V_BOLTED) {
 644                /* Bolted collision, nothing we can do */
 645                return H_PTEG_FULL;
 646            } else {
 647                /* Discard this hpte */
 648                return H_SUCCESS;
 649            }
 650        }
 651    }
 652
 653    new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
 654    return H_SUCCESS;
 655}
 656
 657static int rehash_hpt(PowerPCCPU *cpu,
 658                      void *old_hpt, uint64_t oldsize,
 659                      void *new_hpt, uint64_t newsize)
 660{
 661    uint64_t n_ptegs = oldsize >> 7;
 662    uint64_t pteg;
 663    int slot;
 664    int rc;
 665
 666    for (pteg = 0; pteg < n_ptegs; pteg++) {
 667        hwaddr ptex = pteg * HPTES_PER_GROUP;
 668        const ppc_hash_pte64_t *hptes
 669            = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 670
 671        if (!hptes) {
 672            return H_HARDWARE;
 673        }
 674
 675        for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
 676            rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
 677                             pteg, slot);
 678            if (rc != H_SUCCESS) {
 679                ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 680                return rc;
 681            }
 682        }
 683        ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 684    }
 685
 686    return H_SUCCESS;
 687}
 688
 689static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
 690{
 691    int ret;
 692
 693    cpu_synchronize_state(cs);
 694
 695    ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
 696    if (ret < 0) {
 697        error_report("failed to push sregs to KVM: %s", strerror(-ret));
 698        exit(1);
 699    }
 700}
 701
 702static void push_sregs_to_kvm_pr(sPAPRMachineState *spapr)
 703{
 704    CPUState *cs;
 705
 706    /*
 707     * This is a hack for the benefit of KVM PR - it abuses the SDR1
 708     * slot in kvm_sregs to communicate the userspace address of the
 709     * HPT
 710     */
 711    if (!kvm_enabled() || !spapr->htab) {
 712        return;
 713    }
 714
 715    CPU_FOREACH(cs) {
 716        run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
 717    }
 718}
 719
 720static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
 721                                        sPAPRMachineState *spapr,
 722                                        target_ulong opcode,
 723                                        target_ulong *args)
 724{
 725    target_ulong flags = args[0];
 726    target_ulong shift = args[1];
 727    sPAPRPendingHPT *pending = spapr->pending_hpt;
 728    int rc;
 729    size_t newsize;
 730
 731    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 732        return H_AUTHORITY;
 733    }
 734
 735    trace_spapr_h_resize_hpt_commit(flags, shift);
 736
 737    rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
 738    if (rc != -ENOSYS) {
 739        return resize_hpt_convert_rc(rc);
 740    }
 741
 742    if (flags != 0) {
 743        return H_PARAMETER;
 744    }
 745
 746    if (!pending || (pending->shift != shift)) {
 747        /* no matching prepare */
 748        return H_CLOSED;
 749    }
 750
 751    if (!pending->complete) {
 752        /* prepare has not completed */
 753        return H_BUSY;
 754    }
 755
 756    /* Shouldn't have got past PREPARE without an HPT */
 757    g_assert(spapr->htab_shift);
 758
 759    newsize = 1ULL << pending->shift;
 760    rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
 761                    pending->hpt, newsize);
 762    if (rc == H_SUCCESS) {
 763        qemu_vfree(spapr->htab);
 764        spapr->htab = pending->hpt;
 765        spapr->htab_shift = pending->shift;
 766
 767        push_sregs_to_kvm_pr(spapr);
 768
 769        pending->hpt = NULL; /* so it's not free()d */
 770    }
 771
 772    /* Clean up */
 773    spapr->pending_hpt = NULL;
 774    free_pending_hpt(pending);
 775
 776    return rc;
 777}
 778
 779static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 780                                target_ulong opcode, target_ulong *args)
 781{
 782    cpu_synchronize_state(CPU(cpu));
 783    cpu->env.spr[SPR_SPRG0] = args[0];
 784
 785    return H_SUCCESS;
 786}
 787
 788static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 789                               target_ulong opcode, target_ulong *args)
 790{
 791    if (!has_spr(cpu, SPR_DABR)) {
 792        return H_HARDWARE;              /* DABR register not available */
 793    }
 794    cpu_synchronize_state(CPU(cpu));
 795
 796    if (has_spr(cpu, SPR_DABRX)) {
 797        cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
 798    } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
 799        return H_RESERVED_DABR;
 800    }
 801
 802    cpu->env.spr[SPR_DABR] = args[0];
 803    return H_SUCCESS;
 804}
 805
 806static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 807                                target_ulong opcode, target_ulong *args)
 808{
 809    target_ulong dabrx = args[1];
 810
 811    if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
 812        return H_HARDWARE;
 813    }
 814
 815    if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
 816        || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
 817        return H_PARAMETER;
 818    }
 819
 820    cpu_synchronize_state(CPU(cpu));
 821    cpu->env.spr[SPR_DABRX] = dabrx;
 822    cpu->env.spr[SPR_DABR] = args[0];
 823
 824    return H_SUCCESS;
 825}
 826
 827static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 828                                target_ulong opcode, target_ulong *args)
 829{
 830    target_ulong flags = args[0];
 831    hwaddr dst = args[1];
 832    hwaddr src = args[2];
 833    hwaddr len = TARGET_PAGE_SIZE;
 834    uint8_t *pdst, *psrc;
 835    target_long ret = H_SUCCESS;
 836
 837    if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
 838                  | H_COPY_PAGE | H_ZERO_PAGE)) {
 839        qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
 840                      flags);
 841        return H_PARAMETER;
 842    }
 843
 844    /* Map-in destination */
 845    if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
 846        return H_PARAMETER;
 847    }
 848    pdst = cpu_physical_memory_map(dst, &len, 1);
 849    if (!pdst || len != TARGET_PAGE_SIZE) {
 850        return H_PARAMETER;
 851    }
 852
 853    if (flags & H_COPY_PAGE) {
 854        /* Map-in source, copy to destination, and unmap source again */
 855        if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
 856            ret = H_PARAMETER;
 857            goto unmap_out;
 858        }
 859        psrc = cpu_physical_memory_map(src, &len, 0);
 860        if (!psrc || len != TARGET_PAGE_SIZE) {
 861            ret = H_PARAMETER;
 862            goto unmap_out;
 863        }
 864        memcpy(pdst, psrc, len);
 865        cpu_physical_memory_unmap(psrc, len, 0, len);
 866    } else if (flags & H_ZERO_PAGE) {
 867        memset(pdst, 0, len);          /* Just clear the destination page */
 868    }
 869
 870    if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
 871        kvmppc_dcbst_range(cpu, pdst, len);
 872    }
 873    if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
 874        if (kvm_enabled()) {
 875            kvmppc_icbi_range(cpu, pdst, len);
 876        } else {
 877            tb_flush(CPU(cpu));
 878        }
 879    }
 880
 881unmap_out:
 882    cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
 883    return ret;
 884}
 885
 886#define FLAGS_REGISTER_VPA         0x0000200000000000ULL
 887#define FLAGS_REGISTER_DTL         0x0000400000000000ULL
 888#define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
 889#define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
 890#define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
 891#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
 892
 893#define VPA_MIN_SIZE           640
 894#define VPA_SIZE_OFFSET        0x4
 895#define VPA_SHARED_PROC_OFFSET 0x9
 896#define VPA_SHARED_PROC_VAL    0x2
 897
 898static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
 899{
 900    CPUState *cs = CPU(ppc_env_get_cpu(env));
 901    uint16_t size;
 902    uint8_t tmp;
 903
 904    if (vpa == 0) {
 905        hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
 906        return H_HARDWARE;
 907    }
 908
 909    if (vpa % env->dcache_line_size) {
 910        return H_PARAMETER;
 911    }
 912    /* FIXME: bounds check the address */
 913
 914    size = lduw_be_phys(cs->as, vpa + 0x4);
 915
 916    if (size < VPA_MIN_SIZE) {
 917        return H_PARAMETER;
 918    }
 919
 920    /* VPA is not allowed to cross a page boundary */
 921    if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
 922        return H_PARAMETER;
 923    }
 924
 925    env->vpa_addr = vpa;
 926
 927    tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
 928    tmp |= VPA_SHARED_PROC_VAL;
 929    stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
 930
 931    return H_SUCCESS;
 932}
 933
 934static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
 935{
 936    if (env->slb_shadow_addr) {
 937        return H_RESOURCE;
 938    }
 939
 940    if (env->dtl_addr) {
 941        return H_RESOURCE;
 942    }
 943
 944    env->vpa_addr = 0;
 945    return H_SUCCESS;
 946}
 947
 948static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
 949{
 950    CPUState *cs = CPU(ppc_env_get_cpu(env));
 951    uint32_t size;
 952
 953    if (addr == 0) {
 954        hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
 955        return H_HARDWARE;
 956    }
 957
 958    size = ldl_be_phys(cs->as, addr + 0x4);
 959    if (size < 0x8) {
 960        return H_PARAMETER;
 961    }
 962
 963    if ((addr / 4096) != ((addr + size - 1) / 4096)) {
 964        return H_PARAMETER;
 965    }
 966
 967    if (!env->vpa_addr) {
 968        return H_RESOURCE;
 969    }
 970
 971    env->slb_shadow_addr = addr;
 972    env->slb_shadow_size = size;
 973
 974    return H_SUCCESS;
 975}
 976
 977static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
 978{
 979    env->slb_shadow_addr = 0;
 980    env->slb_shadow_size = 0;
 981    return H_SUCCESS;
 982}
 983
 984static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
 985{
 986    CPUState *cs = CPU(ppc_env_get_cpu(env));
 987    uint32_t size;
 988
 989    if (addr == 0) {
 990        hcall_dprintf("Can't cope with DTL at logical 0\n");
 991        return H_HARDWARE;
 992    }
 993
 994    size = ldl_be_phys(cs->as, addr + 0x4);
 995
 996    if (size < 48) {
 997        return H_PARAMETER;
 998    }
 999
1000    if (!env->vpa_addr) {
1001        return H_RESOURCE;
1002    }
1003
1004    env->dtl_addr = addr;
1005    env->dtl_size = size;
1006
1007    return H_SUCCESS;
1008}
1009
1010static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
1011{
1012    env->dtl_addr = 0;
1013    env->dtl_size = 0;
1014
1015    return H_SUCCESS;
1016}
1017
1018static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1019                                   target_ulong opcode, target_ulong *args)
1020{
1021    target_ulong flags = args[0];
1022    target_ulong procno = args[1];
1023    target_ulong vpa = args[2];
1024    target_ulong ret = H_PARAMETER;
1025    CPUPPCState *tenv;
1026    PowerPCCPU *tcpu;
1027
1028    tcpu = spapr_find_cpu(procno);
1029    if (!tcpu) {
1030        return H_PARAMETER;
1031    }
1032    tenv = &tcpu->env;
1033
1034    switch (flags) {
1035    case FLAGS_REGISTER_VPA:
1036        ret = register_vpa(tenv, vpa);
1037        break;
1038
1039    case FLAGS_DEREGISTER_VPA:
1040        ret = deregister_vpa(tenv, vpa);
1041        break;
1042
1043    case FLAGS_REGISTER_SLBSHADOW:
1044        ret = register_slb_shadow(tenv, vpa);
1045        break;
1046
1047    case FLAGS_DEREGISTER_SLBSHADOW:
1048        ret = deregister_slb_shadow(tenv, vpa);
1049        break;
1050
1051    case FLAGS_REGISTER_DTL:
1052        ret = register_dtl(tenv, vpa);
1053        break;
1054
1055    case FLAGS_DEREGISTER_DTL:
1056        ret = deregister_dtl(tenv, vpa);
1057        break;
1058    }
1059
1060    return ret;
1061}
1062
1063static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1064                           target_ulong opcode, target_ulong *args)
1065{
1066    CPUPPCState *env = &cpu->env;
1067    CPUState *cs = CPU(cpu);
1068
1069    env->msr |= (1ULL << MSR_EE);
1070    hreg_compute_hflags(env);
1071    if (!cpu_has_work(cs)) {
1072        cs->halted = 1;
1073        cs->exception_index = EXCP_HLT;
1074        cs->exit_request = 1;
1075    }
1076    return H_SUCCESS;
1077}
1078
1079static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1080                           target_ulong opcode, target_ulong *args)
1081{
1082    target_ulong rtas_r3 = args[0];
1083    uint32_t token = rtas_ld(rtas_r3, 0);
1084    uint32_t nargs = rtas_ld(rtas_r3, 1);
1085    uint32_t nret = rtas_ld(rtas_r3, 2);
1086
1087    return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1088                           nret, rtas_r3 + 12 + 4*nargs);
1089}
1090
1091static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1092                                   target_ulong opcode, target_ulong *args)
1093{
1094    CPUState *cs = CPU(cpu);
1095    target_ulong size = args[0];
1096    target_ulong addr = args[1];
1097
1098    switch (size) {
1099    case 1:
1100        args[0] = ldub_phys(cs->as, addr);
1101        return H_SUCCESS;
1102    case 2:
1103        args[0] = lduw_phys(cs->as, addr);
1104        return H_SUCCESS;
1105    case 4:
1106        args[0] = ldl_phys(cs->as, addr);
1107        return H_SUCCESS;
1108    case 8:
1109        args[0] = ldq_phys(cs->as, addr);
1110        return H_SUCCESS;
1111    }
1112    return H_PARAMETER;
1113}
1114
1115static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1116                                    target_ulong opcode, target_ulong *args)
1117{
1118    CPUState *cs = CPU(cpu);
1119
1120    target_ulong size = args[0];
1121    target_ulong addr = args[1];
1122    target_ulong val  = args[2];
1123
1124    switch (size) {
1125    case 1:
1126        stb_phys(cs->as, addr, val);
1127        return H_SUCCESS;
1128    case 2:
1129        stw_phys(cs->as, addr, val);
1130        return H_SUCCESS;
1131    case 4:
1132        stl_phys(cs->as, addr, val);
1133        return H_SUCCESS;
1134    case 8:
1135        stq_phys(cs->as, addr, val);
1136        return H_SUCCESS;
1137    }
1138    return H_PARAMETER;
1139}
1140
1141static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1142                                    target_ulong opcode, target_ulong *args)
1143{
1144    CPUState *cs = CPU(cpu);
1145
1146    target_ulong dst   = args[0]; /* Destination address */
1147    target_ulong src   = args[1]; /* Source address */
1148    target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1149    target_ulong count = args[3]; /* Element count */
1150    target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
1151    uint64_t tmp;
1152    unsigned int mask = (1 << esize) - 1;
1153    int step = 1 << esize;
1154
1155    if (count > 0x80000000) {
1156        return H_PARAMETER;
1157    }
1158
1159    if ((dst & mask) || (src & mask) || (op > 1)) {
1160        return H_PARAMETER;
1161    }
1162
1163    if (dst >= src && dst < (src + (count << esize))) {
1164            dst = dst + ((count - 1) << esize);
1165            src = src + ((count - 1) << esize);
1166            step = -step;
1167    }
1168
1169    while (count--) {
1170        switch (esize) {
1171        case 0:
1172            tmp = ldub_phys(cs->as, src);
1173            break;
1174        case 1:
1175            tmp = lduw_phys(cs->as, src);
1176            break;
1177        case 2:
1178            tmp = ldl_phys(cs->as, src);
1179            break;
1180        case 3:
1181            tmp = ldq_phys(cs->as, src);
1182            break;
1183        default:
1184            return H_PARAMETER;
1185        }
1186        if (op == 1) {
1187            tmp = ~tmp;
1188        }
1189        switch (esize) {
1190        case 0:
1191            stb_phys(cs->as, dst, tmp);
1192            break;
1193        case 1:
1194            stw_phys(cs->as, dst, tmp);
1195            break;
1196        case 2:
1197            stl_phys(cs->as, dst, tmp);
1198            break;
1199        case 3:
1200            stq_phys(cs->as, dst, tmp);
1201            break;
1202        }
1203        dst = dst + step;
1204        src = src + step;
1205    }
1206
1207    return H_SUCCESS;
1208}
1209
1210static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1211                                   target_ulong opcode, target_ulong *args)
1212{
1213    /* Nothing to do on emulation, KVM will trap this in the kernel */
1214    return H_SUCCESS;
1215}
1216
1217static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1218                                   target_ulong opcode, target_ulong *args)
1219{
1220    /* Nothing to do on emulation, KVM will trap this in the kernel */
1221    return H_SUCCESS;
1222}
1223
1224static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1225                                           target_ulong mflags,
1226                                           target_ulong value1,
1227                                           target_ulong value2)
1228{
1229    CPUState *cs;
1230
1231    if (value1) {
1232        return H_P3;
1233    }
1234    if (value2) {
1235        return H_P4;
1236    }
1237
1238    switch (mflags) {
1239    case H_SET_MODE_ENDIAN_BIG:
1240        CPU_FOREACH(cs) {
1241            set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
1242        }
1243        spapr_pci_switch_vga(true);
1244        return H_SUCCESS;
1245
1246    case H_SET_MODE_ENDIAN_LITTLE:
1247        CPU_FOREACH(cs) {
1248            set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
1249        }
1250        spapr_pci_switch_vga(false);
1251        return H_SUCCESS;
1252    }
1253
1254    return H_UNSUPPORTED_FLAG;
1255}
1256
1257static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1258                                                        target_ulong mflags,
1259                                                        target_ulong value1,
1260                                                        target_ulong value2)
1261{
1262    CPUState *cs;
1263    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1264
1265    if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1266        return H_P2;
1267    }
1268    if (value1) {
1269        return H_P3;
1270    }
1271    if (value2) {
1272        return H_P4;
1273    }
1274
1275    if (mflags == AIL_RESERVED) {
1276        return H_UNSUPPORTED_FLAG;
1277    }
1278
1279    CPU_FOREACH(cs) {
1280        set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1281    }
1282
1283    return H_SUCCESS;
1284}
1285
1286static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1287                               target_ulong opcode, target_ulong *args)
1288{
1289    target_ulong resource = args[1];
1290    target_ulong ret = H_P2;
1291
1292    switch (resource) {
1293    case H_SET_MODE_RESOURCE_LE:
1294        ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1295        break;
1296    case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1297        ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1298                                                  args[2], args[3]);
1299        break;
1300    }
1301
1302    return ret;
1303}
1304
1305static target_ulong h_clean_slb(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1306                                target_ulong opcode, target_ulong *args)
1307{
1308    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1309                  opcode, " (H_CLEAN_SLB)");
1310    return H_FUNCTION;
1311}
1312
1313static target_ulong h_invalidate_pid(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1314                                     target_ulong opcode, target_ulong *args)
1315{
1316    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1317                  opcode, " (H_INVALIDATE_PID)");
1318    return H_FUNCTION;
1319}
1320
1321static void spapr_check_setup_free_hpt(sPAPRMachineState *spapr,
1322                                       uint64_t patbe_old, uint64_t patbe_new)
1323{
1324    /*
1325     * We have 4 Options:
1326     * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1327     * HASH->RADIX                                  : Free HPT
1328     * RADIX->HASH                                  : Allocate HPT
1329     * NOTHING->HASH                                : Allocate HPT
1330     * Note: NOTHING implies the case where we said the guest could choose
1331     *       later and so assumed radix and now it's called H_REG_PROC_TBL
1332     */
1333
1334    if ((patbe_old & PATBE1_GR) == (patbe_new & PATBE1_GR)) {
1335        /* We assume RADIX, so this catches all the "Do Nothing" cases */
1336    } else if (!(patbe_old & PATBE1_GR)) {
1337        /* HASH->RADIX : Free HPT */
1338        spapr_free_hpt(spapr);
1339    } else if (!(patbe_new & PATBE1_GR)) {
1340        /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1341        spapr_setup_hpt_and_vrma(spapr);
1342    }
1343    return;
1344}
1345
1346#define FLAGS_MASK              0x01FULL
1347#define FLAG_MODIFY             0x10
1348#define FLAG_REGISTER           0x08
1349#define FLAG_RADIX              0x04
1350#define FLAG_HASH_PROC_TBL      0x02
1351#define FLAG_GTSE               0x01
1352
1353static target_ulong h_register_process_table(PowerPCCPU *cpu,
1354                                             sPAPRMachineState *spapr,
1355                                             target_ulong opcode,
1356                                             target_ulong *args)
1357{
1358    CPUState *cs;
1359    target_ulong flags = args[0];
1360    target_ulong proc_tbl = args[1];
1361    target_ulong page_size = args[2];
1362    target_ulong table_size = args[3];
1363    uint64_t cproc;
1364
1365    if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1366        return H_PARAMETER;
1367    }
1368    if (flags & FLAG_MODIFY) {
1369        if (flags & FLAG_REGISTER) {
1370            if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1371                if (proc_tbl & 0xfff || proc_tbl >> 60) {
1372                    return H_P2;
1373                } else if (page_size) {
1374                    return H_P3;
1375                } else if (table_size > 24) {
1376                    return H_P4;
1377                }
1378                cproc = PATBE1_GR | proc_tbl | table_size;
1379            } else { /* Register new HPT process table */
1380                if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1381                    /* TODO - Not Supported */
1382                    /* Technically caused by flag bits => H_PARAMETER */
1383                    return H_PARAMETER;
1384                } else { /* Hash with SLB */
1385                    if (proc_tbl >> 38) {
1386                        return H_P2;
1387                    } else if (page_size & ~0x7) {
1388                        return H_P3;
1389                    } else if (table_size > 24) {
1390                        return H_P4;
1391                    }
1392                }
1393                cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1394            }
1395
1396        } else { /* Deregister current process table */
1397            /* Set to benign value: (current GR) | 0. This allows
1398             * deregistration in KVM to succeed even if the radix bit in flags
1399             * doesn't match the radix bit in the old PATB. */
1400            cproc = spapr->patb_entry & PATBE1_GR;
1401        }
1402    } else { /* Maintain current registration */
1403        if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATBE1_GR)) {
1404            /* Technically caused by flag bits => H_PARAMETER */
1405            return H_PARAMETER; /* Existing Process Table Mismatch */
1406        }
1407        cproc = spapr->patb_entry;
1408    }
1409
1410    /* Check if we need to setup OR free the hpt */
1411    spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1412
1413    spapr->patb_entry = cproc; /* Save new process table */
1414
1415    /* Update the UPRT and GTSE bits in the LPCR for all cpus */
1416    CPU_FOREACH(cs) {
1417        set_spr(cs, SPR_LPCR,
1418                ((flags & (FLAG_RADIX | FLAG_HASH_PROC_TBL)) ? LPCR_UPRT : 0) |
1419                ((flags & FLAG_GTSE) ? LPCR_GTSE : 0),
1420                LPCR_UPRT | LPCR_GTSE);
1421    }
1422
1423    if (kvm_enabled()) {
1424        return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1425                                       flags & FLAG_GTSE, cproc);
1426    }
1427    return H_SUCCESS;
1428}
1429
1430#define H_SIGNAL_SYS_RESET_ALL         -1
1431#define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1432
1433static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1434                                       sPAPRMachineState *spapr,
1435                                       target_ulong opcode, target_ulong *args)
1436{
1437    target_long target = args[0];
1438    CPUState *cs;
1439
1440    if (target < 0) {
1441        /* Broadcast */
1442        if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1443            return H_PARAMETER;
1444        }
1445
1446        CPU_FOREACH(cs) {
1447            PowerPCCPU *c = POWERPC_CPU(cs);
1448
1449            if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1450                if (c == cpu) {
1451                    continue;
1452                }
1453            }
1454            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1455        }
1456        return H_SUCCESS;
1457
1458    } else {
1459        /* Unicast */
1460        cs = CPU(spapr_find_cpu(target));
1461        if (cs) {
1462            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1463            return H_SUCCESS;
1464        }
1465        return H_PARAMETER;
1466    }
1467}
1468
1469static uint32_t cas_check_pvr(sPAPRMachineState *spapr, PowerPCCPU *cpu,
1470                              target_ulong *addr, bool *raw_mode_supported,
1471                              Error **errp)
1472{
1473    bool explicit_match = false; /* Matched the CPU's real PVR */
1474    uint32_t max_compat = spapr->max_compat_pvr;
1475    uint32_t best_compat = 0;
1476    int i;
1477
1478    /*
1479     * We scan the supplied table of PVRs looking for two things
1480     *   1. Is our real CPU PVR in the list?
1481     *   2. What's the "best" listed logical PVR
1482     */
1483    for (i = 0; i < 512; ++i) {
1484        uint32_t pvr, pvr_mask;
1485
1486        pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1487        pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1488        *addr += 8;
1489
1490        if (~pvr_mask & pvr) {
1491            break; /* Terminator record */
1492        }
1493
1494        if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1495            explicit_match = true;
1496        } else {
1497            if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1498                best_compat = pvr;
1499            }
1500        }
1501    }
1502
1503    if ((best_compat == 0) && (!explicit_match || max_compat)) {
1504        /* We couldn't find a suitable compatibility mode, and either
1505         * the guest doesn't support "raw" mode for this CPU, or raw
1506         * mode is disabled because a maximum compat mode is set */
1507        error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1508        return 0;
1509    }
1510
1511    *raw_mode_supported = explicit_match;
1512
1513    /* Parsing finished */
1514    trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1515
1516    return best_compat;
1517}
1518
1519static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1520                                                  sPAPRMachineState *spapr,
1521                                                  target_ulong opcode,
1522                                                  target_ulong *args)
1523{
1524    /* Working address in data buffer */
1525    target_ulong addr = ppc64_phys_to_real(args[0]);
1526    target_ulong ov_table;
1527    uint32_t cas_pvr;
1528    sPAPROptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1529    bool guest_radix;
1530    Error *local_err = NULL;
1531    bool raw_mode_supported = false;
1532
1533    cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
1534    if (local_err) {
1535        error_report_err(local_err);
1536        return H_HARDWARE;
1537    }
1538
1539    /* Update CPUs */
1540    if (cpu->compat_pvr != cas_pvr) {
1541        ppc_set_compat_all(cas_pvr, &local_err);
1542        if (local_err) {
1543            /* We fail to set compat mode (likely because running with KVM PR),
1544             * but maybe we can fallback to raw mode if the guest supports it.
1545             */
1546            if (!raw_mode_supported) {
1547                error_report_err(local_err);
1548                return H_HARDWARE;
1549            }
1550            local_err = NULL;
1551        }
1552    }
1553
1554    /* For the future use: here @ov_table points to the first option vector */
1555    ov_table = addr;
1556
1557    ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1558    ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1559    if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1560        error_report("guest requested hash and radix MMU, which is invalid.");
1561        exit(EXIT_FAILURE);
1562    }
1563    /* The radix/hash bit in byte 24 requires special handling: */
1564    guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1565    spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1566
1567    /*
1568     * HPT resizing is a bit of a special case, because when enabled
1569     * we assume an HPT guest will support it until it says it
1570     * doesn't, instead of assuming it won't support it until it says
1571     * it does.  Strictly speaking that approach could break for
1572     * guests which don't make a CAS call, but those are so old we
1573     * don't care about them.  Without that assumption we'd have to
1574     * make at least a temporary allocation of an HPT sized for max
1575     * memory, which could be impossibly difficult under KVM HV if
1576     * maxram is large.
1577     */
1578    if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1579        int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1580
1581        if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1582            error_report(
1583                "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1584            exit(1);
1585        }
1586
1587        if (spapr->htab_shift < maxshift) {
1588            /* Guest doesn't know about HPT resizing, so we
1589             * pre-emptively resize for the maximum permitted RAM.  At
1590             * the point this is called, nothing should have been
1591             * entered into the existing HPT */
1592            spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1593            push_sregs_to_kvm_pr(spapr);
1594        }
1595    }
1596
1597    /* NOTE: there are actually a number of ov5 bits where input from the
1598     * guest is always zero, and the platform/QEMU enables them independently
1599     * of guest input. To model these properly we'd want some sort of mask,
1600     * but since they only currently apply to memory migration as defined
1601     * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1602     * to worry about this for now.
1603     */
1604    ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1605
1606    /* also clear the radix/hash bit from the current ov5_cas bits to
1607     * be in sync with the newly ov5 bits. Else the radix bit will be
1608     * seen as being removed and this will generate a reset loop
1609     */
1610    spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300);
1611
1612    /* full range of negotiated ov5 capabilities */
1613    spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1614    spapr_ovec_cleanup(ov5_guest);
1615    /* capabilities that have been added since CAS-generated guest reset.
1616     * if capabilities have since been removed, generate another reset
1617     */
1618    ov5_updates = spapr_ovec_new();
1619    spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1620                                        ov5_cas_old, spapr->ov5_cas);
1621    /* Now that processing is finished, set the radix/hash bit for the
1622     * guest if it requested a valid mode; otherwise terminate the boot. */
1623    if (guest_radix) {
1624        if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1625            error_report("Guest requested unavailable MMU mode (radix).");
1626            exit(EXIT_FAILURE);
1627        }
1628        spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1629    } else {
1630        if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1631            && !kvmppc_has_cap_mmu_hash_v3()) {
1632            error_report("Guest requested unavailable MMU mode (hash).");
1633            exit(EXIT_FAILURE);
1634        }
1635    }
1636    spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1637                                                          OV1_PPC_3_00);
1638    if (!spapr->cas_reboot) {
1639        /* If ppc_spapr_reset() did not set up a HPT but one is necessary
1640         * (because the guest isn't going to use radix) then set it up here. */
1641        if ((spapr->patb_entry & PATBE1_GR) && !guest_radix) {
1642            /* legacy hash or new hash: */
1643            spapr_setup_hpt_and_vrma(spapr);
1644        }
1645        spapr->cas_reboot =
1646            (spapr_h_cas_compose_response(spapr, args[1], args[2],
1647                                          ov5_updates) != 0);
1648    }
1649    spapr_ovec_cleanup(ov5_updates);
1650
1651    if (spapr->cas_reboot) {
1652        qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1653    }
1654
1655    return H_SUCCESS;
1656}
1657
1658static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1659                                              sPAPRMachineState *spapr,
1660                                              target_ulong opcode,
1661                                              target_ulong *args)
1662{
1663    uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1664                               ~H_CPU_CHAR_THR_RECONF_TRIG;
1665    uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1666    uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1667    uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1668    uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1669
1670    switch (safe_cache) {
1671    case SPAPR_CAP_WORKAROUND:
1672        characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1673        characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1674        characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1675        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1676        break;
1677    case SPAPR_CAP_FIXED:
1678        break;
1679    default: /* broken */
1680        assert(safe_cache == SPAPR_CAP_BROKEN);
1681        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1682        break;
1683    }
1684
1685    switch (safe_bounds_check) {
1686    case SPAPR_CAP_WORKAROUND:
1687        characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1688        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1689        break;
1690    case SPAPR_CAP_FIXED:
1691        break;
1692    default: /* broken */
1693        assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1694        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1695        break;
1696    }
1697
1698    switch (safe_indirect_branch) {
1699    case SPAPR_CAP_FIXED:
1700        characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1701        break;
1702    default: /* broken */
1703        assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1704        break;
1705    }
1706
1707    args[0] = characteristics;
1708    args[1] = behaviour;
1709
1710    return H_SUCCESS;
1711}
1712
1713static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1714static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1715
1716void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1717{
1718    spapr_hcall_fn *slot;
1719
1720    if (opcode <= MAX_HCALL_OPCODE) {
1721        assert((opcode & 0x3) == 0);
1722
1723        slot = &papr_hypercall_table[opcode / 4];
1724    } else {
1725        assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1726
1727        slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1728    }
1729
1730    assert(!(*slot));
1731    *slot = fn;
1732}
1733
1734target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1735                             target_ulong *args)
1736{
1737    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1738
1739    if ((opcode <= MAX_HCALL_OPCODE)
1740        && ((opcode & 0x3) == 0)) {
1741        spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1742
1743        if (fn) {
1744            return fn(cpu, spapr, opcode, args);
1745        }
1746    } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1747               (opcode <= KVMPPC_HCALL_MAX)) {
1748        spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1749
1750        if (fn) {
1751            return fn(cpu, spapr, opcode, args);
1752        }
1753    }
1754
1755    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1756                  opcode);
1757    return H_FUNCTION;
1758}
1759
1760static void hypercall_register_types(void)
1761{
1762    /* hcall-pft */
1763    spapr_register_hypercall(H_ENTER, h_enter);
1764    spapr_register_hypercall(H_REMOVE, h_remove);
1765    spapr_register_hypercall(H_PROTECT, h_protect);
1766    spapr_register_hypercall(H_READ, h_read);
1767
1768    /* hcall-bulk */
1769    spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1770
1771    /* hcall-hpt-resize */
1772    spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1773    spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1774
1775    /* hcall-splpar */
1776    spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1777    spapr_register_hypercall(H_CEDE, h_cede);
1778    spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1779
1780    /* processor register resource access h-calls */
1781    spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1782    spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1783    spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1784    spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1785    spapr_register_hypercall(H_SET_MODE, h_set_mode);
1786
1787    /* In Memory Table MMU h-calls */
1788    spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1789    spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1790    spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1791
1792    /* hcall-get-cpu-characteristics */
1793    spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1794                             h_get_cpu_characteristics);
1795
1796    /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1797     * here between the "CI" and the "CACHE" variants, they will use whatever
1798     * mapping attributes qemu is using. When using KVM, the kernel will
1799     * enforce the attributes more strongly
1800     */
1801    spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1802    spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1803    spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1804    spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1805    spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1806    spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1807    spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1808
1809    /* qemu/KVM-PPC specific hcalls */
1810    spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1811
1812    /* ibm,client-architecture-support support */
1813    spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1814}
1815
1816type_init(hypercall_register_types)
1817