1/* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14#ifndef MEMORY_H 15#define MEMORY_H 16 17#ifndef CONFIG_USER_ONLY 18 19#include "exec/cpu-common.h" 20#include "exec/hwaddr.h" 21#include "exec/memattrs.h" 22#include "exec/ramlist.h" 23#include "qemu/queue.h" 24#include "qemu/int128.h" 25#include "qemu/notify.h" 26#include "qom/object.h" 27#include "qemu/rcu.h" 28#include "hw/qdev-core.h" 29 30extern const char *machine_path; 31#define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33#define MAX_PHYS_ADDR_SPACE_BITS 62 34#define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36#define TYPE_MEMORY_REGION "qemu:memory-region" 37#define MEMORY_REGION(obj) \ 38 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 39 40#define TYPE_MEMORY_TRANSACTION_ATTR "qemu:memory-transaction-attr" 41#define MEMORY_TRANSACTION_ATTR(obj) \ 42 OBJECT_CHECK(MemTxAttrs, (obj), TYPE_MEMORY_TRANSACTION_ATTR) 43 44#define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 45#define IOMMU_MEMORY_REGION(obj) \ 46 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION) 47#define IOMMU_MEMORY_REGION_CLASS(klass) \ 48 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \ 49 TYPE_IOMMU_MEMORY_REGION) 50#define IOMMU_MEMORY_REGION_GET_CLASS(obj) \ 51 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \ 52 TYPE_IOMMU_MEMORY_REGION) 53 54typedef struct MemoryRegionOps MemoryRegionOps; 55typedef struct MemoryRegionMmio MemoryRegionMmio; 56 57typedef struct MemoryTransaction 58{ 59 union { 60 /* 61 * Data is passed by values up to 64bit sizes. Beyond 62 * that, a pointer is passed in p8. 63 * 64 * Note that p8 has no alignment restrictions. 65 */ 66 uint8_t *p8; 67 uint64_t u64; 68 uint32_t u32; 69 uint16_t u16; 70 uint8_t u8; 71 } data; 72 bool rw; 73 hwaddr addr; 74 unsigned int size; 75 MemTxAttrs attr; 76 void *opaque; 77} MemoryTransaction; 78 79struct MemoryRegionMmio { 80 CPUReadMemoryFunc *read[3]; 81 CPUWriteMemoryFunc *write[3]; 82}; 83 84typedef struct IOMMUTLBEntry IOMMUTLBEntry; 85 86/* See address_space_translate: bit 0 is read, bit 1 is write. */ 87typedef enum { 88 IOMMU_NONE = 0, 89 IOMMU_RO = 1, 90 IOMMU_WO = 2, 91 IOMMU_RW = 3, 92} IOMMUAccessFlags; 93 94#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 95 96struct IOMMUTLBEntry { 97 AddressSpace *target_as; 98 hwaddr iova; 99 hwaddr translated_addr; 100 hwaddr addr_mask; /* 0xfff = 4k translation */ 101 IOMMUAccessFlags perm; 102}; 103 104/* 105 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 106 * register with one or multiple IOMMU Notifier capability bit(s). 107 */ 108typedef enum { 109 IOMMU_NOTIFIER_NONE = 0, 110 /* Notify cache invalidations */ 111 IOMMU_NOTIFIER_UNMAP = 0x1, 112 /* Notify entry changes (newly created entries) */ 113 IOMMU_NOTIFIER_MAP = 0x2, 114} IOMMUNotifierFlag; 115 116#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 117 118struct IOMMUNotifier; 119typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 120 IOMMUTLBEntry *data); 121 122struct IOMMUNotifier { 123 IOMMUNotify notify; 124 IOMMUNotifierFlag notifier_flags; 125 /* Notify for address space range start <= addr <= end */ 126 hwaddr start; 127 hwaddr end; 128 QLIST_ENTRY(IOMMUNotifier) node; 129}; 130typedef struct IOMMUNotifier IOMMUNotifier; 131 132static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 133 IOMMUNotifierFlag flags, 134 hwaddr start, hwaddr end) 135{ 136 n->notify = fn; 137 n->notifier_flags = flags; 138 n->start = start; 139 n->end = end; 140} 141 142/* 143 * Memory region callbacks 144 */ 145struct MemoryRegionOps { 146 /* FIXME: Remove */ 147 void (*access)(MemoryTransaction *tr); 148 149 /* Read from the memory region. @addr is relative to @mr; @size is 150 * in bytes. */ 151 uint64_t (*read)(void *opaque, 152 hwaddr addr, 153 unsigned size); 154 /* Write to the memory region. @addr is relative to @mr; @size is 155 * in bytes. */ 156 void (*write)(void *opaque, 157 hwaddr addr, 158 uint64_t data, 159 unsigned size); 160 161 MemTxResult (*read_with_attrs)(void *opaque, 162 hwaddr addr, 163 uint64_t *data, 164 unsigned size, 165 MemTxAttrs attrs); 166 MemTxResult (*write_with_attrs)(void *opaque, 167 hwaddr addr, 168 uint64_t data, 169 unsigned size, 170 MemTxAttrs attrs); 171 /* Instruction execution pre-callback: 172 * @addr is the address of the access relative to the @mr. 173 * @size is the size of the area returned by the callback. 174 * @offset is the location of the pointer inside @mr. 175 * 176 * Returns a pointer to a location which contains guest code. 177 */ 178 void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size, 179 unsigned *offset); 180 181 enum device_endian endianness; 182 /* Guest-visible constraints: */ 183 struct { 184 /* If nonzero, specify bounds on access sizes beyond which a machine 185 * check is thrown. 186 */ 187 unsigned min_access_size; 188 unsigned max_access_size; 189 /* If true, unaligned accesses are supported. Otherwise unaligned 190 * accesses throw machine checks. 191 */ 192 bool unaligned; 193 /* 194 * If present, and returns #false, the transaction is not accepted 195 * by the device (and results in machine dependent behaviour such 196 * as a machine check exception). 197 */ 198 bool (*accepts)(void *opaque, hwaddr addr, 199 unsigned size, bool is_write); 200 } valid; 201 /* Internal implementation constraints: */ 202 struct { 203 /* If nonzero, specifies the minimum size implemented. Smaller sizes 204 * will be rounded upwards and a partial result will be returned. 205 */ 206 unsigned min_access_size; 207 /* If nonzero, specifies the maximum size implemented. Larger sizes 208 * will be done as a series of accesses with smaller sizes. 209 */ 210 unsigned max_access_size; 211 /* If true, unaligned accesses are supported. Otherwise all accesses 212 * are converted to (possibly multiple) naturally aligned accesses. 213 */ 214 bool unaligned; 215 } impl; 216 217 /* If .read and .write are not present, old_mmio may be used for 218 * backwards compatibility with old mmio registration 219 */ 220 const MemoryRegionMmio old_mmio; 221}; 222 223typedef struct IOMMUMemoryRegionClass { 224 /* private */ 225 struct DeviceClass parent_class; 226 227 /* 228 * Return a TLB entry that contains a given address. Flag should 229 * be the access permission of this translation operation. We can 230 * set flag to IOMMU_NONE to mean that we don't need any 231 * read/write permission checks, like, when for region replay. 232 */ 233 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 234 IOMMUAccessFlags flag); 235 IOMMUTLBEntry (*translate_attr)(IOMMUMemoryRegion *iommu, hwaddr addr, 236 bool is_write, MemTxAttrs *attr); 237 238 /* Returns minimum supported page size */ 239 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 240 /* Called when IOMMU Notifier flag changed */ 241 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 242 IOMMUNotifierFlag old_flags, 243 IOMMUNotifierFlag new_flags); 244 /* Set this up to provide customized IOMMU replay function */ 245 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 246} IOMMUMemoryRegionClass; 247 248typedef struct CoalescedMemoryRange CoalescedMemoryRange; 249typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 250 251struct MemoryRegion { 252 Object parent_obj; 253 254 /* All fields are private - violators will be prosecuted */ 255 256 /* The following fields should fit in a cache line */ 257 bool romd_mode; 258 uint8_t ram; 259 bool subpage; 260 bool readonly; /* For RAM regions */ 261 bool rom_device; 262 bool flush_coalesced_mmio; 263 bool global_locking; 264 uint8_t dirty_log_mask; 265 bool is_iommu; 266 RAMBlock *ram_block; 267 Object *owner; 268 269 const MemoryRegionOps *ops; 270 void *opaque; 271 MemoryRegion *container; 272 Int128 size; 273 hwaddr addr; 274 void (*destructor)(MemoryRegion *mr); 275 uint64_t align; 276 bool terminates; 277 bool ram_device; 278 bool enabled; 279 bool warning_printed; /* For reservations */ 280 uint8_t vga_logging_count; 281 MemoryRegion *alias; 282 hwaddr alias_offset; 283 int32_t priority; 284 bool may_overlap; 285 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 286 QTAILQ_ENTRY(MemoryRegion) subregions_link; 287 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 288 const char *name; 289 unsigned ioeventfd_nb; 290 MemoryRegionIoeventfd *ioeventfds; 291 char *filename; 292}; 293 294struct IOMMUMemoryRegion { 295 MemoryRegion parent_obj; 296 297 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 298 IOMMUNotifierFlag iommu_notify_flags; 299}; 300 301#define IOMMU_NOTIFIER_FOREACH(n, mr) \ 302 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 303 304/** 305 * MemoryListener: callbacks structure for updates to the physical memory map 306 * 307 * Allows a component to adjust to changes in the guest-visible memory map. 308 * Use with memory_listener_register() and memory_listener_unregister(). 309 */ 310struct MemoryListener { 311 void (*begin)(MemoryListener *listener); 312 void (*commit)(MemoryListener *listener); 313 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 314 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 315 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 316 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 317 int old, int new); 318 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 319 int old, int new); 320 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 321 void (*log_global_start)(MemoryListener *listener); 322 void (*log_global_stop)(MemoryListener *listener); 323 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 324 bool match_data, uint64_t data, EventNotifier *e); 325 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 326 bool match_data, uint64_t data, EventNotifier *e); 327 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 328 hwaddr addr, hwaddr len); 329 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 330 hwaddr addr, hwaddr len); 331 /* Lower = earlier (during add), later (during del) */ 332 unsigned priority; 333 AddressSpace *address_space; 334 QTAILQ_ENTRY(MemoryListener) link; 335 QTAILQ_ENTRY(MemoryListener) link_as; 336}; 337 338/** 339 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 340 */ 341struct AddressSpace { 342 /* All fields are private. */ 343 struct rcu_head rcu; 344 char *name; 345 MemoryRegion *root; 346 347 /* Accessed via RCU. */ 348 struct FlatView *current_map; 349 350 int ioeventfd_nb; 351 struct MemoryRegionIoeventfd *ioeventfds; 352 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners; 353 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 354}; 355 356FlatView *address_space_to_flatview(AddressSpace *as); 357 358/** 359 * MemoryRegionSection: describes a fragment of a #MemoryRegion 360 * 361 * @mr: the region, or %NULL if empty 362 * @address_space: the address space the region is mapped in 363 * @offset_within_region: the beginning of the section, relative to @mr's start 364 * @size: the size of the section; will not exceed @mr's boundaries 365 * @offset_within_address_space: the address of the first byte of the section 366 * relative to the region's address space 367 * @readonly: writes to this section are ignored 368 */ 369struct MemoryRegionSection { 370 MemoryRegion *mr; 371 FlatView *fv; 372 hwaddr offset_within_region; 373 Int128 size; 374 hwaddr offset_within_address_space; 375 bool readonly; 376}; 377 378/** 379 * memory_region_init: Initialize a memory region 380 * 381 * The region typically acts as a container for other memory regions. Use 382 * memory_region_add_subregion() to add subregions. 383 * 384 * @mr: the #MemoryRegion to be initialized 385 * @owner: the object that tracks the region's reference count 386 * @name: used for debugging; not visible to the user or ABI 387 * @size: size of the region; any subregions beyond this size will be clipped 388 */ 389void memory_region_init(MemoryRegion *mr, 390 struct Object *owner, 391 const char *name, 392 uint64_t size); 393 394/** 395 * memory_region_ref: Add 1 to a memory region's reference count 396 * 397 * Whenever memory regions are accessed outside the BQL, they need to be 398 * preserved against hot-unplug. MemoryRegions actually do not have their 399 * own reference count; they piggyback on a QOM object, their "owner". 400 * This function adds a reference to the owner. 401 * 402 * All MemoryRegions must have an owner if they can disappear, even if the 403 * device they belong to operates exclusively under the BQL. This is because 404 * the region could be returned at any time by memory_region_find, and this 405 * is usually under guest control. 406 * 407 * @mr: the #MemoryRegion 408 */ 409void memory_region_ref(MemoryRegion *mr); 410 411/** 412 * memory_region_unref: Remove 1 to a memory region's reference count 413 * 414 * Whenever memory regions are accessed outside the BQL, they need to be 415 * preserved against hot-unplug. MemoryRegions actually do not have their 416 * own reference count; they piggyback on a QOM object, their "owner". 417 * This function removes a reference to the owner and possibly destroys it. 418 * 419 * @mr: the #MemoryRegion 420 */ 421void memory_region_unref(MemoryRegion *mr); 422 423/** 424 * memory_region_init_io: Initialize an I/O memory region. 425 * 426 * Accesses into the region will cause the callbacks in @ops to be called. 427 * if @size is nonzero, subregions will be clipped to @size. 428 * 429 * @mr: the #MemoryRegion to be initialized. 430 * @owner: the object that tracks the region's reference count 431 * @ops: a structure containing read and write callbacks to be used when 432 * I/O is performed on the region. 433 * @opaque: passed to the read and write callbacks of the @ops structure. 434 * @name: used for debugging; not visible to the user or ABI 435 * @size: size of the region. 436 */ 437void memory_region_init_io(MemoryRegion *mr, 438 struct Object *owner, 439 const MemoryRegionOps *ops, 440 void *opaque, 441 const char *name, 442 uint64_t size); 443 444/** 445 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 446 * into the region will modify memory 447 * directly. 448 * 449 * @mr: the #MemoryRegion to be initialized. 450 * @owner: the object that tracks the region's reference count 451 * @name: Region name, becomes part of RAMBlock name used in migration stream 452 * must be unique within any device 453 * @size: size of the region. 454 * @errp: pointer to Error*, to store an error if it happens. 455 * 456 * Note that this function does not do anything to cause the data in the 457 * RAM memory region to be migrated; that is the responsibility of the caller. 458 */ 459void memory_region_init_ram_nomigrate(MemoryRegion *mr, 460 struct Object *owner, 461 const char *name, 462 uint64_t size, 463 Error **errp); 464 465/** 466 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 467 * RAM. Accesses into the region will 468 * modify memory directly. Only an initial 469 * portion of this RAM is actually used. 470 * The used size can change across reboots. 471 * 472 * @mr: the #MemoryRegion to be initialized. 473 * @owner: the object that tracks the region's reference count 474 * @name: Region name, becomes part of RAMBlock name used in migration stream 475 * must be unique within any device 476 * @size: used size of the region. 477 * @max_size: max size of the region. 478 * @resized: callback to notify owner about used size change. 479 * @errp: pointer to Error*, to store an error if it happens. 480 * 481 * Note that this function does not do anything to cause the data in the 482 * RAM memory region to be migrated; that is the responsibility of the caller. 483 */ 484void memory_region_init_resizeable_ram(MemoryRegion *mr, 485 struct Object *owner, 486 const char *name, 487 uint64_t size, 488 uint64_t max_size, 489 void (*resized)(const char*, 490 uint64_t length, 491 void *host), 492 Error **errp); 493#ifdef __linux__ 494/** 495 * memory_region_init_ram_from_file: Initialize RAM memory region with a 496 * mmap-ed backend. 497 * 498 * @mr: the #MemoryRegion to be initialized. 499 * @owner: the object that tracks the region's reference count 500 * @name: Region name, becomes part of RAMBlock name used in migration stream 501 * must be unique within any device 502 * @size: size of the region. 503 * @share: %true if memory must be mmaped with the MAP_SHARED flag 504 * @path: the path in which to allocate the RAM. 505 * @errp: pointer to Error*, to store an error if it happens. 506 * 507 * Note that this function does not do anything to cause the data in the 508 * RAM memory region to be migrated; that is the responsibility of the caller. 509 */ 510void memory_region_init_ram_from_file(MemoryRegion *mr, 511 struct Object *owner, 512 const char *name, 513 uint64_t size, 514 bool share, 515 const char *path, 516 Error **errp); 517 518/** 519 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 520 * mmap-ed backend. 521 * 522 * @mr: the #MemoryRegion to be initialized. 523 * @owner: the object that tracks the region's reference count 524 * @name: the name of the region. 525 * @size: size of the region. 526 * @share: %true if memory must be mmaped with the MAP_SHARED flag 527 * @fd: the fd to mmap. 528 * @errp: pointer to Error*, to store an error if it happens. 529 * 530 * Note that this function does not do anything to cause the data in the 531 * RAM memory region to be migrated; that is the responsibility of the caller. 532 */ 533void memory_region_init_ram_from_fd(MemoryRegion *mr, 534 struct Object *owner, 535 const char *name, 536 uint64_t size, 537 bool share, 538 int fd, 539 Error **errp); 540#endif 541 542/** 543 * memory_region_init_ram_ptr: Initialize RAM memory region from a 544 * user-provided pointer. Accesses into the 545 * region will modify memory directly. 546 * 547 * @mr: the #MemoryRegion to be initialized. 548 * @owner: the object that tracks the region's reference count 549 * @name: Region name, becomes part of RAMBlock name used in migration stream 550 * must be unique within any device 551 * @size: size of the region. 552 * @ptr: memory to be mapped; must contain at least @size bytes. 553 * 554 * Note that this function does not do anything to cause the data in the 555 * RAM memory region to be migrated; that is the responsibility of the caller. 556 */ 557void memory_region_init_ram_ptr(MemoryRegion *mr, 558 struct Object *owner, 559 const char *name, 560 uint64_t size, 561 void *ptr); 562 563/** 564 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 565 * a user-provided pointer. 566 * 567 * A RAM device represents a mapping to a physical device, such as to a PCI 568 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 569 * into the VM address space and access to the region will modify memory 570 * directly. However, the memory region should not be included in a memory 571 * dump (device may not be enabled/mapped at the time of the dump), and 572 * operations incompatible with manipulating MMIO should be avoided. Replaces 573 * skip_dump flag. 574 * 575 * @mr: the #MemoryRegion to be initialized. 576 * @owner: the object that tracks the region's reference count 577 * @name: the name of the region. 578 * @size: size of the region. 579 * @ptr: memory to be mapped; must contain at least @size bytes. 580 * 581 * Note that this function does not do anything to cause the data in the 582 * RAM memory region to be migrated; that is the responsibility of the caller. 583 * (For RAM device memory regions, migrating the contents rarely makes sense.) 584 */ 585void memory_region_init_ram_device_ptr(MemoryRegion *mr, 586 struct Object *owner, 587 const char *name, 588 uint64_t size, 589 void *ptr); 590 591/** 592 * memory_region_init_alias: Initialize a memory region that aliases all or a 593 * part of another memory region. 594 * 595 * @mr: the #MemoryRegion to be initialized. 596 * @owner: the object that tracks the region's reference count 597 * @name: used for debugging; not visible to the user or ABI 598 * @orig: the region to be referenced; @mr will be equivalent to 599 * @orig between @offset and @offset + @size - 1. 600 * @offset: start of the section in @orig to be referenced. 601 * @size: size of the region. 602 */ 603void memory_region_init_alias(MemoryRegion *mr, 604 struct Object *owner, 605 const char *name, 606 MemoryRegion *orig, 607 hwaddr offset, 608 uint64_t size); 609 610/** 611 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 612 * 613 * This has the same effect as calling memory_region_init_ram_nomigrate() 614 * and then marking the resulting region read-only with 615 * memory_region_set_readonly(). 616 * 617 * Note that this function does not do anything to cause the data in the 618 * RAM side of the memory region to be migrated; that is the responsibility 619 * of the caller. 620 * 621 * @mr: the #MemoryRegion to be initialized. 622 * @owner: the object that tracks the region's reference count 623 * @name: Region name, becomes part of RAMBlock name used in migration stream 624 * must be unique within any device 625 * @size: size of the region. 626 * @errp: pointer to Error*, to store an error if it happens. 627 */ 628void memory_region_init_rom_nomigrate(MemoryRegion *mr, 629 struct Object *owner, 630 const char *name, 631 uint64_t size, 632 Error **errp); 633 634/** 635 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 636 * Writes are handled via callbacks. 637 * 638 * Note that this function does not do anything to cause the data in the 639 * RAM side of the memory region to be migrated; that is the responsibility 640 * of the caller. 641 * 642 * @mr: the #MemoryRegion to be initialized. 643 * @owner: the object that tracks the region's reference count 644 * @ops: callbacks for write access handling (must not be NULL). 645 * @name: Region name, becomes part of RAMBlock name used in migration stream 646 * must be unique within any device 647 * @size: size of the region. 648 * @errp: pointer to Error*, to store an error if it happens. 649 */ 650void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 651 struct Object *owner, 652 const MemoryRegionOps *ops, 653 void *opaque, 654 const char *name, 655 uint64_t size, 656 Error **errp); 657 658/** 659 * memory_region_init_reservation: Initialize a memory region that reserves 660 * I/O space. 661 * 662 * A reservation region primariy serves debugging purposes. It claims I/O 663 * space that is not supposed to be handled by QEMU itself. Any access via 664 * the memory API will cause an abort(). 665 * This function is deprecated. Use memory_region_init_io() with NULL 666 * callbacks instead. 667 * 668 * @mr: the #MemoryRegion to be initialized 669 * @owner: the object that tracks the region's reference count 670 * @name: used for debugging; not visible to the user or ABI 671 * @size: size of the region. 672 */ 673static inline void memory_region_init_reservation(MemoryRegion *mr, 674 Object *owner, 675 const char *name, 676 uint64_t size) 677{ 678 memory_region_init_io(mr, owner, NULL, mr, name, size); 679} 680 681/** 682 * memory_region_init_iommu: Initialize a memory region of a custom type 683 * that translates addresses 684 * 685 * An IOMMU region translates addresses and forwards accesses to a target 686 * memory region. 687 * 688 * @typename: QOM class name 689 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 690 * @instance_size: the IOMMUMemoryRegion subclass instance size 691 * @owner: the object that tracks the region's reference count 692 * @ops: a function that translates addresses into the @target region 693 * @name: used for debugging; not visible to the user or ABI 694 * @size: size of the region. 695 */ 696void memory_region_init_iommu(void *_iommu_mr, 697 size_t instance_size, 698 const char *mrtypename, 699 Object *owner, 700 const char *name, 701 uint64_t size); 702 703/** 704 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 705 * region will modify memory directly. 706 * 707 * @mr: the #MemoryRegion to be initialized 708 * @owner: the object that tracks the region's reference count (must be 709 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 710 * @name: name of the memory region 711 * @size: size of the region in bytes 712 * @errp: pointer to Error*, to store an error if it happens. 713 * 714 * This function allocates RAM for a board model or device, and 715 * arranges for it to be migrated (by calling vmstate_register_ram() 716 * if @owner is a DeviceState, or vmstate_register_ram_global() if 717 * @owner is NULL). 718 * 719 * TODO: Currently we restrict @owner to being either NULL (for 720 * global RAM regions with no owner) or devices, so that we can 721 * give the RAM block a unique name for migration purposes. 722 * We should lift this restriction and allow arbitrary Objects. 723 * If you pass a non-NULL non-device @owner then we will assert. 724 */ 725void memory_region_init_ram(MemoryRegion *mr, 726 struct Object *owner, 727 const char *name, 728 uint64_t size, 729 Error **errp); 730 731/** 732 * memory_region_init_rom: Initialize a ROM memory region. 733 * 734 * This has the same effect as calling memory_region_init_ram() 735 * and then marking the resulting region read-only with 736 * memory_region_set_readonly(). This includes arranging for the 737 * contents to be migrated. 738 * 739 * TODO: Currently we restrict @owner to being either NULL (for 740 * global RAM regions with no owner) or devices, so that we can 741 * give the RAM block a unique name for migration purposes. 742 * We should lift this restriction and allow arbitrary Objects. 743 * If you pass a non-NULL non-device @owner then we will assert. 744 * 745 * @mr: the #MemoryRegion to be initialized. 746 * @owner: the object that tracks the region's reference count 747 * @name: Region name, becomes part of RAMBlock name used in migration stream 748 * must be unique within any device 749 * @size: size of the region. 750 * @errp: pointer to Error*, to store an error if it happens. 751 */ 752void memory_region_init_rom(MemoryRegion *mr, 753 struct Object *owner, 754 const char *name, 755 uint64_t size, 756 Error **errp); 757 758/** 759 * memory_region_init_rom_device: Initialize a ROM memory region. 760 * Writes are handled via callbacks. 761 * 762 * This function initializes a memory region backed by RAM for reads 763 * and callbacks for writes, and arranges for the RAM backing to 764 * be migrated (by calling vmstate_register_ram() 765 * if @owner is a DeviceState, or vmstate_register_ram_global() if 766 * @owner is NULL). 767 * 768 * TODO: Currently we restrict @owner to being either NULL (for 769 * global RAM regions with no owner) or devices, so that we can 770 * give the RAM block a unique name for migration purposes. 771 * We should lift this restriction and allow arbitrary Objects. 772 * If you pass a non-NULL non-device @owner then we will assert. 773 * 774 * @mr: the #MemoryRegion to be initialized. 775 * @owner: the object that tracks the region's reference count 776 * @ops: callbacks for write access handling (must not be NULL). 777 * @name: Region name, becomes part of RAMBlock name used in migration stream 778 * must be unique within any device 779 * @size: size of the region. 780 * @errp: pointer to Error*, to store an error if it happens. 781 */ 782void memory_region_init_rom_device(MemoryRegion *mr, 783 struct Object *owner, 784 const MemoryRegionOps *ops, 785 void *opaque, 786 const char *name, 787 uint64_t size, 788 Error **errp); 789 790 791/** 792 * memory_region_owner: get a memory region's owner. 793 * 794 * @mr: the memory region being queried. 795 */ 796struct Object *memory_region_owner(MemoryRegion *mr); 797 798/** 799 * memory_region_size: get a memory region's size. 800 * 801 * @mr: the memory region being queried. 802 */ 803uint64_t memory_region_size(MemoryRegion *mr); 804 805/** 806 * memory_region_is_ram: check whether a memory region is random access 807 * 808 * Returns %true is a memory region is random access. 809 * 810 * @mr: the memory region being queried 811 */ 812static inline bool memory_region_is_ram(MemoryRegion *mr) 813{ 814 return mr->ram; 815} 816 817/** 818 * memory_region_is_ram_device: check whether a memory region is a ram device 819 * 820 * Returns %true is a memory region is a device backed ram region 821 * 822 * @mr: the memory region being queried 823 */ 824bool memory_region_is_ram_device(MemoryRegion *mr); 825 826/** 827 * memory_region_is_romd: check whether a memory region is in ROMD mode 828 * 829 * Returns %true if a memory region is a ROM device and currently set to allow 830 * direct reads. 831 * 832 * @mr: the memory region being queried 833 */ 834static inline bool memory_region_is_romd(MemoryRegion *mr) 835{ 836 return mr->rom_device && mr->romd_mode; 837} 838 839/** 840 * memory_region_get_iommu: check whether a memory region is an iommu 841 * 842 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 843 * otherwise NULL. 844 * 845 * @mr: the memory region being queried 846 */ 847static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 848{ 849 if (mr->alias) { 850 return memory_region_get_iommu(mr->alias); 851 } 852 if (mr->is_iommu) { 853 return (IOMMUMemoryRegion *) mr; 854 } 855 return NULL; 856} 857 858/** 859 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 860 * if an iommu or NULL if not 861 * 862 * Returns pointer to IOMMUMemoryRegioniClass if a memory region is an iommu, 863 * otherwise NULL. This is fast path avoinding QOM checking, use with caution. 864 * 865 * @mr: the memory region being queried 866 */ 867static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 868 IOMMUMemoryRegion *iommu_mr) 869{ 870 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 871} 872 873#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 874 875/** 876 * memory_region_iommu_get_min_page_size: get minimum supported page size 877 * for an iommu 878 * 879 * Returns minimum supported page size for an iommu. 880 * 881 * @iommu_mr: the memory region being queried 882 */ 883uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 884 885/** 886 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 887 * 888 * The notification type will be decided by entry.perm bits: 889 * 890 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 891 * - For MAP (newly added entry) notifies: set entry.perm to the 892 * permission of the page (which is definitely !IOMMU_NONE). 893 * 894 * Note: for any IOMMU implementation, an in-place mapping change 895 * should be notified with an UNMAP followed by a MAP. 896 * 897 * @iommu_mr: the memory region that was changed 898 * @entry: the new entry in the IOMMU translation table. The entry 899 * replaces all old entries for the same virtual I/O address range. 900 * Deleted entries have .@perm == 0. 901 */ 902void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 903 IOMMUTLBEntry entry); 904 905/** 906 * memory_region_notify_one: notify a change in an IOMMU translation 907 * entry to a single notifier 908 * 909 * This works just like memory_region_notify_iommu(), but it only 910 * notifies a specific notifier, not all of them. 911 * 912 * @notifier: the notifier to be notified 913 * @entry: the new entry in the IOMMU translation table. The entry 914 * replaces all old entries for the same virtual I/O address range. 915 * Deleted entries have .@perm == 0. 916 */ 917void memory_region_notify_one(IOMMUNotifier *notifier, 918 IOMMUTLBEntry *entry); 919 920/** 921 * memory_region_register_iommu_notifier: register a notifier for changes to 922 * IOMMU translation entries. 923 * 924 * @mr: the memory region to observe 925 * @n: the IOMMUNotifier to be added; the notify callback receives a 926 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 927 * ceases to be valid on exit from the notifier. 928 */ 929void memory_region_register_iommu_notifier(MemoryRegion *mr, 930 IOMMUNotifier *n); 931 932/** 933 * memory_region_iommu_replay: replay existing IOMMU translations to 934 * a notifier with the minimum page granularity returned by 935 * mr->iommu_ops->get_page_size(). 936 * 937 * @iommu_mr: the memory region to observe 938 * @n: the notifier to which to replay iommu mappings 939 */ 940void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 941 942/** 943 * memory_region_iommu_replay_all: replay existing IOMMU translations 944 * to all the notifiers registered. 945 * 946 * @iommu_mr: the memory region to observe 947 */ 948void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr); 949 950/** 951 * memory_region_unregister_iommu_notifier: unregister a notifier for 952 * changes to IOMMU translation entries. 953 * 954 * @mr: the memory region which was observed and for which notity_stopped() 955 * needs to be called 956 * @n: the notifier to be removed. 957 */ 958void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 959 IOMMUNotifier *n); 960 961/** 962 * memory_region_name: get a memory region's name 963 * 964 * Returns the string that was used to initialize the memory region. 965 * 966 * @mr: the memory region being queried 967 */ 968const char *memory_region_name(const MemoryRegion *mr); 969 970/** 971 * memory_region_is_logging: return whether a memory region is logging writes 972 * 973 * Returns %true if the memory region is logging writes for the given client 974 * 975 * @mr: the memory region being queried 976 * @client: the client being queried 977 */ 978bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 979 980/** 981 * memory_region_get_dirty_log_mask: return the clients for which a 982 * memory region is logging writes. 983 * 984 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 985 * are the bit indices. 986 * 987 * @mr: the memory region being queried 988 */ 989uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 990 991/** 992 * memory_region_is_rom: check whether a memory region is ROM 993 * 994 * Returns %true is a memory region is read-only memory. 995 * 996 * @mr: the memory region being queried 997 */ 998static inline bool memory_region_is_rom(MemoryRegion *mr) 999{ 1000 return mr->ram && mr->readonly;
1001} 1002 1003 1004/** 1005 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1006 * 1007 * Returns a file descriptor backing a file-based RAM memory region, 1008 * or -1 if the region is not a file-based RAM memory region. 1009 * 1010 * @mr: the RAM or alias memory region being queried. 1011 */ 1012int memory_region_get_fd(MemoryRegion *mr); 1013 1014/** 1015 * memory_region_from_host: Convert a pointer into a RAM memory region 1016 * and an offset within it. 1017 * 1018 * Given a host pointer inside a RAM memory region (created with 1019 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1020 * the MemoryRegion and the offset within it. 1021 * 1022 * Use with care; by the time this function returns, the returned pointer is 1023 * not protected by RCU anymore. If the caller is not within an RCU critical 1024 * section and does not hold the iothread lock, it must have other means of 1025 * protecting the pointer, such as a reference to the region that includes 1026 * the incoming ram_addr_t. 1027 * 1028 * @mr: the memory region being queried. 1029 */ 1030MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1031 1032/** 1033 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1034 * 1035 * Returns a host pointer to a RAM memory region (created with 1036 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1037 * 1038 * Use with care; by the time this function returns, the returned pointer is 1039 * not protected by RCU anymore. If the caller is not within an RCU critical 1040 * section and does not hold the iothread lock, it must have other means of 1041 * protecting the pointer, such as a reference to the region that includes 1042 * the incoming ram_addr_t. 1043 * 1044 * @mr: the memory region being queried. 1045 */ 1046void *memory_region_get_ram_ptr(MemoryRegion *mr); 1047 1048/* memory_region_ram_resize: Resize a RAM region. 1049 * 1050 * Only legal before guest might have detected the memory size: e.g. on 1051 * incoming migration, or right after reset. 1052 * 1053 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1054 * @newsize: the new size the region 1055 * @errp: pointer to Error*, to store an error if it happens. 1056 */ 1057void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1058 Error **errp); 1059 1060/** 1061 * memory_region_set_log: Turn dirty logging on or off for a region. 1062 * 1063 * Turns dirty logging on or off for a specified client (display, migration). 1064 * Only meaningful for RAM regions. 1065 * 1066 * @mr: the memory region being updated. 1067 * @log: whether dirty logging is to be enabled or disabled. 1068 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1069 */ 1070void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1071 1072/** 1073 * memory_region_get_dirty: Check whether a range of bytes is dirty 1074 * for a specified client. 1075 * 1076 * Checks whether a range of bytes has been written to since the last 1077 * call to memory_region_reset_dirty() with the same @client. Dirty logging 1078 * must be enabled. 1079 * 1080 * @mr: the memory region being queried. 1081 * @addr: the address (relative to the start of the region) being queried. 1082 * @size: the size of the range being queried. 1083 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1084 * %DIRTY_MEMORY_VGA. 1085 */ 1086bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 1087 hwaddr size, unsigned client); 1088 1089/** 1090 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1091 * 1092 * Marks a range of bytes as dirty, after it has been dirtied outside 1093 * guest code. 1094 * 1095 * @mr: the memory region being dirtied. 1096 * @addr: the address (relative to the start of the region) being dirtied. 1097 * @size: size of the range being dirtied. 1098 */ 1099void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1100 hwaddr size); 1101 1102/** 1103 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 1104 * for a specified client. It clears them. 1105 * 1106 * Checks whether a range of bytes has been written to since the last 1107 * call to memory_region_reset_dirty() with the same @client. Dirty logging 1108 * must be enabled. 1109 * 1110 * @mr: the memory region being queried. 1111 * @addr: the address (relative to the start of the region) being queried. 1112 * @size: the size of the range being queried. 1113 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1114 * %DIRTY_MEMORY_VGA. 1115 */ 1116bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 1117 hwaddr size, unsigned client); 1118 1119/** 1120 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1121 * bitmap and clear it. 1122 * 1123 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1124 * returns the snapshot. The snapshot can then be used to query dirty 1125 * status, using memory_region_snapshot_get_dirty. Unlike 1126 * memory_region_test_and_clear_dirty this allows to query the same 1127 * page multiple times, which is especially useful for display updates 1128 * where the scanlines often are not page aligned. 1129 * 1130 * The dirty bitmap region which gets copyed into the snapshot (and 1131 * cleared afterwards) can be larger than requested. The boundaries 1132 * are rounded up/down so complete bitmap longs (covering 64 pages on 1133 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1134 * isn't a problem for display updates as the extra pages are outside 1135 * the visible area, and in case the visible area changes a full 1136 * display redraw is due anyway. Should other use cases for this 1137 * function emerge we might have to revisit this implementation 1138 * detail. 1139 * 1140 * Use g_free to release DirtyBitmapSnapshot. 1141 * 1142 * @mr: the memory region being queried. 1143 * @addr: the address (relative to the start of the region) being queried. 1144 * @size: the size of the range being queried. 1145 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1146 */ 1147DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1148 hwaddr addr, 1149 hwaddr size, 1150 unsigned client); 1151 1152/** 1153 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1154 * in the specified dirty bitmap snapshot. 1155 * 1156 * @mr: the memory region being queried. 1157 * @snap: the dirty bitmap snapshot 1158 * @addr: the address (relative to the start of the region) being queried. 1159 * @size: the size of the range being queried. 1160 */ 1161bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1162 DirtyBitmapSnapshot *snap, 1163 hwaddr addr, hwaddr size); 1164 1165/** 1166 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 1167 * any external TLBs (e.g. kvm) 1168 * 1169 * Flushes dirty information from accelerators such as kvm and vhost-net 1170 * and makes it available to users of the memory API. 1171 * 1172 * @mr: the region being flushed. 1173 */ 1174void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 1175 1176/** 1177 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1178 * client. 1179 * 1180 * Marks a range of pages as no longer dirty. 1181 * 1182 * @mr: the region being updated. 1183 * @addr: the start of the subrange being cleaned. 1184 * @size: the size of the subrange being cleaned. 1185 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1186 * %DIRTY_MEMORY_VGA. 1187 */ 1188void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1189 hwaddr size, unsigned client); 1190 1191/** 1192 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1193 * 1194 * Allows a memory region to be marked as read-only (turning it into a ROM). 1195 * only useful on RAM regions. 1196 * 1197 * @mr: the region being updated. 1198 * @readonly: whether rhe region is to be ROM or RAM. 1199 */ 1200void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1201 1202/** 1203 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1204 * 1205 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1206 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1207 * device is mapped to guest memory and satisfies read access directly. 1208 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1209 * Writes are always handled by the #MemoryRegion.write function. 1210 * 1211 * @mr: the memory region to be updated 1212 * @romd_mode: %true to put the region into ROMD mode 1213 */ 1214void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1215 1216/** 1217 * memory_region_set_coalescing: Enable memory coalescing for the region. 1218 * 1219 * Enabled writes to a region to be queued for later processing. MMIO ->write 1220 * callbacks may be delayed until a non-coalesced MMIO is issued. 1221 * Only useful for IO regions. Roughly similar to write-combining hardware. 1222 * 1223 * @mr: the memory region to be write coalesced 1224 */ 1225void memory_region_set_coalescing(MemoryRegion *mr); 1226 1227/** 1228 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1229 * a region. 1230 * 1231 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1232 * Multiple calls can be issued coalesced disjoint ranges. 1233 * 1234 * @mr: the memory region to be updated. 1235 * @offset: the start of the range within the region to be coalesced. 1236 * @size: the size of the subrange to be coalesced. 1237 */ 1238void memory_region_add_coalescing(MemoryRegion *mr, 1239 hwaddr offset, 1240 uint64_t size); 1241 1242/** 1243 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1244 * 1245 * Disables any coalescing caused by memory_region_set_coalescing() or 1246 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1247 * hardware. 1248 * 1249 * @mr: the memory region to be updated. 1250 */ 1251void memory_region_clear_coalescing(MemoryRegion *mr); 1252 1253/** 1254 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1255 * accesses. 1256 * 1257 * Ensure that pending coalesced MMIO request are flushed before the memory 1258 * region is accessed. This property is automatically enabled for all regions 1259 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1260 * 1261 * @mr: the memory region to be updated. 1262 */ 1263void memory_region_set_flush_coalesced(MemoryRegion *mr); 1264 1265/** 1266 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1267 * accesses. 1268 * 1269 * Clear the automatic coalesced MMIO flushing enabled via 1270 * memory_region_set_flush_coalesced. Note that this service has no effect on 1271 * memory regions that have MMIO coalescing enabled for themselves. For them, 1272 * automatic flushing will stop once coalescing is disabled. 1273 * 1274 * @mr: the memory region to be updated. 1275 */ 1276void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1277 1278/** 1279 * memory_region_set_global_locking: Declares the access processing requires 1280 * QEMU's global lock. 1281 * 1282 * When this is invoked, accesses to the memory region will be processed while 1283 * holding the global lock of QEMU. This is the default behavior of memory 1284 * regions. 1285 * 1286 * @mr: the memory region to be updated. 1287 */ 1288void memory_region_set_global_locking(MemoryRegion *mr); 1289 1290/** 1291 * memory_region_clear_global_locking: Declares that access processing does 1292 * not depend on the QEMU global lock. 1293 * 1294 * By clearing this property, accesses to the memory region will be processed 1295 * outside of QEMU's global lock (unless the lock is held on when issuing the 1296 * access request). In this case, the device model implementing the access 1297 * handlers is responsible for synchronization of concurrency. 1298 * 1299 * @mr: the memory region to be updated. 1300 */ 1301void memory_region_clear_global_locking(MemoryRegion *mr); 1302 1303/** 1304 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1305 * is written to a location. 1306 * 1307 * Marks a word in an IO region (initialized with memory_region_init_io()) 1308 * as a trigger for an eventfd event. The I/O callback will not be called. 1309 * The caller must be prepared to handle failure (that is, take the required 1310 * action if the callback _is_ called). 1311 * 1312 * @mr: the memory region being updated. 1313 * @addr: the address within @mr that is to be monitored 1314 * @size: the size of the access to trigger the eventfd 1315 * @match_data: whether to match against @data, instead of just @addr 1316 * @data: the data to match against the guest write 1317 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 1318 **/ 1319void memory_region_add_eventfd(MemoryRegion *mr, 1320 hwaddr addr, 1321 unsigned size, 1322 bool match_data, 1323 uint64_t data, 1324 EventNotifier *e); 1325 1326/** 1327 * memory_region_del_eventfd: Cancel an eventfd. 1328 * 1329 * Cancels an eventfd trigger requested by a previous 1330 * memory_region_add_eventfd() call. 1331 * 1332 * @mr: the memory region being updated. 1333 * @addr: the address within @mr that is to be monitored 1334 * @size: the size of the access to trigger the eventfd 1335 * @match_data: whether to match against @data, instead of just @addr 1336 * @data: the data to match against the guest write 1337 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 1338 */ 1339void memory_region_del_eventfd(MemoryRegion *mr, 1340 hwaddr addr, 1341 unsigned size, 1342 bool match_data, 1343 uint64_t data, 1344 EventNotifier *e); 1345 1346/** 1347 * memory_region_add_subregion: Add a subregion to a container. 1348 * 1349 * Adds a subregion at @offset. The subregion may not overlap with other 1350 * subregions (except for those explicitly marked as overlapping). A region 1351 * may only be added once as a subregion (unless removed with 1352 * memory_region_del_subregion()); use memory_region_init_alias() if you 1353 * want a region to be a subregion in multiple locations. 1354 * 1355 * @mr: the region to contain the new subregion; must be a container 1356 * initialized with memory_region_init(). 1357 * @offset: the offset relative to @mr where @subregion is added. 1358 * @subregion: the subregion to be added. 1359 */ 1360void memory_region_add_subregion(MemoryRegion *mr, 1361 hwaddr offset, 1362 MemoryRegion *subregion); 1363/** 1364 * memory_region_add_subregion_overlap: Add a subregion to a container 1365 * with overlap. 1366 * 1367 * Adds a subregion at @offset. The subregion may overlap with other 1368 * subregions. Conflicts are resolved by having a higher @priority hide a 1369 * lower @priority. Subregions without priority are taken as @priority 0. 1370 * A region may only be added once as a subregion (unless removed with 1371 * memory_region_del_subregion()); use memory_region_init_alias() if you 1372 * want a region to be a subregion in multiple locations. 1373 * 1374 * @mr: the region to contain the new subregion; must be a container 1375 * initialized with memory_region_init(). 1376 * @offset: the offset relative to @mr where @subregion is added. 1377 * @subregion: the subregion to be added. 1378 * @priority: used for resolving overlaps; highest priority wins. 1379 */ 1380void memory_region_add_subregion_overlap(MemoryRegion *mr, 1381 hwaddr offset, 1382 MemoryRegion *subregion, 1383 int priority); 1384 1385/** 1386 * memory_region_get_ram_addr: Get the ram address associated with a memory 1387 * region 1388 */ 1389ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1390 1391uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1392/** 1393 * memory_region_del_subregion: Remove a subregion. 1394 * 1395 * Removes a subregion from its container. 1396 * 1397 * @mr: the container to be updated. 1398 * @subregion: the region being removed; must be a current subregion of @mr. 1399 */ 1400void memory_region_del_subregion(MemoryRegion *mr, 1401 MemoryRegion *subregion); 1402 1403/* 1404 * memory_region_set_enabled: dynamically enable or disable a region 1405 * 1406 * Enables or disables a memory region. A disabled memory region 1407 * ignores all accesses to itself and its subregions. It does not 1408 * obscure sibling subregions with lower priority - it simply behaves as 1409 * if it was removed from the hierarchy. 1410 * 1411 * Regions default to being enabled. 1412 * 1413 * @mr: the region to be updated 1414 * @enabled: whether to enable or disable the region 1415 */ 1416void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1417 1418/* 1419 * memory_region_set_address: dynamically update the address of a region 1420 * 1421 * Dynamically updates the address of a region, relative to its container. 1422 * May be used on regions are currently part of a memory hierarchy. 1423 * 1424 * @mr: the region to be updated 1425 * @addr: new address, relative to container region 1426 */ 1427void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1428 1429/* 1430 * memory_region_set_size: dynamically update the size of a region. 1431 * 1432 * Dynamically updates the size of a region. 1433 * 1434 * @mr: the region to be updated 1435 * @size: used size of the region. 1436 */ 1437void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1438 1439/* 1440 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1441 * 1442 * Dynamically updates the offset into the target region that an alias points 1443 * to, as if the fourth argument to memory_region_init_alias() has changed. 1444 * 1445 * @mr: the #MemoryRegion to be updated; should be an alias. 1446 * @offset: the new offset into the target memory region 1447 */ 1448void memory_region_set_alias_offset(MemoryRegion *mr, 1449 hwaddr offset); 1450 1451/** 1452 * memory_region_present: checks if an address relative to a @container 1453 * translates into #MemoryRegion within @container 1454 * 1455 * Answer whether a #MemoryRegion within @container covers the address 1456 * @addr. 1457 * 1458 * @container: a #MemoryRegion within which @addr is a relative address 1459 * @addr: the area within @container to be searched 1460 */ 1461bool memory_region_present(MemoryRegion *container, hwaddr addr); 1462 1463/** 1464 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1465 * into any address space. 1466 * 1467 * @mr: a #MemoryRegion which should be checked if it's mapped 1468 */ 1469bool memory_region_is_mapped(MemoryRegion *mr); 1470 1471/** 1472 * memory_region_find: translate an address/size relative to a 1473 * MemoryRegion into a #MemoryRegionSection. 1474 * 1475 * Locates the first #MemoryRegion within @mr that overlaps the range 1476 * given by @addr and @size. 1477 * 1478 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1479 * It will have the following characteristics: 1480 * .@size = 0 iff no overlap was found 1481 * .@mr is non-%NULL iff an overlap was found 1482 * 1483 * Remember that in the return value the @offset_within_region is 1484 * relative to the returned region (in the .@mr field), not to the 1485 * @mr argument. 1486 * 1487 * Similarly, the .@offset_within_address_space is relative to the 1488 * address space that contains both regions, the passed and the 1489 * returned one. However, in the special case where the @mr argument 1490 * has no container (and thus is the root of the address space), the 1491 * following will hold: 1492 * .@offset_within_address_space >= @addr 1493 * .@offset_within_address_space + .@size <= @addr + @size 1494 * 1495 * @mr: a MemoryRegion within which @addr is a relative address 1496 * @addr: start of the area within @as to be searched 1497 * @size: size of the area to be searched 1498 */ 1499MemoryRegionSection memory_region_find(MemoryRegion *mr, 1500 hwaddr addr, uint64_t size); 1501 1502/** 1503 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1504 * 1505 * Synchronizes the dirty page log for all address spaces. 1506 */ 1507void memory_global_dirty_log_sync(void); 1508 1509/** 1510 * memory_region_transaction_begin: Start a transaction. 1511 * 1512 * During a transaction, changes will be accumulated and made visible 1513 * only when the transaction ends (is committed). 1514 */ 1515void memory_region_transaction_begin(void); 1516 1517/** 1518 * memory_region_transaction_commit: Commit a transaction and make changes 1519 * visible to the guest. 1520 */ 1521void memory_region_transaction_commit(void); 1522 1523/** 1524 * memory_listener_register: register callbacks to be called when memory 1525 * sections are mapped or unmapped into an address 1526 * space 1527 * 1528 * @listener: an object containing the callbacks to be called 1529 * @filter: if non-%NULL, only regions in this address space will be observed 1530 */ 1531void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1532 1533/** 1534 * memory_listener_unregister: undo the effect of memory_listener_register() 1535 * 1536 * @listener: an object containing the callbacks to be removed 1537 */ 1538void memory_listener_unregister(MemoryListener *listener); 1539 1540/** 1541 * memory_global_dirty_log_start: begin dirty logging for all regions 1542 */ 1543void memory_global_dirty_log_start(void); 1544 1545/** 1546 * memory_global_dirty_log_stop: end dirty logging for all regions 1547 */ 1548void memory_global_dirty_log_stop(void); 1549 1550void mtree_info(fprintf_function mon_printf, void *f, bool flatview, 1551 bool dispatch_tree); 1552 1553/** 1554 * memory_region_request_mmio_ptr: request a pointer to an mmio 1555 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer. 1556 * When the device wants to invalidate the pointer it will call 1557 * memory_region_invalidate_mmio_ptr. 1558 * 1559 * @mr: #MemoryRegion to check 1560 * @addr: address within that region 1561 * 1562 * Returns true on success, false otherwise. 1563 */ 1564bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr); 1565 1566/** 1567 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio 1568 * previously requested. 1569 * In the end that means that if something wants to execute from this area it 1570 * will need to request the pointer again. 1571 * 1572 * @mr: #MemoryRegion associated to the pointer. 1573 * @addr: address within that region 1574 * @size: size of that area. 1575 */ 1576void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset, 1577 unsigned size); 1578 1579/** 1580 * memory_region_dispatch_read: perform a read directly to the specified 1581 * MemoryRegion. 1582 * 1583 * @mr: #MemoryRegion to access 1584 * @addr: address within that region 1585 * @pval: pointer to uint64_t which the data is written to 1586 * @size: size of the access in bytes 1587 * @attrs: memory transaction attributes to use for the access 1588 */ 1589MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1590 hwaddr addr, 1591 uint64_t *pval, 1592 unsigned size, 1593 MemTxAttrs attrs); 1594/** 1595 * memory_region_dispatch_write: perform a write directly to the specified 1596 * MemoryRegion. 1597 * 1598 * @mr: #MemoryRegion to access 1599 * @addr: address within that region 1600 * @data: data to write 1601 * @size: size of the access in bytes 1602 * @attrs: memory transaction attributes to use for the access 1603 */ 1604MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1605 hwaddr addr, 1606 uint64_t data, 1607 unsigned size, 1608 MemTxAttrs attrs); 1609 1610/** 1611 * address_space_init: initializes an address space 1612 * 1613 * @as: an uninitialized #AddressSpace 1614 * @root: a #MemoryRegion that routes addresses for the address space 1615 * @name: an address space name. The name is only used for debugging 1616 * output. 1617 */ 1618void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1619 1620/* Remove this */ 1621AddressSpace *address_space_init_shareable(MemoryRegion *root, 1622 const char *name); 1623 1624/** 1625 * address_space_destroy: destroy an address space 1626 * 1627 * Releases all resources associated with an address space. After an address space 1628 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1629 * as well. 1630 * 1631 * @as: address space to be destroyed 1632 */ 1633void address_space_destroy(AddressSpace *as); 1634 1635/** 1636 * address_space_rw: read from or write to an address space. 1637 * 1638 * Return a MemTxResult indicating whether the operation succeeded 1639 * or failed (eg unassigned memory, device rejected the transaction, 1640 * IOMMU fault). 1641 * 1642 * @as: #AddressSpace to be accessed 1643 * @addr: address within that address space 1644 * @attrs: memory transaction attributes 1645 * @buf: buffer with the data transferred 1646 * @is_write: indicates the transfer direction 1647 */ 1648MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1649 MemTxAttrs attrs, uint8_t *buf, 1650 int len, bool is_write); 1651 1652/** 1653 * address_space_write: write to address space. 1654 * 1655 * Return a MemTxResult indicating whether the operation succeeded 1656 * or failed (eg unassigned memory, device rejected the transaction, 1657 * IOMMU fault). 1658 * 1659 * @as: #AddressSpace to be accessed 1660 * @addr: address within that address space 1661 * @attrs: memory transaction attributes 1662 * @buf: buffer with the data transferred 1663 */ 1664MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1665 MemTxAttrs attrs, 1666 const uint8_t *buf, int len); 1667 1668/* address_space_ld*: load from an address space 1669 * address_space_st*: store to an address space 1670 * 1671 * These functions perform a load or store of the byte, word, 1672 * longword or quad to the specified address within the AddressSpace. 1673 * The _le suffixed functions treat the data as little endian; 1674 * _be indicates big endian; no suffix indicates "same endianness 1675 * as guest CPU". 1676 * 1677 * The "guest CPU endianness" accessors are deprecated for use outside 1678 * target-* code; devices should be CPU-agnostic and use either the LE 1679 * or the BE accessors. 1680 * 1681 * @as #AddressSpace to be accessed 1682 * @addr: address within that address space 1683 * @val: data value, for stores 1684 * @attrs: memory transaction attributes 1685 * @result: location to write the success/failure of the transaction; 1686 * if NULL, this information is discarded 1687 */ 1688uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, 1689 MemTxAttrs attrs, MemTxResult *result); 1690uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, 1691 MemTxAttrs attrs, MemTxResult *result); 1692uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, 1693 MemTxAttrs attrs, MemTxResult *result); 1694uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, 1695 MemTxAttrs attrs, MemTxResult *result); 1696uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, 1697 MemTxAttrs attrs, MemTxResult *result); 1698uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, 1699 MemTxAttrs attrs, MemTxResult *result); 1700uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, 1701 MemTxAttrs attrs, MemTxResult *result); 1702void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, 1703 MemTxAttrs attrs, MemTxResult *result); 1704void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, 1705 MemTxAttrs attrs, MemTxResult *result); 1706void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, 1707 MemTxAttrs attrs, MemTxResult *result); 1708void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, 1709 MemTxAttrs attrs, MemTxResult *result); 1710void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, 1711 MemTxAttrs attrs, MemTxResult *result); 1712void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, 1713 MemTxAttrs attrs, MemTxResult *result); 1714void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, 1715 MemTxAttrs attrs, MemTxResult *result); 1716 1717uint32_t ldub_phys(AddressSpace *as, hwaddr addr); 1718uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr); 1719uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr); 1720uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr); 1721uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr); 1722uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr); 1723uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr); 1724void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1725void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1726void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1727void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1728void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1729void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val); 1730void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val); 1731 1732struct MemoryRegionCache { 1733 hwaddr xlat; 1734 hwaddr len; 1735 AddressSpace *as; 1736}; 1737 1738#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL }) 1739 1740/* address_space_cache_init: prepare for repeated access to a physical 1741 * memory region 1742 * 1743 * @cache: #MemoryRegionCache to be filled 1744 * @as: #AddressSpace to be accessed 1745 * @addr: address within that address space 1746 * @len: length of buffer 1747 * @is_write: indicates the transfer direction 1748 * 1749 * Will only work with RAM, and may map a subset of the requested range by 1750 * returning a value that is less than @len. On failure, return a negative 1751 * errno value. 1752 * 1753 * Because it only works with RAM, this function can be used for 1754 * read-modify-write operations. In this case, is_write should be %true. 1755 * 1756 * Note that addresses passed to the address_space_*_cached functions 1757 * are relative to @addr. 1758 */ 1759int64_t address_space_cache_init(MemoryRegionCache *cache, 1760 AddressSpace *as, 1761 hwaddr addr, 1762 hwaddr len, 1763 bool is_write); 1764 1765/** 1766 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 1767 * 1768 * @cache: The #MemoryRegionCache to operate on. 1769 * @addr: The first physical address that was written, relative to the 1770 * address that was passed to @address_space_cache_init. 1771 * @access_len: The number of bytes that were written starting at @addr. 1772 */ 1773void address_space_cache_invalidate(MemoryRegionCache *cache, 1774 hwaddr addr, 1775 hwaddr access_len); 1776 1777/** 1778 * address_space_cache_destroy: free a #MemoryRegionCache 1779 * 1780 * @cache: The #MemoryRegionCache whose memory should be released. 1781 */ 1782void address_space_cache_destroy(MemoryRegionCache *cache); 1783 1784/* address_space_ld*_cached: load from a cached #MemoryRegion 1785 * address_space_st*_cached: store into a cached #MemoryRegion 1786 * 1787 * These functions perform a load or store of the byte, word, 1788 * longword or quad to the specified address. The address is 1789 * a physical address in the AddressSpace, but it must lie within 1790 * a #MemoryRegion that was mapped with address_space_cache_init. 1791 * 1792 * The _le suffixed functions treat the data as little endian; 1793 * _be indicates big endian; no suffix indicates "same endianness 1794 * as guest CPU". 1795 * 1796 * The "guest CPU endianness" accessors are deprecated for use outside 1797 * target-* code; devices should be CPU-agnostic and use either the LE 1798 * or the BE accessors. 1799 * 1800 * @cache: previously initialized #MemoryRegionCache to be accessed 1801 * @addr: address within the address space 1802 * @val: data value, for stores 1803 * @attrs: memory transaction attributes 1804 * @result: location to write the success/failure of the transaction; 1805 * if NULL, this information is discarded 1806 */ 1807uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr, 1808 MemTxAttrs attrs, MemTxResult *result); 1809uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr, 1810 MemTxAttrs attrs, MemTxResult *result); 1811uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr, 1812 MemTxAttrs attrs, MemTxResult *result); 1813uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr, 1814 MemTxAttrs attrs, MemTxResult *result); 1815uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr, 1816 MemTxAttrs attrs, MemTxResult *result); 1817uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr, 1818 MemTxAttrs attrs, MemTxResult *result); 1819uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr, 1820 MemTxAttrs attrs, MemTxResult *result); 1821void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1822 MemTxAttrs attrs, MemTxResult *result); 1823void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1824 MemTxAttrs attrs, MemTxResult *result); 1825void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1826 MemTxAttrs attrs, MemTxResult *result); 1827void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1828 MemTxAttrs attrs, MemTxResult *result); 1829void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1830 MemTxAttrs attrs, MemTxResult *result); 1831void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val, 1832 MemTxAttrs attrs, MemTxResult *result); 1833void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val, 1834 MemTxAttrs attrs, MemTxResult *result); 1835 1836uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1837uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1838uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1839uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1840uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1841uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1842uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1843void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1844void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1845void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1846void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1847void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1848void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val); 1849void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val); 1850/* address_space_get_iotlb_entry: translate an address into an IOTLB 1851 * entry. Should be called from an RCU critical section. 1852 */ 1853IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 1854 bool is_write); 1855 1856/* address_space_translate: translate an address range into an address space 1857 * into a MemoryRegion and an address range into that section. Should be 1858 * called from an RCU critical section, to avoid that the last reference 1859 * to the returned region disappears after address_space_translate returns. 1860 * 1861 * @as: #AddressSpace to be accessed 1862 * @addr: address within that address space 1863 * @xlat: pointer to address within the returned memory region section's 1864 * #MemoryRegion. 1865 * @len: pointer to length 1866 * @is_write: indicates the transfer direction 1867 */ 1868MemoryRegion *flatview_translate(FlatView *fv, 1869 hwaddr addr, hwaddr *xlat, 1870 hwaddr *len, bool is_write, 1871 MemTxAttrs *attr); 1872 1873static inline MemoryRegion *address_space_translate(AddressSpace *as, 1874 hwaddr addr, hwaddr *xlat, 1875 hwaddr *len, bool is_write) 1876{ 1877 return flatview_translate(address_space_to_flatview(as), 1878 addr, xlat, len, is_write, 1879 &MEMTXATTRS_UNSPECIFIED); 1880} 1881 1882MemoryRegion *address_space_translate_attr(AddressSpace *as, hwaddr addr, 1883 hwaddr *xlat, hwaddr *plen, 1884 bool is_write, MemTxAttrs *attr); 1885 1886/* address_space_access_valid: check for validity of accessing an address 1887 * space range 1888 * 1889 * Check whether memory is assigned to the given address space range, and 1890 * access is permitted by any IOMMU regions that are active for the address 1891 * space. 1892 * 1893 * For now, addr and len should be aligned to a page size. This limitation 1894 * will be lifted in the future. 1895 * 1896 * @as: #AddressSpace to be accessed 1897 * @addr: address within that address space 1898 * @len: length of the area to be checked 1899 * @is_write: indicates the transfer direction 1900 */ 1901bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); 1902 1903/* address_space_map: map a physical memory region into a host virtual address 1904 * 1905 * May map a subset of the requested range, given by and returned in @plen. 1906 * May return %NULL if resources needed to perform the mapping are exhausted. 1907 * Use only for reads OR writes - not for read-modify-write operations. 1908 * Use cpu_register_map_client() to know when retrying the map operation is 1909 * likely to succeed. 1910 * 1911 * @as: #AddressSpace to be accessed 1912 * @addr: address within that address space 1913 * @plen: pointer to length of buffer; updated on return 1914 * @is_write: indicates the transfer direction 1915 */ 1916void *address_space_map(AddressSpace *as, hwaddr addr, 1917 hwaddr *plen, bool is_write); 1918 1919/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1920 * 1921 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1922 * the amount of memory that was actually read or written by the caller. 1923 * 1924 * @as: #AddressSpace used 1925 * @addr: address within that address space 1926 * @len: buffer length as returned by address_space_map() 1927 * @access_len: amount of data actually transferred 1928 * @is_write: indicates the transfer direction 1929 */ 1930void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 1931 int is_write, hwaddr access_len); 1932 1933 1934/* Internal functions, part of the implementation of address_space_read. */ 1935MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 1936 MemTxAttrs attrs, uint8_t *buf, 1937 int len, hwaddr addr1, hwaddr l, 1938 MemoryRegion *mr); 1939 1940MemTxResult flatview_read_full(FlatView *fv, hwaddr addr, 1941 MemTxAttrs attrs, uint8_t *buf, int len); 1942void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 1943 1944static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 1945{ 1946 if (is_write) { 1947 return memory_region_is_ram(mr) && 1948 !mr->readonly && !memory_region_is_ram_device(mr); 1949 } else { 1950 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 1951 memory_region_is_romd(mr); 1952 } 1953} 1954 1955/** 1956 * address_space_read: read from an address space. 1957 * 1958 * Return a MemTxResult indicating whether the operation succeeded 1959 * or failed (eg unassigned memory, device rejected the transaction, 1960 * IOMMU fault). 1961 * 1962 * @as: #AddressSpace to be accessed 1963 * @addr: address within that address space 1964 * @attrs: memory transaction attributes 1965 * @buf: buffer with the data transferred 1966 */ 1967static inline __attribute__((__always_inline__)) 1968MemTxResult flatview_read(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 1969 uint8_t *buf, int len) 1970{ 1971 MemTxResult result = MEMTX_OK; 1972 hwaddr l, addr1; 1973 void *ptr; 1974 MemoryRegion *mr; 1975 1976 if (__builtin_constant_p(len)) { 1977 if (len) { 1978 rcu_read_lock(); 1979 l = len; 1980 mr = flatview_translate(fv, addr, &addr1, &l, false, &attrs); 1981 if (len == l && memory_access_is_direct(mr, false)) { 1982 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 1983 memcpy(buf, ptr, len); 1984 } else { 1985 result = flatview_read_continue(fv, addr, attrs, buf, len, 1986 addr1, l, mr); 1987 } 1988 rcu_read_unlock(); 1989 } 1990 } else { 1991 result = flatview_read_full(fv, addr, attrs, buf, len); 1992 } 1993 return result; 1994} 1995 1996static inline MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 1997 MemTxAttrs attrs, uint8_t *buf, 1998 int len) 1999{ 2000 return flatview_read(address_space_to_flatview(as), addr, attrs, buf, len);
2001} 2002 2003/** 2004 * address_space_read_cached: read from a cached RAM region 2005 * 2006 * @cache: Cached region to be addressed 2007 * @addr: address relative to the base of the RAM region 2008 * @buf: buffer with the data transferred 2009 * @len: length of the data transferred 2010 */ 2011static inline void 2012address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2013 void *buf, int len) 2014{ 2015 assert(addr < cache->len && len <= cache->len - addr); 2016 address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len); 2017} 2018 2019/** 2020 * address_space_write_cached: write to a cached RAM region 2021 * 2022 * @cache: Cached region to be addressed 2023 * @addr: address relative to the base of the RAM region 2024 * @buf: buffer with the data transferred 2025 * @len: length of the data transferred 2026 */ 2027static inline void 2028address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2029 void *buf, int len) 2030{ 2031 assert(addr < cache->len && len <= cache->len - addr); 2032 address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len); 2033} 2034 2035#endif 2036 2037#endif 2038