qemu/hw/timer/cadence_ttc.c
<<
>>
Prefs
   1/*
   2 * Xilinx Zynq cadence TTC model
   3 *
   4 * Copyright (c) 2011 Xilinx Inc.
   5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
   6 * Copyright (c) 2012 PetaLogix Pty Ltd.
   7 * Written By Haibing Ma
   8 *            M. Habib
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "hw/sysbus.h"
  21#include "qemu/timer.h"
  22
  23#ifdef CADENCE_TTC_ERR_DEBUG
  24#define DB_PRINT(...) do { \
  25    fprintf(stderr,  ": %s: ", __func__); \
  26    fprintf(stderr, ## __VA_ARGS__); \
  27    } while (0);
  28#else
  29    #define DB_PRINT(...)
  30#endif
  31
  32#define COUNTER_INTR_IV     0x00000001
  33#define COUNTER_INTR_M1     0x00000002
  34#define COUNTER_INTR_M2     0x00000004
  35#define COUNTER_INTR_M3     0x00000008
  36#define COUNTER_INTR_OV     0x00000010
  37#define COUNTER_INTR_EV     0x00000020
  38
  39#define COUNTER_CTRL_DIS    0x00000001
  40#define COUNTER_CTRL_INT    0x00000002
  41#define COUNTER_CTRL_DEC    0x00000004
  42#define COUNTER_CTRL_MATCH  0x00000008
  43#define COUNTER_CTRL_RST    0x00000010
  44
  45#define CLOCK_CTRL_PS_EN    0x00000001
  46#define CLOCK_CTRL_PS_V     0x0000001e
  47
  48typedef struct CadenceTTCState CadenceTTCState;
  49
  50typedef struct {
  51    QEMUTimer *timer;
  52    int freq;
  53
  54    uint32_t reg_clock;
  55    uint32_t reg_count;
  56    uint64_t reg_value;
  57    uint32_t reg_interval;
  58    uint32_t reg_match[3];
  59    uint32_t reg_intr;
  60    uint32_t reg_intr_en;
  61    uint32_t reg_event_ctrl;
  62    uint32_t reg_event;
  63
  64    uint64_t cpu_time;
  65    unsigned int cpu_time_valid;
  66
  67    CadenceTTCState *container;
  68
  69    qemu_irq irq;
  70} CadenceTimerState;
  71
  72#define TYPE_CADENCE_TTC "cadence_ttc"
  73#define CADENCE_TTC(obj) \
  74    OBJECT_CHECK(CadenceTTCState, (obj), TYPE_CADENCE_TTC)
  75
  76struct CadenceTTCState {
  77    SysBusDevice parent_obj;
  78
  79    MemoryRegion iomem;
  80
  81    uint8_t bit_width;
  82    CadenceTimerState timer[3];
  83};
  84
  85static void cadence_timer_update(CadenceTimerState *s)
  86{
  87    qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en));
  88}
  89
  90static CadenceTimerState *cadence_timer_from_addr(void *opaque,
  91                                        hwaddr offset)
  92{
  93    unsigned int index;
  94    CadenceTTCState *s = (CadenceTTCState *)opaque;
  95
  96    index = (offset >> 2) % 3;
  97
  98    return &s->timer[index];
  99}
 100
 101static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps)
 102{
 103    uint64_t r = timer_steps * 1000000000ULL;
 104    if (s->reg_clock & CLOCK_CTRL_PS_EN) {
 105        r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
 106    } else {
 107        r >>= 16;
 108    }
 109    r /= (uint64_t)s->freq;
 110    /* The timer always runs for at least one "cycle".  */
 111    r = MAX(r, 1);
 112    return r;
 113}
 114
 115static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns)
 116{
 117    uint64_t to_divide = 1000000000ULL;
 118
 119    uint64_t r = ns;
 120     /* for very large intervals (> 8s) do some division first to stop
 121      * overflow (costs some prescision) */
 122    while (r >= 8 * NANOSECONDS_PER_SECOND && to_divide > 1) {
 123        r /= 1000;
 124        to_divide /= 1000;
 125    }
 126    r <<= 16;
 127    /* keep early-dividing as needed */
 128    while (r >= 8 * NANOSECONDS_PER_SECOND && to_divide > 1) {
 129        r /= 1000;
 130        to_divide /= 1000;
 131    }
 132    r *= (uint64_t)s->freq;
 133    if (s->reg_clock & CLOCK_CTRL_PS_EN) {
 134        r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
 135    }
 136
 137    r /= to_divide;
 138    return r;
 139}
 140
 141/* determine if x is in between a and b, exclusive of a, inclusive of b */
 142
 143static inline int64_t is_between(int64_t x, int64_t a, int64_t b)
 144{
 145    if (a < b) {
 146        return x > a && x <= b;
 147    }
 148    return x < a && x >= b;
 149}
 150
 151static void cadence_timer_run(CadenceTimerState *s)
 152{
 153    int i;
 154    int64_t event_interval, next_value;
 155
 156    assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */
 157
 158    if (s->reg_count & COUNTER_CTRL_DIS) {
 159        s->cpu_time_valid = 0;
 160        return;
 161    }
 162
 163    { /* figure out what's going to happen next (rollover or match) */
 164        int64_t interval = (s->reg_count & COUNTER_CTRL_INT) ?
 165                           (int64_t)s->reg_interval + 1 :
 166                           1ull << s->container->bit_width;
 167        interval <<= 16;
 168        next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval;
 169        for (i = 0; i < 3; ++i) {
 170            int64_t cand = (uint64_t)s->reg_match[i] << 16;
 171            if (is_between(cand, (uint64_t)s->reg_value, next_value)) {
 172                next_value = cand;
 173            }
 174        }
 175    }
 176    DB_PRINT("next timer event value: %16llx\n",
 177            (unsigned long long)next_value);
 178
 179    event_interval = next_value - (int64_t)s->reg_value;
 180    event_interval = (event_interval < 0) ? -event_interval : event_interval;
 181
 182    timer_mod(s->timer, s->cpu_time +
 183                cadence_timer_get_ns(s, event_interval));
 184}
 185
 186static void cadence_timer_sync(CadenceTimerState *s)
 187{
 188    int i;
 189    int64_t r, x;
 190    int64_t interval = (s->reg_count & COUNTER_CTRL_INT) ?
 191                       (int64_t)s->reg_interval + 1 :
 192                       1ull << s->container->bit_width;
 193    interval <<= 16;
 194    uint64_t old_time = s->cpu_time;
 195
 196    s->cpu_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 197    DB_PRINT("cpu time: %lld ns\n", (long long)old_time);
 198
 199    if (!s->cpu_time_valid || old_time == s->cpu_time) {
 200        s->cpu_time_valid = 1;
 201        return;
 202    }
 203
 204    r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time);
 205    x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r);
 206
 207    for (i = 0; i < 3; ++i) {
 208        int64_t m = (int64_t)s->reg_match[i] << 16;
 209        if (m > interval) {
 210            continue;
 211        }
 212        /* check to see if match event has occurred. check m +/- interval
 213         * to account for match events in wrap around cases */
 214        if (is_between(m, s->reg_value, x) ||
 215            is_between(m + interval, s->reg_value, x) ||
 216            is_between(m - interval, s->reg_value, x)) {
 217            s->reg_intr |= (2 << i);
 218        }
 219    }
 220    if ((x < 0) || (x >= interval)) {
 221        s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ?
 222            COUNTER_INTR_IV : COUNTER_INTR_OV;
 223    }
 224    while (x < 0) {
 225        x += interval;
 226    }
 227    s->reg_value = x % interval;
 228
 229    cadence_timer_update(s);
 230}
 231
 232static void cadence_timer_tick(void *opaque)
 233{
 234    CadenceTimerState *s = opaque;
 235
 236    DB_PRINT("\n");
 237    cadence_timer_sync(s);
 238    cadence_timer_run(s);
 239}
 240
 241static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset)
 242{
 243    CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
 244    uint32_t value;
 245
 246    cadence_timer_sync(s);
 247    cadence_timer_run(s);
 248
 249    switch (offset) {
 250    case 0x00: /* clock control */
 251    case 0x04:
 252    case 0x08:
 253        return s->reg_clock;
 254
 255    case 0x0c: /* counter control */
 256    case 0x10:
 257    case 0x14:
 258        return s->reg_count;
 259
 260    case 0x18: /* counter value */
 261    case 0x1c:
 262    case 0x20:
 263        return (uint32_t)(s->reg_value >> 16);
 264
 265    case 0x24: /* reg_interval counter */
 266    case 0x28:
 267    case 0x2c:
 268        return s->reg_interval;
 269
 270    case 0x30: /* match 1 counter */
 271    case 0x34:
 272    case 0x38:
 273        return s->reg_match[0];
 274
 275    case 0x3c: /* match 2 counter */
 276    case 0x40:
 277    case 0x44:
 278        return s->reg_match[1];
 279
 280    case 0x48: /* match 3 counter */
 281    case 0x4c:
 282    case 0x50:
 283        return s->reg_match[2];
 284
 285    case 0x54: /* interrupt register */
 286    case 0x58:
 287    case 0x5c:
 288        /* cleared after read */
 289        value = s->reg_intr;
 290        s->reg_intr = 0;
 291        cadence_timer_update(s);
 292        return value;
 293
 294    case 0x60: /* interrupt enable */
 295    case 0x64:
 296    case 0x68:
 297        return s->reg_intr_en;
 298
 299    case 0x6c:
 300    case 0x70:
 301    case 0x74:
 302        return s->reg_event_ctrl;
 303
 304    case 0x78:
 305    case 0x7c:
 306    case 0x80:
 307        return s->reg_event;
 308
 309    default:
 310        return 0;
 311    }
 312}
 313
 314static uint64_t cadence_ttc_read(void *opaque, hwaddr offset,
 315    unsigned size)
 316{
 317    uint32_t ret = cadence_ttc_read_imp(opaque, offset);
 318
 319    DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret);
 320    return ret;
 321}
 322
 323static void cadence_ttc_write(void *opaque, hwaddr offset,
 324        uint64_t value, unsigned size)
 325{
 326    CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
 327    uint64_t mask = (1ull << s->container->bit_width) - 1;
 328
 329    DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value);
 330
 331    cadence_timer_sync(s);
 332
 333    switch (offset) {
 334    case 0x00: /* clock control */
 335    case 0x04:
 336    case 0x08:
 337        s->reg_clock = value & 0x3F;
 338        break;
 339
 340    case 0x0c: /* counter control */
 341    case 0x10:
 342    case 0x14:
 343        if (value & COUNTER_CTRL_RST) {
 344            s->reg_value = 0;
 345        }
 346        s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST;
 347        break;
 348
 349    case 0x24: /* interval register */
 350    case 0x28:
 351    case 0x2c:
 352        s->reg_interval = value & mask;
 353        break;
 354
 355    case 0x30: /* match register */
 356    case 0x34:
 357    case 0x38:
 358        s->reg_match[0] = value & mask;
 359        break;
 360
 361    case 0x3c: /* match register */
 362    case 0x40:
 363    case 0x44:
 364        s->reg_match[1] = value & mask;
 365        break;
 366
 367    case 0x48: /* match register */
 368    case 0x4c:
 369    case 0x50:
 370        s->reg_match[2] = value & mask;
 371        break;
 372
 373    case 0x54: /* interrupt register */
 374    case 0x58:
 375    case 0x5c:
 376        break;
 377
 378    case 0x60: /* interrupt enable */
 379    case 0x64:
 380    case 0x68:
 381        s->reg_intr_en = value & 0x3f;
 382        break;
 383
 384    case 0x6c: /* event control */
 385    case 0x70:
 386    case 0x74:
 387        s->reg_event_ctrl = value & 0x07;
 388        break;
 389
 390    default:
 391        return;
 392    }
 393
 394    cadence_timer_run(s);
 395    cadence_timer_update(s);
 396}
 397
 398static const MemoryRegionOps cadence_ttc_ops = {
 399    .read = cadence_ttc_read,
 400    .write = cadence_ttc_write,
 401    .endianness = DEVICE_NATIVE_ENDIAN,
 402};
 403
 404static void cadence_timer_reset(CadenceTimerState *s)
 405{
 406   s->reg_count = 0x21;
 407}
 408
 409static void cadence_timer_init(uint32_t freq, CadenceTimerState *s)
 410{
 411    memset(s, 0, sizeof(CadenceTimerState));
 412    s->freq = freq;
 413
 414    cadence_timer_reset(s);
 415
 416    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cadence_timer_tick, s);
 417}
 418
 419static void cadence_ttc_init(Object *obj)
 420{
 421    CadenceTTCState *s = CADENCE_TTC(obj);
 422    int i;
 423
 424    for (i = 0; i < 3; ++i) {
 425        cadence_timer_init(133000000, &s->timer[i]);
 426        s->timer[i].container = s;
 427        sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->timer[i].irq);
 428    }
 429
 430    memory_region_init_io(&s->iomem, obj, &cadence_ttc_ops, s,
 431                          "timer", 0x1000);
 432    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
 433}
 434
 435static int cadence_timer_pre_save(void *opaque)
 436{
 437    cadence_timer_sync((CadenceTimerState *)opaque);
 438
 439    return 0;
 440}
 441
 442static int cadence_timer_post_load(void *opaque, int version_id)
 443{
 444    CadenceTimerState *s = opaque;
 445
 446    s->cpu_time_valid = 0;
 447    cadence_timer_sync(s);
 448    cadence_timer_run(s);
 449    cadence_timer_update(s);
 450    return 0;
 451}
 452
 453static const VMStateDescription vmstate_cadence_timer = {
 454    .name = "cadence_timer",
 455    .version_id = 1,
 456    .minimum_version_id = 1,
 457    .pre_save = cadence_timer_pre_save,
 458    .post_load = cadence_timer_post_load,
 459    .fields = (VMStateField[]) {
 460        VMSTATE_UINT32(reg_clock, CadenceTimerState),
 461        VMSTATE_UINT32(reg_count, CadenceTimerState),
 462        VMSTATE_UINT64(reg_value, CadenceTimerState),
 463        VMSTATE_UINT32(reg_interval, CadenceTimerState),
 464        VMSTATE_UINT32_ARRAY(reg_match, CadenceTimerState, 3),
 465        VMSTATE_UINT32(reg_intr, CadenceTimerState),
 466        VMSTATE_UINT32(reg_intr_en, CadenceTimerState),
 467        VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState),
 468        VMSTATE_UINT32(reg_event, CadenceTimerState),
 469        VMSTATE_END_OF_LIST()
 470    }
 471};
 472
 473static const VMStateDescription vmstate_cadence_ttc = {
 474    .name = "cadence_TTC",
 475    .version_id = 1,
 476    .minimum_version_id = 1,
 477    .fields = (VMStateField[]) {
 478        VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0,
 479                            vmstate_cadence_timer,
 480                            CadenceTimerState),
 481        VMSTATE_END_OF_LIST()
 482    }
 483};
 484
 485static Property cadence_ttc_props[] = {
 486    DEFINE_PROP_UINT8("width", CadenceTTCState, bit_width, 16),
 487    DEFINE_PROP_END_OF_LIST(),
 488};
 489
 490static void cadence_ttc_class_init(ObjectClass *klass, void *data)
 491{
 492    DeviceClass *dc = DEVICE_CLASS(klass);
 493
 494    dc->vmsd = &vmstate_cadence_ttc;
 495    dc->props = cadence_ttc_props;
 496}
 497
 498static const TypeInfo cadence_ttc_info = {
 499    .name  = TYPE_CADENCE_TTC,
 500    .parent = TYPE_SYS_BUS_DEVICE,
 501    .instance_size  = sizeof(CadenceTTCState),
 502    .instance_init = cadence_ttc_init,
 503    .class_init = cadence_ttc_class_init,
 504};
 505
 506static void cadence_ttc_register_types(void)
 507{
 508    type_register_static(&cadence_ttc_info);
 509}
 510
 511type_init(cadence_ttc_register_types)
 512