1/* 2 * QEMU Object Model 3 * 4 * Copyright IBM, Corp. 2011 5 * 6 * Authors: 7 * Anthony Liguori <aliguori@us.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14#ifndef QEMU_OBJECT_H 15#define QEMU_OBJECT_H 16 17#include "qapi-types.h" 18#include "qemu/queue.h" 19 20struct TypeImpl; 21typedef struct TypeImpl *Type; 22 23typedef struct ObjectClass ObjectClass; 24typedef struct Object Object; 25 26typedef struct TypeInfo TypeInfo; 27 28typedef struct InterfaceClass InterfaceClass; 29typedef struct InterfaceInfo InterfaceInfo; 30 31#define TYPE_OBJECT "object" 32 33/** 34 * SECTION:object.h 35 * @title:Base Object Type System 36 * @short_description: interfaces for creating new types and objects 37 * 38 * The QEMU Object Model provides a framework for registering user creatable 39 * types and instantiating objects from those types. QOM provides the following 40 * features: 41 * 42 * - System for dynamically registering types 43 * - Support for single-inheritance of types 44 * - Multiple inheritance of stateless interfaces 45 * 46 * <example> 47 * <title>Creating a minimal type</title> 48 * <programlisting> 49 * #include "qdev.h" 50 * 51 * #define TYPE_MY_DEVICE "my-device" 52 * 53 * // No new virtual functions: we can reuse the typedef for the 54 * // superclass. 55 * typedef DeviceClass MyDeviceClass; 56 * typedef struct MyDevice 57 * { 58 * DeviceState parent; 59 * 60 * int reg0, reg1, reg2; 61 * } MyDevice; 62 * 63 * static const TypeInfo my_device_info = { 64 * .name = TYPE_MY_DEVICE, 65 * .parent = TYPE_DEVICE, 66 * .instance_size = sizeof(MyDevice), 67 * }; 68 * 69 * static void my_device_register_types(void) 70 * { 71 * type_register_static(&my_device_info); 72 * } 73 * 74 * type_init(my_device_register_types) 75 * </programlisting> 76 * </example> 77 * 78 * In the above example, we create a simple type that is described by #TypeInfo. 79 * #TypeInfo describes information about the type including what it inherits 80 * from, the instance and class size, and constructor/destructor hooks. 81 * 82 * Alternatively several static types could be registered using helper macro 83 * DEFINE_TYPES() 84 * 85 * <example> 86 * <programlisting> 87 * static const TypeInfo device_types_info[] = { 88 * { 89 * .name = TYPE_MY_DEVICE_A, 90 * .parent = TYPE_DEVICE, 91 * .instance_size = sizeof(MyDeviceA), 92 * }, 93 * { 94 * .name = TYPE_MY_DEVICE_B, 95 * .parent = TYPE_DEVICE, 96 * .instance_size = sizeof(MyDeviceB), 97 * }, 98 * }; 99 * 100 * DEFINE_TYPES(device_types_info) 101 * </programlisting> 102 * </example> 103 * 104 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives 105 * are instantiated dynamically but there is only ever one instance for any 106 * given type. The #ObjectClass typically holds a table of function pointers 107 * for the virtual methods implemented by this type. 108 * 109 * Using object_new(), a new #Object derivative will be instantiated. You can 110 * cast an #Object to a subclass (or base-class) type using 111 * object_dynamic_cast(). You typically want to define macro wrappers around 112 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a 113 * specific type: 114 * 115 * <example> 116 * <title>Typecasting macros</title> 117 * <programlisting> 118 * #define MY_DEVICE_GET_CLASS(obj) \ 119 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE) 120 * #define MY_DEVICE_CLASS(klass) \ 121 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE) 122 * #define MY_DEVICE(obj) \ 123 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE) 124 * </programlisting> 125 * </example> 126 * 127 * # Class Initialization # 128 * 129 * Before an object is initialized, the class for the object must be 130 * initialized. There is only one class object for all instance objects 131 * that is created lazily. 132 * 133 * Classes are initialized by first initializing any parent classes (if 134 * necessary). After the parent class object has initialized, it will be 135 * copied into the current class object and any additional storage in the 136 * class object is zero filled. 137 * 138 * The effect of this is that classes automatically inherit any virtual 139 * function pointers that the parent class has already initialized. All 140 * other fields will be zero filled. 141 * 142 * Once all of the parent classes have been initialized, #TypeInfo::class_init 143 * is called to let the class being instantiated provide default initialize for 144 * its virtual functions. Here is how the above example might be modified 145 * to introduce an overridden virtual function: 146 * 147 * <example> 148 * <title>Overriding a virtual function</title> 149 * <programlisting> 150 * #include "qdev.h" 151 * 152 * void my_device_class_init(ObjectClass *klass, void *class_data) 153 * { 154 * DeviceClass *dc = DEVICE_CLASS(klass); 155 * dc->reset = my_device_reset; 156 * } 157 * 158 * static const TypeInfo my_device_info = { 159 * .name = TYPE_MY_DEVICE, 160 * .parent = TYPE_DEVICE, 161 * .instance_size = sizeof(MyDevice), 162 * .class_init = my_device_class_init, 163 * }; 164 * </programlisting> 165 * </example> 166 * 167 * Introducing new virtual methods requires a class to define its own 168 * struct and to add a .class_size member to the #TypeInfo. Each method 169 * will also have a wrapper function to call it easily: 170 * 171 * <example> 172 * <title>Defining an abstract class</title> 173 * <programlisting> 174 * #include "qdev.h" 175 * 176 * typedef struct MyDeviceClass 177 * { 178 * DeviceClass parent; 179 * 180 * void (*frobnicate) (MyDevice *obj); 181 * } MyDeviceClass; 182 * 183 * static const TypeInfo my_device_info = { 184 * .name = TYPE_MY_DEVICE, 185 * .parent = TYPE_DEVICE, 186 * .instance_size = sizeof(MyDevice), 187 * .abstract = true, // or set a default in my_device_class_init 188 * .class_size = sizeof(MyDeviceClass), 189 * }; 190 * 191 * void my_device_frobnicate(MyDevice *obj) 192 * { 193 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj); 194 * 195 * klass->frobnicate(obj); 196 * } 197 * </programlisting> 198 * </example> 199 * 200 * # Interfaces # 201 * 202 * Interfaces allow a limited form of multiple inheritance. Instances are 203 * similar to normal types except for the fact that are only defined by 204 * their classes and never carry any state. You can dynamically cast an object 205 * to one of its #Interface types and vice versa. 206 * 207 * # Methods # 208 * 209 * A <emphasis>method</emphasis> is a function within the namespace scope of 210 * a class. It usually operates on the object instance by passing it as a 211 * strongly-typed first argument. 212 * If it does not operate on an object instance, it is dubbed 213 * <emphasis>class method</emphasis>. 214 * 215 * Methods cannot be overloaded. That is, the #ObjectClass and method name 216 * uniquely identity the function to be called; the signature does not vary 217 * except for trailing varargs. 218 * 219 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in 220 * #TypeInfo.class_init of a subclass leads to any user of the class obtained 221 * via OBJECT_GET_CLASS() accessing the overridden function. 222 * The original function is not automatically invoked. It is the responsibility 223 * of the overriding class to determine whether and when to invoke the method 224 * being overridden. 225 * 226 * To invoke the method being overridden, the preferred solution is to store 227 * the original value in the overriding class before overriding the method. 228 * This corresponds to |[ {super,base}.method(...) ]| in Java and C# 229 * respectively; this frees the overriding class from hardcoding its parent 230 * class, which someone might choose to change at some point. 231 * 232 * <example> 233 * <title>Overriding a virtual method</title> 234 * <programlisting> 235 * typedef struct MyState MyState; 236 * 237 * typedef void (*MyDoSomething)(MyState *obj); 238 * 239 * typedef struct MyClass { 240 * ObjectClass parent_class; 241 * 242 * MyDoSomething do_something; 243 * } MyClass; 244 * 245 * static void my_do_something(MyState *obj) 246 * { 247 * // do something 248 * } 249 * 250 * static void my_class_init(ObjectClass *oc, void *data) 251 * { 252 * MyClass *mc = MY_CLASS(oc); 253 * 254 * mc->do_something = my_do_something; 255 * } 256 * 257 * static const TypeInfo my_type_info = { 258 * .name = TYPE_MY, 259 * .parent = TYPE_OBJECT, 260 * .instance_size = sizeof(MyState), 261 * .class_size = sizeof(MyClass), 262 * .class_init = my_class_init, 263 * }; 264 * 265 * typedef struct DerivedClass { 266 * MyClass parent_class; 267 * 268 * MyDoSomething parent_do_something; 269 * } DerivedClass; 270 * 271 * static void derived_do_something(MyState *obj) 272 * { 273 * DerivedClass *dc = DERIVED_GET_CLASS(obj); 274 * 275 * // do something here 276 * dc->parent_do_something(obj); 277 * // do something else here 278 * } 279 * 280 * static void derived_class_init(ObjectClass *oc, void *data) 281 * { 282 * MyClass *mc = MY_CLASS(oc); 283 * DerivedClass *dc = DERIVED_CLASS(oc); 284 * 285 * dc->parent_do_something = mc->do_something; 286 * mc->do_something = derived_do_something; 287 * } 288 * 289 * static const TypeInfo derived_type_info = { 290 * .name = TYPE_DERIVED, 291 * .parent = TYPE_MY, 292 * .class_size = sizeof(DerivedClass), 293 * .class_init = derived_class_init, 294 * }; 295 * </programlisting> 296 * </example> 297 * 298 * Alternatively, object_class_by_name() can be used to obtain the class and 299 * its non-overridden methods for a specific type. This would correspond to 300 * |[ MyClass::method(...) ]| in C++. 301 * 302 * The first example of such a QOM method was #CPUClass.reset, 303 * another example is #DeviceClass.realize. 304 */ 305 306 307/** 308 * ObjectPropertyAccessor: 309 * @obj: the object that owns the property 310 * @v: the visitor that contains the property data 311 * @name: the name of the property 312 * @opaque: the object property opaque 313 * @errp: a pointer to an Error that is filled if getting/setting fails. 314 * 315 * Called when trying to get/set a property. 316 */ 317typedef void (ObjectPropertyAccessor)(Object *obj, 318 Visitor *v, 319 const char *name, 320 void *opaque, 321 Error **errp); 322 323/** 324 * ObjectPropertyResolve: 325 * @obj: the object that owns the property 326 * @opaque: the opaque registered with the property 327 * @part: the name of the property 328 * 329 * Resolves the #Object corresponding to property @part. 330 * 331 * The returned object can also be used as a starting point 332 * to resolve a relative path starting with "@part". 333 * 334 * Returns: If @path is the path that led to @obj, the function 335 * returns the #Object corresponding to "@path/@part". 336 * If "@path/@part" is not a valid object path, it returns #NULL. 337 */ 338typedef Object *(ObjectPropertyResolve)(Object *obj, 339 void *opaque, 340 const char *part); 341 342/** 343 * ObjectPropertyRelease: 344 * @obj: the object that owns the property 345 * @name: the name of the property 346 * @opaque: the opaque registered with the property 347 * 348 * Called when a property is removed from a object. 349 */ 350typedef void (ObjectPropertyRelease)(Object *obj, 351 const char *name, 352 void *opaque); 353 354typedef struct ObjectProperty 355{ 356 gchar *name; 357 gchar *type; 358 gchar *description; 359 ObjectPropertyAccessor *get; 360 ObjectPropertyAccessor *set; 361 ObjectPropertyResolve *resolve; 362 ObjectPropertyRelease *release; 363 void *opaque; 364} ObjectProperty; 365 366/** 367 * ObjectUnparent: 368 * @obj: the object that is being removed from the composition tree 369 * 370 * Called when an object is being removed from the QOM composition tree. 371 * The function should remove any backlinks from children objects to @obj. 372 */ 373typedef void (ObjectUnparent)(Object *obj); 374 375/** 376 * ObjectFree: 377 * @obj: the object being freed 378 * 379 * Called when an object's last reference is removed. 380 */ 381typedef void (ObjectFree)(void *obj); 382 383#define OBJECT_CLASS_CAST_CACHE 4 384 385/** 386 * ObjectClass: 387 * 388 * The base for all classes. The only thing that #ObjectClass contains is an 389 * integer type handle. 390 */ 391struct ObjectClass 392{ 393 /*< private >*/ 394 Type type; 395 GSList *interfaces; 396 397 const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE]; 398 const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE]; 399 400 ObjectUnparent *unparent; 401 402 GHashTable *properties; 403}; 404 405/** 406 * Object: 407 * 408 * The base for all objects. The first member of this object is a pointer to 409 * a #ObjectClass. Since C guarantees that the first member of a structure 410 * always begins at byte 0 of that structure, as long as any sub-object places 411 * its parent as the first member, we can cast directly to a #Object. 412 * 413 * As a result, #Object contains a reference to the objects type as its 414 * first member. This allows identification of the real type of the object at 415 * run time. 416 */ 417struct Object 418{ 419 /*< private >*/ 420 ObjectClass *class; 421 ObjectFree *free; 422 GHashTable *properties; 423 uint32_t ref; 424 Object *parent; 425}; 426 427/** 428 * TypeInfo: 429 * @name: The name of the type. 430 * @parent: The name of the parent type. 431 * @instance_size: The size of the object (derivative of #Object). If 432 * @instance_size is 0, then the size of the object will be the size of the 433 * parent object. 434 * @instance_init: This function is called to initialize an object. The parent 435 * class will have already been initialized so the type is only responsible 436 * for initializing its own members. 437 * @instance_post_init: This function is called to finish initialization of 438 * an object, after all @instance_init functions were called. 439 * @instance_finalize: This function is called during object destruction. This 440 * is called before the parent @instance_finalize function has been called. 441 * An object should only free the members that are unique to its type in this 442 * function. 443 * @abstract: If this field is true, then the class is considered abstract and 444 * cannot be directly instantiated. 445 * @class_size: The size of the class object (derivative of #ObjectClass) 446 * for this object. If @class_size is 0, then the size of the class will be 447 * assumed to be the size of the parent class. This allows a type to avoid 448 * implementing an explicit class type if they are not adding additional 449 * virtual functions. 450 * @class_init: This function is called after all parent class initialization 451 * has occurred to allow a class to set its default virtual method pointers. 452 * This is also the function to use to override virtual methods from a parent 453 * class. 454 * @class_base_init: This function is called for all base classes after all 455 * parent class initialization has occurred, but before the class itself 456 * is initialized. This is the function to use to undo the effects of 457 * memcpy from the parent class to the descendants. 458 * @class_finalize: This function is called during class destruction and is 459 * meant to release and dynamic parameters allocated by @class_init. 460 * @class_data: Data to pass to the @class_init, @class_base_init and 461 * @class_finalize functions. This can be useful when building dynamic 462 * classes. 463 * @interfaces: The list of interfaces associated with this type. This 464 * should point to a static array that's terminated with a zero filled 465 * element. 466 */ 467struct TypeInfo 468{ 469 const char *name; 470 const char *parent; 471 472 size_t instance_size; 473 void (*instance_init)(Object *obj); 474 void (*instance_post_init)(Object *obj); 475 void (*instance_finalize)(Object *obj); 476 477 bool abstract; 478 size_t class_size; 479 480 void (*class_init)(ObjectClass *klass, void *data); 481 void (*class_base_init)(ObjectClass *klass, void *data); 482 void (*class_finalize)(ObjectClass *klass, void *data); 483 void *class_data; 484 485 InterfaceInfo *interfaces; 486}; 487 488/** 489 * OBJECT: 490 * @obj: A derivative of #Object 491 * 492 * Converts an object to a #Object. Since all objects are #Objects, 493 * this function will always succeed. 494 */ 495#define OBJECT(obj) \ 496 ((Object *)(obj)) 497 498/** 499 * OBJECT_CLASS: 500 * @class: A derivative of #ObjectClass. 501 * 502 * Converts a class to an #ObjectClass. Since all objects are #Objects, 503 * this function will always succeed. 504 */ 505#define OBJECT_CLASS(class) \ 506 ((ObjectClass *)(class)) 507 508/** 509 * OBJECT_CHECK: 510 * @type: The C type to use for the return value. 511 * @obj: A derivative of @type to cast. 512 * @name: The QOM typename of @type 513 * 514 * A type safe version of @object_dynamic_cast_assert. Typically each class 515 * will define a macro based on this type to perform type safe dynamic_casts to 516 * this object type. 517 * 518 * If an invalid object is passed to this function, a run time assert will be 519 * generated. 520 */ 521#define OBJECT_CHECK(type, obj, name) \ 522 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \ 523 __FILE__, __LINE__, __func__)) 524 525/** 526 * OBJECT_CLASS_CHECK: 527 * @class_type: The C type to use for the return value. 528 * @class: A derivative class of @class_type to cast. 529 * @name: the QOM typename of @class_type. 530 * 531 * A type safe version of @object_class_dynamic_cast_assert. This macro is 532 * typically wrapped by each type to perform type safe casts of a class to a 533 * specific class type. 534 */ 535#define OBJECT_CLASS_CHECK(class_type, class, name) \ 536 ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \ 537 __FILE__, __LINE__, __func__)) 538 539/** 540 * OBJECT_GET_CLASS: 541 * @class: The C type to use for the return value. 542 * @obj: The object to obtain the class for. 543 * @name: The QOM typename of @obj. 544 * 545 * This function will return a specific class for a given object. Its generally 546 * used by each type to provide a type safe macro to get a specific class type 547 * from an object. 548 */ 549#define OBJECT_GET_CLASS(class, obj, name) \ 550 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name) 551 552/** 553 * InterfaceInfo: 554 * @type: The name of the interface. 555 * 556 * The information associated with an interface. 557 */ 558struct InterfaceInfo { 559 const char *type; 560}; 561 562/** 563 * InterfaceClass: 564 * @parent_class: the base class 565 * 566 * The class for all interfaces. Subclasses of this class should only add 567 * virtual methods. 568 */ 569struct InterfaceClass 570{ 571 ObjectClass parent_class; 572 /*< private >*/ 573 ObjectClass *concrete_class; 574 Type interface_type; 575}; 576 577#define TYPE_INTERFACE "interface" 578 579/** 580 * INTERFACE_CLASS: 581 * @klass: class to cast from 582 * Returns: An #InterfaceClass or raise an error if cast is invalid 583 */ 584#define INTERFACE_CLASS(klass) \ 585 OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE) 586 587/** 588 * INTERFACE_CHECK: 589 * @interface: the type to return 590 * @obj: the object to convert to an interface 591 * @name: the interface type name 592 * 593 * Returns: @obj casted to @interface if cast is valid, otherwise raise error. 594 */ 595#define INTERFACE_CHECK(interface, obj, name) \ 596 ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \ 597 __FILE__, __LINE__, __func__)) 598 599/** 600 * object_new: 601 * @typename: The name of the type of the object to instantiate. 602 * 603 * This function will initialize a new object using heap allocated memory. 604 * The returned object has a reference count of 1, and will be freed when 605 * the last reference is dropped. 606 * 607 * Returns: The newly allocated and instantiated object. 608 */ 609Object *object_new(const char *typename); 610 611/** 612 * object_new_with_props: 613 * @typename: The name of the type of the object to instantiate. 614 * @parent: the parent object 615 * @id: The unique ID of the object 616 * @errp: pointer to error object 617 * @...: list of property names and values 618 * 619 * This function will initialize a new object using heap allocated memory. 620 * The returned object has a reference count of 1, and will be freed when 621 * the last reference is dropped. 622 * 623 * The @id parameter will be used when registering the object as a 624 * child of @parent in the composition tree. 625 * 626 * The variadic parameters are a list of pairs of (propname, propvalue) 627 * strings. The propname of %NULL indicates the end of the property 628 * list. If the object implements the user creatable interface, the 629 * object will be marked complete once all the properties have been 630 * processed. 631 * 632 * <example> 633 * <title>Creating an object with properties</title> 634 * <programlisting> 635 * Error *err = NULL; 636 * Object *obj; 637 * 638 * obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE, 639 * object_get_objects_root(), 640 * "hostmem0", 641 * &err, 642 * "share", "yes", 643 * "mem-path", "/dev/shm/somefile", 644 * "prealloc", "yes", 645 * "size", "1048576", 646 * NULL); 647 * 648 * if (!obj) { 649 * g_printerr("Cannot create memory backend: %s\n", 650 * error_get_pretty(err)); 651 * } 652 * </programlisting> 653 * </example> 654 * 655 * The returned object will have one stable reference maintained 656 * for as long as it is present in the object hierarchy. 657 * 658 * Returns: The newly allocated, instantiated & initialized object. 659 */ 660Object *object_new_with_props(const char *typename, 661 Object *parent, 662 const char *id, 663 Error **errp, 664 ...) QEMU_SENTINEL; 665 666/** 667 * object_new_with_propv: 668 * @typename: The name of the type of the object to instantiate. 669 * @parent: the parent object 670 * @id: The unique ID of the object 671 * @errp: pointer to error object 672 * @vargs: list of property names and values 673 * 674 * See object_new_with_props() for documentation. 675 */ 676Object *object_new_with_propv(const char *typename, 677 Object *parent, 678 const char *id, 679 Error **errp, 680 va_list vargs); 681 682/** 683 * object_set_props: 684 * @obj: the object instance to set properties on 685 * @errp: pointer to error object 686 * @...: list of property names and values 687 * 688 * This function will set a list of properties on an existing object 689 * instance. 690 * 691 * The variadic parameters are a list of pairs of (propname, propvalue) 692 * strings. The propname of %NULL indicates the end of the property 693 * list. 694 * 695 * <example> 696 * <title>Update an object's properties</title> 697 * <programlisting> 698 * Error *err = NULL; 699 * Object *obj = ...get / create object...; 700 * 701 * obj = object_set_props(obj, 702 * &err, 703 * "share", "yes", 704 * "mem-path", "/dev/shm/somefile", 705 * "prealloc", "yes", 706 * "size", "1048576", 707 * NULL); 708 * 709 * if (!obj) { 710 * g_printerr("Cannot set properties: %s\n", 711 * error_get_pretty(err)); 712 * } 713 * </programlisting> 714 * </example> 715 * 716 * The returned object will have one stable reference maintained 717 * for as long as it is present in the object hierarchy. 718 * 719 * Returns: -1 on error, 0 on success 720 */ 721int object_set_props(Object *obj, 722 Error **errp, 723 ...) QEMU_SENTINEL; 724 725/** 726 * object_set_propv: 727 * @obj: the object instance to set properties on 728 * @errp: pointer to error object 729 * @vargs: list of property names and values 730 * 731 * See object_set_props() for documentation. 732 * 733 * Returns: -1 on error, 0 on success 734 */ 735int object_set_propv(Object *obj, 736 Error **errp, 737 va_list vargs); 738 739/** 740 * object_initialize: 741 * @obj: A pointer to the memory to be used for the object. 742 * @size: The maximum size available at @obj for the object. 743 * @typename: The name of the type of the object to instantiate. 744 * 745 * This function will initialize an object. The memory for the object should 746 * have already been allocated. The returned object has a reference count of 1, 747 * and will be finalized when the last reference is dropped. 748 */ 749void object_initialize(void *obj, size_t size, const char *typename); 750 751/** 752 * object_dynamic_cast: 753 * @obj: The object to cast. 754 * @typename: The @typename to cast to. 755 * 756 * This function will determine if @obj is-a @typename. @obj can refer to an 757 * object or an interface associated with an object. 758 * 759 * Returns: This function returns @obj on success or #NULL on failure. 760 */ 761Object *object_dynamic_cast(Object *obj, const char *typename); 762 763/** 764 * object_dynamic_cast_assert: 765 * 766 * See object_dynamic_cast() for a description of the parameters of this 767 * function. The only difference in behavior is that this function asserts 768 * instead of returning #NULL on failure if QOM cast debugging is enabled. 769 * This function is not meant to be called directly, but only through 770 * the wrapper macro OBJECT_CHECK. 771 */ 772Object *object_dynamic_cast_assert(Object *obj, const char *typename, 773 const char *file, int line, const char *func); 774 775/** 776 * object_get_class: 777 * @obj: A derivative of #Object 778 * 779 * Returns: The #ObjectClass of the type associated with @obj. 780 */ 781ObjectClass *object_get_class(Object *obj); 782 783/** 784 * object_get_typename: 785 * @obj: A derivative of #Object. 786 * 787 * Returns: The QOM typename of @obj. 788 */ 789const char *object_get_typename(const Object *obj); 790 791/** 792 * type_register_static: 793 * @info: The #TypeInfo of the new type. 794 * 795 * @info and all of the strings it points to should exist for the life time 796 * that the type is registered. 797 * 798 * Returns: the new #Type. 799 */ 800Type type_register_static(const TypeInfo *info); 801 802/** 803 * type_register: 804 * @info: The #TypeInfo of the new type 805 * 806 * Unlike type_register_static(), this call does not require @info or its 807 * string members to continue to exist after the call returns. 808 * 809 * Returns: the new #Type. 810 */ 811Type type_register(const TypeInfo *info); 812 813/** 814 * type_register_static_array: 815 * @infos: The array of the new type #TypeInfo structures. 816 * @nr_infos: number of entries in @infos 817 * 818 * @infos and all of the strings it points to should exist for the life time 819 * that the type is registered. 820 */ 821void type_register_static_array(const TypeInfo *infos, int nr_infos); 822 823/** 824 * DEFINE_TYPES: 825 * @type_array: The array containing #TypeInfo structures to register 826 * 827 * @type_array should be static constant that exists for the life time 828 * that the type is registered. 829 */ 830#define DEFINE_TYPES(type_array) \ 831static void do_qemu_init_ ## type_array(void) \ 832{ \ 833 type_register_static_array(type_array, ARRAY_SIZE(type_array)); \ 834} \ 835type_init(do_qemu_init_ ## type_array) 836 837/** 838 * object_class_dynamic_cast_assert: 839 * @klass: The #ObjectClass to attempt to cast. 840 * @typename: The QOM typename of the class to cast to. 841 * 842 * See object_class_dynamic_cast() for a description of the parameters 843 * of this function. The only difference in behavior is that this function 844 * asserts instead of returning #NULL on failure if QOM cast debugging is 845 * enabled. This function is not meant to be called directly, but only through 846 * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK. 847 */ 848ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass, 849 const char *typename, 850 const char *file, int line, 851 const char *func); 852 853/** 854 * object_class_dynamic_cast: 855 * @klass: The #ObjectClass to attempt to cast. 856 * @typename: The QOM typename of the class to cast to. 857 * 858 * Returns: If @typename is a class, this function returns @klass if 859 * @typename is a subtype of @klass, else returns #NULL. 860 * 861 * If @typename is an interface, this function returns the interface 862 * definition for @klass if @klass implements it unambiguously; #NULL 863 * is returned if @klass does not implement the interface or if multiple 864 * classes or interfaces on the hierarchy leading to @klass implement 865 * it. (FIXME: perhaps this can be detected at type definition time?) 866 */ 867ObjectClass *object_class_dynamic_cast(ObjectClass *klass, 868 const char *typename); 869 870/** 871 * object_class_get_parent: 872 * @klass: The class to obtain the parent for. 873 * 874 * Returns: The parent for @klass or %NULL if none. 875 */ 876ObjectClass *object_class_get_parent(ObjectClass *klass); 877 878/** 879 * object_class_get_name: 880 * @klass: The class to obtain the QOM typename for. 881 * 882 * Returns: The QOM typename for @klass. 883 */ 884const char *object_class_get_name(ObjectClass *klass); 885 886/** 887 * object_class_is_abstract: 888 * @klass: The class to obtain the abstractness for. 889 * 890 * Returns: %true if @klass is abstract, %false otherwise. 891 */ 892bool object_class_is_abstract(ObjectClass *klass); 893 894/** 895 * object_class_by_name: 896 * @typename: The QOM typename to obtain the class for. 897 * 898 * Returns: The class for @typename or %NULL if not found. 899 */ 900ObjectClass *object_class_by_name(const char *typename); 901 902void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque), 903 const char *implements_type, bool include_abstract, 904 void *opaque); 905 906/** 907 * object_class_get_list: 908 * @implements_type: The type to filter for, including its derivatives. 909 * @include_abstract: Whether to include abstract classes. 910 * 911 * Returns: A singly-linked list of the classes in reverse hashtable order. 912 */ 913GSList *object_class_get_list(const char *implements_type, 914 bool include_abstract); 915 916/** 917 * object_ref: 918 * @obj: the object 919 * 920 * Increase the reference count of a object. A object cannot be freed as long 921 * as its reference count is greater than zero. 922 */ 923void object_ref(Object *obj); 924 925/** 926 * object_unref: 927 * @obj: the object 928 * 929 * Decrease the reference count of a object. A object cannot be freed as long 930 * as its reference count is greater than zero. 931 */ 932void object_unref(Object *obj); 933 934/** 935 * object_property_add: 936 * @obj: the object to add a property to 937 * @name: the name of the property. This can contain any character except for 938 * a forward slash. In general, you should use hyphens '-' instead of 939 * underscores '_' when naming properties. 940 * @type: the type name of the property. This namespace is pretty loosely 941 * defined. Sub namespaces are constructed by using a prefix and then 942 * to angle brackets. For instance, the type 'virtio-net-pci' in the 943 * 'link' namespace would be 'link<virtio-net-pci>'. 944 * @get: The getter to be called to read a property. If this is NULL, then 945 * the property cannot be read. 946 * @set: the setter to be called to write a property. If this is NULL, 947 * then the property cannot be written. 948 * @release: called when the property is removed from the object. This is 949 * meant to allow a property to free its opaque upon object 950 * destruction. This may be NULL. 951 * @opaque: an opaque pointer to pass to the callbacks for the property 952 * @errp: returns an error if this function fails 953 * 954 * Returns: The #ObjectProperty; this can be used to set the @resolve 955 * callback for child and link properties. 956 */ 957ObjectProperty *object_property_add(Object *obj, const char *name, 958 const char *type, 959 ObjectPropertyAccessor *get, 960 ObjectPropertyAccessor *set, 961 ObjectPropertyRelease *release, 962 void *opaque, Error **errp); 963 964void object_property_del(Object *obj, const char *name, Error **errp); 965 966ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name, 967 const char *type, 968 ObjectPropertyAccessor *get, 969 ObjectPropertyAccessor *set, 970 ObjectPropertyRelease *release, 971 void *opaque, Error **errp); 972 973/** 974 * object_property_find: 975 * @obj: the object 976 * @name: the name of the property 977 * @errp: returns an error if this function fails 978 * 979 * Look up a property for an object and return its #ObjectProperty if found. 980 */ 981ObjectProperty *object_property_find(Object *obj, const char *name, 982 Error **errp); 983ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name, 984 Error **errp); 985 986typedef struct ObjectPropertyIterator { 987 ObjectClass *nextclass; 988 GHashTableIter iter; 989} ObjectPropertyIterator; 990 991/** 992 * object_property_iter_init: 993 * @obj: the object 994 * 995 * Initializes an iterator for traversing all properties 996 * registered against an object instance, its class and all parent classes. 997 * 998 * It is forbidden to modify the property list while iterating, 999 * whether removing or adding properties. 1000 *
1001 * Typical usage pattern would be 1002 * 1003 * <example> 1004 * <title>Using object property iterators</title> 1005 * <programlisting> 1006 * ObjectProperty *prop; 1007 * ObjectPropertyIterator iter; 1008 * 1009 * object_property_iter_init(&iter, obj); 1010 * while ((prop = object_property_iter_next(&iter))) { 1011 * ... do something with prop ... 1012 * } 1013 * </programlisting> 1014 * </example> 1015 */ 1016void object_property_iter_init(ObjectPropertyIterator *iter, 1017 Object *obj); 1018 1019/** 1020 * object_property_iter_next: 1021 * @iter: the iterator instance 1022 * 1023 * Return the next available property. If no further properties 1024 * are available, a %NULL value will be returned and the @iter 1025 * pointer should not be used again after this point without 1026 * re-initializing it. 1027 * 1028 * Returns: the next property, or %NULL when all properties 1029 * have been traversed. 1030 */ 1031ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter); 1032 1033void object_unparent(Object *obj); 1034 1035/** 1036 * object_property_get: 1037 * @obj: the object 1038 * @v: the visitor that will receive the property value. This should be an 1039 * Output visitor and the data will be written with @name as the name. 1040 * @name: the name of the property 1041 * @errp: returns an error if this function fails 1042 * 1043 * Reads a property from a object. 1044 */ 1045void object_property_get(Object *obj, Visitor *v, const char *name, 1046 Error **errp); 1047 1048/** 1049 * object_property_set_str: 1050 * @value: the value to be written to the property 1051 * @name: the name of the property 1052 * @errp: returns an error if this function fails 1053 * 1054 * Writes a string value to a property. 1055 */ 1056void object_property_set_str(Object *obj, const char *value, 1057 const char *name, Error **errp); 1058 1059/** 1060 * object_property_get_str: 1061 * @obj: the object 1062 * @name: the name of the property 1063 * @errp: returns an error if this function fails 1064 * 1065 * Returns: the value of the property, converted to a C string, or NULL if 1066 * an error occurs (including when the property value is not a string). 1067 * The caller should free the string. 1068 */ 1069char *object_property_get_str(Object *obj, const char *name, 1070 Error **errp); 1071 1072/** 1073 * object_property_set_link: 1074 * @value: the value to be written to the property 1075 * @name: the name of the property 1076 * @errp: returns an error if this function fails 1077 * 1078 * Writes an object's canonical path to a property. 1079 */ 1080void object_property_set_link(Object *obj, Object *value, 1081 const char *name, Error **errp); 1082 1083/** 1084 * object_property_get_link: 1085 * @obj: the object 1086 * @name: the name of the property 1087 * @errp: returns an error if this function fails 1088 * 1089 * Returns: the value of the property, resolved from a path to an Object, 1090 * or NULL if an error occurs (including when the property value is not a 1091 * string or not a valid object path). 1092 */ 1093Object *object_property_get_link(Object *obj, const char *name, 1094 Error **errp); 1095 1096/** 1097 * object_property_set_bool: 1098 * @value: the value to be written to the property 1099 * @name: the name of the property 1100 * @errp: returns an error if this function fails 1101 * 1102 * Writes a bool value to a property. 1103 */ 1104void object_property_set_bool(Object *obj, bool value, 1105 const char *name, Error **errp); 1106 1107/** 1108 * object_property_get_bool: 1109 * @obj: the object 1110 * @name: the name of the property 1111 * @errp: returns an error if this function fails 1112 * 1113 * Returns: the value of the property, converted to a boolean, or NULL if 1114 * an error occurs (including when the property value is not a bool). 1115 */ 1116bool object_property_get_bool(Object *obj, const char *name, 1117 Error **errp); 1118 1119/** 1120 * object_property_set_int: 1121 * @value: the value to be written to the property 1122 * @name: the name of the property 1123 * @errp: returns an error if this function fails 1124 * 1125 * Writes an integer value to a property. 1126 */ 1127void object_property_set_int(Object *obj, int64_t value, 1128 const char *name, Error **errp); 1129 1130/** 1131 * object_property_get_int: 1132 * @obj: the object 1133 * @name: the name of the property 1134 * @errp: returns an error if this function fails 1135 * 1136 * Returns: the value of the property, converted to an integer, or negative if 1137 * an error occurs (including when the property value is not an integer). 1138 */ 1139int64_t object_property_get_int(Object *obj, const char *name, 1140 Error **errp); 1141 1142/** 1143 * object_property_set_uint: 1144 * @value: the value to be written to the property 1145 * @name: the name of the property 1146 * @errp: returns an error if this function fails 1147 * 1148 * Writes an unsigned integer value to a property. 1149 */ 1150void object_property_set_uint(Object *obj, uint64_t value, 1151 const char *name, Error **errp); 1152 1153/** 1154 * object_property_get_uint: 1155 * @obj: the object 1156 * @name: the name of the property 1157 * @errp: returns an error if this function fails 1158 * 1159 * Returns: the value of the property, converted to an unsigned integer, or 0 1160 * an error occurs (including when the property value is not an integer). 1161 */ 1162uint64_t object_property_get_uint(Object *obj, const char *name, 1163 Error **errp); 1164 1165/** 1166 * object_property_get_enum: 1167 * @obj: the object 1168 * @name: the name of the property 1169 * @typename: the name of the enum data type 1170 * @errp: returns an error if this function fails 1171 * 1172 * Returns: the value of the property, converted to an integer, or 1173 * undefined if an error occurs (including when the property value is not 1174 * an enum). 1175 */ 1176int object_property_get_enum(Object *obj, const char *name, 1177 const char *typename, Error **errp); 1178 1179/** 1180 * object_property_get_uint16List: 1181 * @obj: the object 1182 * @name: the name of the property 1183 * @list: the returned int list 1184 * @errp: returns an error if this function fails 1185 * 1186 * Returns: the value of the property, converted to integers, or 1187 * undefined if an error occurs (including when the property value is not 1188 * an list of integers). 1189 */ 1190void object_property_get_uint16List(Object *obj, const char *name, 1191 uint16List **list, Error **errp); 1192 1193/** 1194 * object_property_set: 1195 * @obj: the object 1196 * @v: the visitor that will be used to write the property value. This should 1197 * be an Input visitor and the data will be first read with @name as the 1198 * name and then written as the property value. 1199 * @name: the name of the property 1200 * @errp: returns an error if this function fails 1201 * 1202 * Writes a property to a object. 1203 */ 1204void object_property_set(Object *obj, Visitor *v, const char *name, 1205 Error **errp); 1206 1207/** 1208 * object_property_parse: 1209 * @obj: the object 1210 * @string: the string that will be used to parse the property value. 1211 * @name: the name of the property 1212 * @errp: returns an error if this function fails 1213 * 1214 * Parses a string and writes the result into a property of an object. 1215 */ 1216void object_property_parse(Object *obj, const char *string, 1217 const char *name, Error **errp); 1218 1219/** 1220 * object_property_print: 1221 * @obj: the object 1222 * @name: the name of the property 1223 * @human: if true, print for human consumption 1224 * @errp: returns an error if this function fails 1225 * 1226 * Returns a string representation of the value of the property. The 1227 * caller shall free the string. 1228 */ 1229char *object_property_print(Object *obj, const char *name, bool human, 1230 Error **errp); 1231 1232/** 1233 * object_property_get_type: 1234 * @obj: the object 1235 * @name: the name of the property 1236 * @errp: returns an error if this function fails 1237 * 1238 * Returns: The type name of the property. 1239 */ 1240const char *object_property_get_type(Object *obj, const char *name, 1241 Error **errp); 1242 1243/** 1244 * object_get_root: 1245 * 1246 * Returns: the root object of the composition tree 1247 */ 1248Object *object_get_root(void); 1249 1250 1251/** 1252 * object_get_objects_root: 1253 * 1254 * Get the container object that holds user created 1255 * object instances. This is the object at path 1256 * "/objects" 1257 * 1258 * Returns: the user object container 1259 */ 1260Object *object_get_objects_root(void); 1261 1262/** 1263 * object_get_internal_root: 1264 * 1265 * Get the container object that holds internally used object 1266 * instances. Any object which is put into this container must not be 1267 * user visible, and it will not be exposed in the QOM tree. 1268 * 1269 * Returns: the internal object container 1270 */ 1271Object *object_get_internal_root(void); 1272 1273/** 1274 * object_get_canonical_path_component: 1275 * 1276 * Returns: The final component in the object's canonical path. The canonical 1277 * path is the path within the composition tree starting from the root. 1278 */ 1279gchar *object_get_canonical_path_component(Object *obj); 1280 1281/** 1282 * object_get_canonical_path: 1283 * 1284 * Returns: The canonical path for a object. This is the path within the 1285 * composition tree starting from the root. 1286 */ 1287gchar *object_get_canonical_path(Object *obj); 1288 1289/** 1290 * object_resolve_path: 1291 * @path: the path to resolve 1292 * @ambiguous: returns true if the path resolution failed because of an 1293 * ambiguous match 1294 * 1295 * There are two types of supported paths--absolute paths and partial paths. 1296 * 1297 * Absolute paths are derived from the root object and can follow child<> or 1298 * link<> properties. Since they can follow link<> properties, they can be 1299 * arbitrarily long. Absolute paths look like absolute filenames and are 1300 * prefixed with a leading slash. 1301 * 1302 * Partial paths look like relative filenames. They do not begin with a 1303 * prefix. The matching rules for partial paths are subtle but designed to make 1304 * specifying objects easy. At each level of the composition tree, the partial 1305 * path is matched as an absolute path. The first match is not returned. At 1306 * least two matches are searched for. A successful result is only returned if 1307 * only one match is found. If more than one match is found, a flag is 1308 * returned to indicate that the match was ambiguous. 1309 * 1310 * Returns: The matched object or NULL on path lookup failure. 1311 */ 1312Object *object_resolve_path(const char *path, bool *ambiguous); 1313 1314/** 1315 * object_resolve_path_type: 1316 * @path: the path to resolve 1317 * @typename: the type to look for. 1318 * @ambiguous: returns true if the path resolution failed because of an 1319 * ambiguous match 1320 * 1321 * This is similar to object_resolve_path. However, when looking for a 1322 * partial path only matches that implement the given type are considered. 1323 * This restricts the search and avoids spuriously flagging matches as 1324 * ambiguous. 1325 * 1326 * For both partial and absolute paths, the return value goes through 1327 * a dynamic cast to @typename. This is important if either the link, 1328 * or the typename itself are of interface types. 1329 * 1330 * Returns: The matched object or NULL on path lookup failure. 1331 */ 1332Object *object_resolve_path_type(const char *path, const char *typename, 1333 bool *ambiguous); 1334 1335/** 1336 * object_resolve_path_component: 1337 * @parent: the object in which to resolve the path 1338 * @part: the component to resolve. 1339 * 1340 * This is similar to object_resolve_path with an absolute path, but it 1341 * only resolves one element (@part) and takes the others from @parent. 1342 * 1343 * Returns: The resolved object or NULL on path lookup failure. 1344 */ 1345Object *object_resolve_path_component(Object *parent, const gchar *part); 1346 1347/** 1348 * object_property_add_child: 1349 * @obj: the object to add a property to 1350 * @name: the name of the property 1351 * @child: the child object 1352 * @errp: if an error occurs, a pointer to an area to store the area 1353 * 1354 * Child properties form the composition tree. All objects need to be a child 1355 * of another object. Objects can only be a child of one object. 1356 * 1357 * There is no way for a child to determine what its parent is. It is not 1358 * a bidirectional relationship. This is by design. 1359 * 1360 * The value of a child property as a C string will be the child object's 1361 * canonical path. It can be retrieved using object_property_get_str(). 1362 * The child object itself can be retrieved using object_property_get_link(). 1363 */ 1364void object_property_add_child(Object *obj, const char *name, 1365 Object *child, Error **errp); 1366 1367typedef enum { 1368 /* Unref the link pointer when the property is deleted */ 1369 OBJ_PROP_LINK_UNREF_ON_RELEASE = 0x1, 1370} ObjectPropertyLinkFlags; 1371 1372/** 1373 * object_property_allow_set_link: 1374 * 1375 * The default implementation of the object_property_add_link() check() 1376 * callback function. It allows the link property to be set and never returns 1377 * an error. 1378 */ 1379void object_property_allow_set_link(const Object *, const char *, 1380 Object *, Error **); 1381 1382/** 1383 * object_property_add_link: 1384 * @obj: the object to add a property to 1385 * @name: the name of the property 1386 * @type: the qobj type of the link 1387 * @child: a pointer to where the link object reference is stored 1388 * @check: callback to veto setting or NULL if the property is read-only 1389 * @flags: additional options for the link 1390 * @errp: if an error occurs, a pointer to an area to store the area 1391 * 1392 * Links establish relationships between objects. Links are unidirectional 1393 * although two links can be combined to form a bidirectional relationship 1394 * between objects. 1395 * 1396 * Links form the graph in the object model. 1397 * 1398 * The <code>@check()</code> callback is invoked when 1399 * object_property_set_link() is called and can raise an error to prevent the 1400 * link being set. If <code>@check</code> is NULL, the property is read-only 1401 * and cannot be set. 1402 * 1403 * Ownership of the pointer that @child points to is transferred to the 1404 * link property. The reference count for <code>*@child</code> is 1405 * managed by the property from after the function returns till the 1406 * property is deleted with object_property_del(). If the 1407 * <code>@flags</code> <code>OBJ_PROP_LINK_UNREF_ON_RELEASE</code> bit is set, 1408 * the reference count is decremented when the property is deleted. 1409 */ 1410void object_property_add_link(Object *obj, const char *name, 1411 const char *type, Object **child, 1412 void (*check)(const Object *obj, const char *name, 1413 Object *val, Error **errp), 1414 ObjectPropertyLinkFlags flags, 1415 Error **errp); 1416 1417/** 1418 * object_property_add_str: 1419 * @obj: the object to add a property to 1420 * @name: the name of the property 1421 * @get: the getter or NULL if the property is write-only. This function must 1422 * return a string to be freed by g_free(). 1423 * @set: the setter or NULL if the property is read-only 1424 * @errp: if an error occurs, a pointer to an area to store the error 1425 * 1426 * Add a string property using getters/setters. This function will add a 1427 * property of type 'string'. 1428 */ 1429void object_property_add_str(Object *obj, const char *name, 1430 char *(*get)(Object *, Error **), 1431 void (*set)(Object *, const char *, Error **), 1432 Error **errp); 1433 1434void object_class_property_add_str(ObjectClass *klass, const char *name, 1435 char *(*get)(Object *, Error **), 1436 void (*set)(Object *, const char *, 1437 Error **), 1438 Error **errp); 1439 1440/** 1441 * object_property_add_bool: 1442 * @obj: the object to add a property to 1443 * @name: the name of the property 1444 * @get: the getter or NULL if the property is write-only. 1445 * @set: the setter or NULL if the property is read-only 1446 * @errp: if an error occurs, a pointer to an area to store the error 1447 * 1448 * Add a bool property using getters/setters. This function will add a 1449 * property of type 'bool'. 1450 */ 1451void object_property_add_bool(Object *obj, const char *name, 1452 bool (*get)(Object *, Error **), 1453 void (*set)(Object *, bool, Error **), 1454 Error **errp); 1455 1456void object_class_property_add_bool(ObjectClass *klass, const char *name, 1457 bool (*get)(Object *, Error **), 1458 void (*set)(Object *, bool, Error **), 1459 Error **errp); 1460 1461/** 1462 * object_property_add_enum: 1463 * @obj: the object to add a property to 1464 * @name: the name of the property 1465 * @typename: the name of the enum data type 1466 * @get: the getter or %NULL if the property is write-only. 1467 * @set: the setter or %NULL if the property is read-only 1468 * @errp: if an error occurs, a pointer to an area to store the error 1469 * 1470 * Add an enum property using getters/setters. This function will add a 1471 * property of type '@typename'. 1472 */ 1473void object_property_add_enum(Object *obj, const char *name, 1474 const char *typename, 1475 const QEnumLookup *lookup, 1476 int (*get)(Object *, Error **), 1477 void (*set)(Object *, int, Error **), 1478 Error **errp); 1479 1480void object_class_property_add_enum(ObjectClass *klass, const char *name, 1481 const char *typename, 1482 const QEnumLookup *lookup, 1483 int (*get)(Object *, Error **), 1484 void (*set)(Object *, int, Error **), 1485 Error **errp); 1486 1487/** 1488 * object_property_add_tm: 1489 * @obj: the object to add a property to 1490 * @name: the name of the property 1491 * @get: the getter or NULL if the property is write-only. 1492 * @errp: if an error occurs, a pointer to an area to store the error 1493 * 1494 * Add a read-only struct tm valued property using a getter function. 1495 * This function will add a property of type 'struct tm'. 1496 */ 1497void object_property_add_tm(Object *obj, const char *name, 1498 void (*get)(Object *, struct tm *, Error **), 1499 Error **errp); 1500 1501void object_class_property_add_tm(ObjectClass *klass, const char *name, 1502 void (*get)(Object *, struct tm *, Error **), 1503 Error **errp); 1504 1505/** 1506 * object_property_add_uint8_ptr: 1507 * @obj: the object to add a property to 1508 * @name: the name of the property 1509 * @v: pointer to value 1510 * @errp: if an error occurs, a pointer to an area to store the error 1511 * 1512 * Add an integer property in memory. This function will add a 1513 * property of type 'uint8'. 1514 */ 1515void object_property_add_uint8_ptr(Object *obj, const char *name, 1516 const uint8_t *v, Error **errp); 1517void object_class_property_add_uint8_ptr(ObjectClass *klass, const char *name, 1518 const uint8_t *v, Error **errp); 1519 1520/** 1521 * object_property_add_uint16_ptr: 1522 * @obj: the object to add a property to 1523 * @name: the name of the property 1524 * @v: pointer to value 1525 * @errp: if an error occurs, a pointer to an area to store the error 1526 * 1527 * Add an integer property in memory. This function will add a 1528 * property of type 'uint16'. 1529 */ 1530void object_property_add_uint16_ptr(Object *obj, const char *name, 1531 const uint16_t *v, Error **errp); 1532void object_class_property_add_uint16_ptr(ObjectClass *klass, const char *name, 1533 const uint16_t *v, Error **errp); 1534 1535/** 1536 * object_property_add_uint32_ptr: 1537 * @obj: the object to add a property to 1538 * @name: the name of the property 1539 * @v: pointer to value 1540 * @errp: if an error occurs, a pointer to an area to store the error 1541 * 1542 * Add an integer property in memory. This function will add a 1543 * property of type 'uint32'. 1544 */ 1545void object_property_add_uint32_ptr(Object *obj, const char *name, 1546 const uint32_t *v, Error **errp); 1547void object_class_property_add_uint32_ptr(ObjectClass *klass, const char *name, 1548 const uint32_t *v, Error **errp); 1549 1550/** 1551 * object_property_add_uint64_ptr: 1552 * @obj: the object to add a property to 1553 * @name: the name of the property 1554 * @v: pointer to value 1555 * @errp: if an error occurs, a pointer to an area to store the error 1556 * 1557 * Add an integer property in memory. This function will add a 1558 * property of type 'uint64'. 1559 */ 1560void object_property_add_uint64_ptr(Object *obj, const char *name, 1561 const uint64_t *v, Error **Errp); 1562void object_class_property_add_uint64_ptr(ObjectClass *klass, const char *name, 1563 const uint64_t *v, Error **Errp); 1564 1565/** 1566 * object_property_add_alias: 1567 * @obj: the object to add a property to 1568 * @name: the name of the property 1569 * @target_obj: the object to forward property access to 1570 * @target_name: the name of the property on the forwarded object 1571 * @errp: if an error occurs, a pointer to an area to store the error 1572 * 1573 * Add an alias for a property on an object. This function will add a property 1574 * of the same type as the forwarded property. 1575 * 1576 * The caller must ensure that <code>@target_obj</code> stays alive as long as 1577 * this property exists. In the case of a child object or an alias on the same 1578 * object this will be the case. For aliases to other objects the caller is 1579 * responsible for taking a reference. 1580 */ 1581void object_property_add_alias(Object *obj, const char *name, 1582 Object *target_obj, const char *target_name, 1583 Error **errp); 1584 1585/** 1586 * object_property_add_const_link: 1587 * @obj: the object to add a property to 1588 * @name: the name of the property 1589 * @target: the object to be referred by the link 1590 * @errp: if an error occurs, a pointer to an area to store the error 1591 * 1592 * Add an unmodifiable link for a property on an object. This function will 1593 * add a property of type link<TYPE> where TYPE is the type of @target. 1594 * 1595 * The caller must ensure that @target stays alive as long as 1596 * this property exists. In the case @target is a child of @obj, 1597 * this will be the case. Otherwise, the caller is responsible for 1598 * taking a reference. 1599 */ 1600void object_property_add_const_link(Object *obj, const char *name, 1601 Object *target, Error **errp); 1602 1603/** 1604 * object_property_set_description: 1605 * @obj: the object owning the property 1606 * @name: the name of the property 1607 * @description: the description of the property on the object 1608 * @errp: if an error occurs, a pointer to an area to store the error 1609 * 1610 * Set an object property's description. 1611 * 1612 */ 1613void object_property_set_description(Object *obj, const char *name, 1614 const char *description, Error **errp); 1615void object_class_property_set_description(ObjectClass *klass, const char *name, 1616 const char *description, 1617 Error **errp); 1618 1619/** 1620 * object_child_foreach: 1621 * @obj: the object whose children will be navigated 1622 * @fn: the iterator function to be called 1623 * @opaque: an opaque value that will be passed to the iterator 1624 * 1625 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 1626 * non-zero. 1627 * 1628 * It is forbidden to add or remove children from @obj from the @fn 1629 * callback. 1630 * 1631 * Returns: The last value returned by @fn, or 0 if there is no child. 1632 */ 1633int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque), 1634 void *opaque); 1635 1636/** 1637 * object_child_foreach_recursive: 1638 * @obj: the object whose children will be navigated 1639 * @fn: the iterator function to be called 1640 * @opaque: an opaque value that will be passed to the iterator 1641 * 1642 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 1643 * non-zero. Calls recursively, all child nodes of @obj will also be passed 1644 * all the way down to the leaf nodes of the tree. Depth first ordering. 1645 * 1646 * It is forbidden to add or remove children from @obj (or its 1647 * child nodes) from the @fn callback. 1648 * 1649 * Returns: The last value returned by @fn, or 0 if there is no child. 1650 */ 1651int object_child_foreach_recursive(Object *obj, 1652 int (*fn)(Object *child, void *opaque), 1653 void *opaque); 1654/** 1655 * container_get: 1656 * @root: root of the #path, e.g., object_get_root() 1657 * @path: path to the container 1658 * 1659 * Return a container object whose path is @path. Create more containers 1660 * along the path if necessary. 1661 * 1662 * Returns: the container object. 1663 */ 1664Object *container_get(Object *root, const char *path); 1665 1666/* 1667 * object_resolve_link: 1668 * 1669 * Lookup an object and ensure its type matches the link property type. This 1670 * is similar to object_resolve_path() except type verification against the 1671 * link property is performed. 1672 * 1673 * Returns: The matched object or NULL on path lookup failures. 1674 */ 1675Object *object_resolve_link(Object *obj, const char *name, 1676 const char *path, Error **errp); 1677 1678/** 1679 * object_type_get_instance_size: 1680 * @typename: Name of the Type whose instance_size is required 1681 * 1682 * Returns the instance_size of the given @typename. 1683 */ 1684size_t object_type_get_instance_size(const char *typename); 1685#endif 1686