qemu/hw/i386/intel_iommu.c
<<
>>
Prefs
   1/*
   2 * QEMU emulation of an Intel IOMMU (VT-d)
   3 *   (DMA Remapping device)
   4 *
   5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
   6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "qemu/error-report.h"
  24#include "qemu/main-loop.h"
  25#include "qapi/error.h"
  26#include "hw/sysbus.h"
  27#include "exec/address-spaces.h"
  28#include "intel_iommu_internal.h"
  29#include "hw/pci/pci.h"
  30#include "hw/pci/pci_bus.h"
  31#include "hw/qdev-properties.h"
  32#include "hw/i386/pc.h"
  33#include "hw/i386/apic-msidef.h"
  34#include "hw/boards.h"
  35#include "hw/i386/x86-iommu.h"
  36#include "hw/pci-host/q35.h"
  37#include "sysemu/kvm.h"
  38#include "sysemu/sysemu.h"
  39#include "hw/i386/apic_internal.h"
  40#include "kvm_i386.h"
  41#include "migration/vmstate.h"
  42#include "trace.h"
  43
  44/* context entry operations */
  45#define VTD_CE_GET_RID2PASID(ce) \
  46    ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
  47#define VTD_CE_GET_PASID_DIR_TABLE(ce) \
  48    ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
  49
  50/* pe operations */
  51#define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
  52#define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
  53#define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
  54    if (ret_fr) {                                                             \
  55        ret_fr = -ret_fr;                                                     \
  56        if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {                   \
  57            trace_vtd_fault_disabled();                                       \
  58        } else {                                                              \
  59            vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);      \
  60        }                                                                     \
  61        goto error;                                                           \
  62    }                                                                         \
  63}
  64
  65static void vtd_address_space_refresh_all(IntelIOMMUState *s);
  66static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
  67
  68static void vtd_panic_require_caching_mode(void)
  69{
  70    error_report("We need to set caching-mode=on for intel-iommu to enable "
  71                 "device assignment with IOMMU protection.");
  72    exit(1);
  73}
  74
  75static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  76                            uint64_t wmask, uint64_t w1cmask)
  77{
  78    stq_le_p(&s->csr[addr], val);
  79    stq_le_p(&s->wmask[addr], wmask);
  80    stq_le_p(&s->w1cmask[addr], w1cmask);
  81}
  82
  83static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  84{
  85    stq_le_p(&s->womask[addr], mask);
  86}
  87
  88static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  89                            uint32_t wmask, uint32_t w1cmask)
  90{
  91    stl_le_p(&s->csr[addr], val);
  92    stl_le_p(&s->wmask[addr], wmask);
  93    stl_le_p(&s->w1cmask[addr], w1cmask);
  94}
  95
  96static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
  97{
  98    stl_le_p(&s->womask[addr], mask);
  99}
 100
 101/* "External" get/set operations */
 102static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 103{
 104    uint64_t oldval = ldq_le_p(&s->csr[addr]);
 105    uint64_t wmask = ldq_le_p(&s->wmask[addr]);
 106    uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
 107    stq_le_p(&s->csr[addr],
 108             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
 109}
 110
 111static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
 112{
 113    uint32_t oldval = ldl_le_p(&s->csr[addr]);
 114    uint32_t wmask = ldl_le_p(&s->wmask[addr]);
 115    uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
 116    stl_le_p(&s->csr[addr],
 117             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
 118}
 119
 120static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
 121{
 122    uint64_t val = ldq_le_p(&s->csr[addr]);
 123    uint64_t womask = ldq_le_p(&s->womask[addr]);
 124    return val & ~womask;
 125}
 126
 127static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
 128{
 129    uint32_t val = ldl_le_p(&s->csr[addr]);
 130    uint32_t womask = ldl_le_p(&s->womask[addr]);
 131    return val & ~womask;
 132}
 133
 134/* "Internal" get/set operations */
 135static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
 136{
 137    return ldq_le_p(&s->csr[addr]);
 138}
 139
 140static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
 141{
 142    return ldl_le_p(&s->csr[addr]);
 143}
 144
 145static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 146{
 147    stq_le_p(&s->csr[addr], val);
 148}
 149
 150static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
 151                                        uint32_t clear, uint32_t mask)
 152{
 153    uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
 154    stl_le_p(&s->csr[addr], new_val);
 155    return new_val;
 156}
 157
 158static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
 159                                        uint64_t clear, uint64_t mask)
 160{
 161    uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
 162    stq_le_p(&s->csr[addr], new_val);
 163    return new_val;
 164}
 165
 166static inline void vtd_iommu_lock(IntelIOMMUState *s)
 167{
 168    qemu_mutex_lock(&s->iommu_lock);
 169}
 170
 171static inline void vtd_iommu_unlock(IntelIOMMUState *s)
 172{
 173    qemu_mutex_unlock(&s->iommu_lock);
 174}
 175
 176static void vtd_update_scalable_state(IntelIOMMUState *s)
 177{
 178    uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
 179
 180    if (s->scalable_mode) {
 181        s->root_scalable = val & VTD_RTADDR_SMT;
 182    }
 183}
 184
 185/* Whether the address space needs to notify new mappings */
 186static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
 187{
 188    return as->notifier_flags & IOMMU_NOTIFIER_MAP;
 189}
 190
 191/* GHashTable functions */
 192static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
 193{
 194    return *((const uint64_t *)v1) == *((const uint64_t *)v2);
 195}
 196
 197static guint vtd_uint64_hash(gconstpointer v)
 198{
 199    return (guint)*(const uint64_t *)v;
 200}
 201
 202static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
 203                                          gpointer user_data)
 204{
 205    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 206    uint16_t domain_id = *(uint16_t *)user_data;
 207    return entry->domain_id == domain_id;
 208}
 209
 210/* The shift of an addr for a certain level of paging structure */
 211static inline uint32_t vtd_slpt_level_shift(uint32_t level)
 212{
 213    assert(level != 0);
 214    return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
 215}
 216
 217static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
 218{
 219    return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
 220}
 221
 222static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
 223                                        gpointer user_data)
 224{
 225    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 226    VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
 227    uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
 228    uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
 229    return (entry->domain_id == info->domain_id) &&
 230            (((entry->gfn & info->mask) == gfn) ||
 231             (entry->gfn == gfn_tlb));
 232}
 233
 234/* Reset all the gen of VTDAddressSpace to zero and set the gen of
 235 * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
 236 */
 237static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
 238{
 239    VTDAddressSpace *vtd_as;
 240    VTDBus *vtd_bus;
 241    GHashTableIter bus_it;
 242    uint32_t devfn_it;
 243
 244    trace_vtd_context_cache_reset();
 245
 246    g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
 247
 248    while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
 249        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
 250            vtd_as = vtd_bus->dev_as[devfn_it];
 251            if (!vtd_as) {
 252                continue;
 253            }
 254            vtd_as->context_cache_entry.context_cache_gen = 0;
 255        }
 256    }
 257    s->context_cache_gen = 1;
 258}
 259
 260/* Must be called with IOMMU lock held. */
 261static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
 262{
 263    assert(s->iotlb);
 264    g_hash_table_remove_all(s->iotlb);
 265}
 266
 267static void vtd_reset_iotlb(IntelIOMMUState *s)
 268{
 269    vtd_iommu_lock(s);
 270    vtd_reset_iotlb_locked(s);
 271    vtd_iommu_unlock(s);
 272}
 273
 274static void vtd_reset_caches(IntelIOMMUState *s)
 275{
 276    vtd_iommu_lock(s);
 277    vtd_reset_iotlb_locked(s);
 278    vtd_reset_context_cache_locked(s);
 279    vtd_iommu_unlock(s);
 280}
 281
 282static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
 283                                  uint32_t level)
 284{
 285    return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
 286           ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
 287}
 288
 289static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
 290{
 291    return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
 292}
 293
 294/* Must be called with IOMMU lock held */
 295static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
 296                                       hwaddr addr)
 297{
 298    VTDIOTLBEntry *entry;
 299    uint64_t key;
 300    int level;
 301
 302    for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
 303        key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
 304                                source_id, level);
 305        entry = g_hash_table_lookup(s->iotlb, &key);
 306        if (entry) {
 307            goto out;
 308        }
 309    }
 310
 311out:
 312    return entry;
 313}
 314
 315/* Must be with IOMMU lock held */
 316static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
 317                             uint16_t domain_id, hwaddr addr, uint64_t slpte,
 318                             uint8_t access_flags, uint32_t level)
 319{
 320    VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
 321    uint64_t *key = g_malloc(sizeof(*key));
 322    uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
 323
 324    trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
 325    if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
 326        trace_vtd_iotlb_reset("iotlb exceeds size limit");
 327        vtd_reset_iotlb_locked(s);
 328    }
 329
 330    entry->gfn = gfn;
 331    entry->domain_id = domain_id;
 332    entry->slpte = slpte;
 333    entry->access_flags = access_flags;
 334    entry->mask = vtd_slpt_level_page_mask(level);
 335    *key = vtd_get_iotlb_key(gfn, source_id, level);
 336    g_hash_table_replace(s->iotlb, key, entry);
 337}
 338
 339/* Given the reg addr of both the message data and address, generate an
 340 * interrupt via MSI.
 341 */
 342static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
 343                                   hwaddr mesg_data_reg)
 344{
 345    MSIMessage msi;
 346
 347    assert(mesg_data_reg < DMAR_REG_SIZE);
 348    assert(mesg_addr_reg < DMAR_REG_SIZE);
 349
 350    msi.address = vtd_get_long_raw(s, mesg_addr_reg);
 351    msi.data = vtd_get_long_raw(s, mesg_data_reg);
 352
 353    trace_vtd_irq_generate(msi.address, msi.data);
 354
 355    apic_get_class()->send_msi(&msi);
 356}
 357
 358/* Generate a fault event to software via MSI if conditions are met.
 359 * Notice that the value of FSTS_REG being passed to it should be the one
 360 * before any update.
 361 */
 362static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
 363{
 364    if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
 365        pre_fsts & VTD_FSTS_IQE) {
 366        error_report_once("There are previous interrupt conditions "
 367                          "to be serviced by software, fault event "
 368                          "is not generated");
 369        return;
 370    }
 371    vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
 372    if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
 373        error_report_once("Interrupt Mask set, irq is not generated");
 374    } else {
 375        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
 376        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
 377    }
 378}
 379
 380/* Check if the Fault (F) field of the Fault Recording Register referenced by
 381 * @index is Set.
 382 */
 383static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
 384{
 385    /* Each reg is 128-bit */
 386    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 387    addr += 8; /* Access the high 64-bit half */
 388
 389    assert(index < DMAR_FRCD_REG_NR);
 390
 391    return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
 392}
 393
 394/* Update the PPF field of Fault Status Register.
 395 * Should be called whenever change the F field of any fault recording
 396 * registers.
 397 */
 398static void vtd_update_fsts_ppf(IntelIOMMUState *s)
 399{
 400    uint32_t i;
 401    uint32_t ppf_mask = 0;
 402
 403    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 404        if (vtd_is_frcd_set(s, i)) {
 405            ppf_mask = VTD_FSTS_PPF;
 406            break;
 407        }
 408    }
 409    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
 410    trace_vtd_fsts_ppf(!!ppf_mask);
 411}
 412
 413static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
 414{
 415    /* Each reg is 128-bit */
 416    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 417    addr += 8; /* Access the high 64-bit half */
 418
 419    assert(index < DMAR_FRCD_REG_NR);
 420
 421    vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
 422    vtd_update_fsts_ppf(s);
 423}
 424
 425/* Must not update F field now, should be done later */
 426static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
 427                            uint16_t source_id, hwaddr addr,
 428                            VTDFaultReason fault, bool is_write)
 429{
 430    uint64_t hi = 0, lo;
 431    hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 432
 433    assert(index < DMAR_FRCD_REG_NR);
 434
 435    lo = VTD_FRCD_FI(addr);
 436    hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
 437    if (!is_write) {
 438        hi |= VTD_FRCD_T;
 439    }
 440    vtd_set_quad_raw(s, frcd_reg_addr, lo);
 441    vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
 442
 443    trace_vtd_frr_new(index, hi, lo);
 444}
 445
 446/* Try to collapse multiple pending faults from the same requester */
 447static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
 448{
 449    uint32_t i;
 450    uint64_t frcd_reg;
 451    hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
 452
 453    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 454        frcd_reg = vtd_get_quad_raw(s, addr);
 455        if ((frcd_reg & VTD_FRCD_F) &&
 456            ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
 457            return true;
 458        }
 459        addr += 16; /* 128-bit for each */
 460    }
 461    return false;
 462}
 463
 464/* Log and report an DMAR (address translation) fault to software */
 465static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
 466                                  hwaddr addr, VTDFaultReason fault,
 467                                  bool is_write)
 468{
 469    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 470
 471    assert(fault < VTD_FR_MAX);
 472
 473    if (fault == VTD_FR_RESERVED_ERR) {
 474        /* This is not a normal fault reason case. Drop it. */
 475        return;
 476    }
 477
 478    trace_vtd_dmar_fault(source_id, fault, addr, is_write);
 479
 480    if (fsts_reg & VTD_FSTS_PFO) {
 481        error_report_once("New fault is not recorded due to "
 482                          "Primary Fault Overflow");
 483        return;
 484    }
 485
 486    if (vtd_try_collapse_fault(s, source_id)) {
 487        error_report_once("New fault is not recorded due to "
 488                          "compression of faults");
 489        return;
 490    }
 491
 492    if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
 493        error_report_once("Next Fault Recording Reg is used, "
 494                          "new fault is not recorded, set PFO field");
 495        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
 496        return;
 497    }
 498
 499    vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
 500
 501    if (fsts_reg & VTD_FSTS_PPF) {
 502        error_report_once("There are pending faults already, "
 503                          "fault event is not generated");
 504        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
 505        s->next_frcd_reg++;
 506        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 507            s->next_frcd_reg = 0;
 508        }
 509    } else {
 510        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
 511                                VTD_FSTS_FRI(s->next_frcd_reg));
 512        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
 513        s->next_frcd_reg++;
 514        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 515            s->next_frcd_reg = 0;
 516        }
 517        /* This case actually cause the PPF to be Set.
 518         * So generate fault event (interrupt).
 519         */
 520         vtd_generate_fault_event(s, fsts_reg);
 521    }
 522}
 523
 524/* Handle Invalidation Queue Errors of queued invalidation interface error
 525 * conditions.
 526 */
 527static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
 528{
 529    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 530
 531    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
 532    vtd_generate_fault_event(s, fsts_reg);
 533}
 534
 535/* Set the IWC field and try to generate an invalidation completion interrupt */
 536static void vtd_generate_completion_event(IntelIOMMUState *s)
 537{
 538    if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
 539        trace_vtd_inv_desc_wait_irq("One pending, skip current");
 540        return;
 541    }
 542    vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
 543    vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
 544    if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
 545        trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
 546                                    "new event not generated");
 547        return;
 548    } else {
 549        /* Generate the interrupt event */
 550        trace_vtd_inv_desc_wait_irq("Generating complete event");
 551        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
 552        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
 553    }
 554}
 555
 556static inline bool vtd_root_entry_present(IntelIOMMUState *s,
 557                                          VTDRootEntry *re,
 558                                          uint8_t devfn)
 559{
 560    if (s->root_scalable && devfn > UINT8_MAX / 2) {
 561        return re->hi & VTD_ROOT_ENTRY_P;
 562    }
 563
 564    return re->lo & VTD_ROOT_ENTRY_P;
 565}
 566
 567static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
 568                              VTDRootEntry *re)
 569{
 570    dma_addr_t addr;
 571
 572    addr = s->root + index * sizeof(*re);
 573    if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
 574        re->lo = 0;
 575        return -VTD_FR_ROOT_TABLE_INV;
 576    }
 577    re->lo = le64_to_cpu(re->lo);
 578    re->hi = le64_to_cpu(re->hi);
 579    return 0;
 580}
 581
 582static inline bool vtd_ce_present(VTDContextEntry *context)
 583{
 584    return context->lo & VTD_CONTEXT_ENTRY_P;
 585}
 586
 587static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
 588                                           VTDRootEntry *re,
 589                                           uint8_t index,
 590                                           VTDContextEntry *ce)
 591{
 592    dma_addr_t addr, ce_size;
 593
 594    /* we have checked that root entry is present */
 595    ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
 596              VTD_CTX_ENTRY_LEGACY_SIZE;
 597
 598    if (s->root_scalable && index > UINT8_MAX / 2) {
 599        index = index & (~VTD_DEVFN_CHECK_MASK);
 600        addr = re->hi & VTD_ROOT_ENTRY_CTP;
 601    } else {
 602        addr = re->lo & VTD_ROOT_ENTRY_CTP;
 603    }
 604
 605    addr = addr + index * ce_size;
 606    if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
 607        return -VTD_FR_CONTEXT_TABLE_INV;
 608    }
 609
 610    ce->lo = le64_to_cpu(ce->lo);
 611    ce->hi = le64_to_cpu(ce->hi);
 612    if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
 613        ce->val[2] = le64_to_cpu(ce->val[2]);
 614        ce->val[3] = le64_to_cpu(ce->val[3]);
 615    }
 616    return 0;
 617}
 618
 619static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
 620{
 621    return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
 622}
 623
 624static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
 625{
 626    return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
 627}
 628
 629/* Whether the pte indicates the address of the page frame */
 630static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
 631{
 632    return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
 633}
 634
 635/* Get the content of a spte located in @base_addr[@index] */
 636static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
 637{
 638    uint64_t slpte;
 639
 640    assert(index < VTD_SL_PT_ENTRY_NR);
 641
 642    if (dma_memory_read(&address_space_memory,
 643                        base_addr + index * sizeof(slpte), &slpte,
 644                        sizeof(slpte))) {
 645        slpte = (uint64_t)-1;
 646        return slpte;
 647    }
 648    slpte = le64_to_cpu(slpte);
 649    return slpte;
 650}
 651
 652/* Given an iova and the level of paging structure, return the offset
 653 * of current level.
 654 */
 655static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
 656{
 657    return (iova >> vtd_slpt_level_shift(level)) &
 658            ((1ULL << VTD_SL_LEVEL_BITS) - 1);
 659}
 660
 661/* Check Capability Register to see if the @level of page-table is supported */
 662static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
 663{
 664    return VTD_CAP_SAGAW_MASK & s->cap &
 665           (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
 666}
 667
 668/* Return true if check passed, otherwise false */
 669static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
 670                                     VTDPASIDEntry *pe)
 671{
 672    switch (VTD_PE_GET_TYPE(pe)) {
 673    case VTD_SM_PASID_ENTRY_FLT:
 674    case VTD_SM_PASID_ENTRY_SLT:
 675    case VTD_SM_PASID_ENTRY_NESTED:
 676        break;
 677    case VTD_SM_PASID_ENTRY_PT:
 678        if (!x86_iommu->pt_supported) {
 679            return false;
 680        }
 681        break;
 682    default:
 683        /* Unknwon type */
 684        return false;
 685    }
 686    return true;
 687}
 688
 689static int vtd_get_pasid_dire(dma_addr_t pasid_dir_base,
 690                              uint32_t pasid,
 691                              VTDPASIDDirEntry *pdire)
 692{
 693    uint32_t index;
 694    dma_addr_t addr, entry_size;
 695
 696    index = VTD_PASID_DIR_INDEX(pasid);
 697    entry_size = VTD_PASID_DIR_ENTRY_SIZE;
 698    addr = pasid_dir_base + index * entry_size;
 699    if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
 700        return -VTD_FR_PASID_TABLE_INV;
 701    }
 702
 703    return 0;
 704}
 705
 706static int vtd_get_pasid_entry(IntelIOMMUState *s,
 707                               uint32_t pasid,
 708                               VTDPASIDDirEntry *pdire,
 709                               VTDPASIDEntry *pe)
 710{
 711    uint32_t index;
 712    dma_addr_t addr, entry_size;
 713    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
 714
 715    index = VTD_PASID_TABLE_INDEX(pasid);
 716    entry_size = VTD_PASID_ENTRY_SIZE;
 717    addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
 718    addr = addr + index * entry_size;
 719    if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
 720        return -VTD_FR_PASID_TABLE_INV;
 721    }
 722
 723    /* Do translation type check */
 724    if (!vtd_pe_type_check(x86_iommu, pe)) {
 725        return -VTD_FR_PASID_TABLE_INV;
 726    }
 727
 728    if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
 729        return -VTD_FR_PASID_TABLE_INV;
 730    }
 731
 732    return 0;
 733}
 734
 735static int vtd_get_pasid_entry_from_pasid(IntelIOMMUState *s,
 736                                          dma_addr_t pasid_dir_base,
 737                                          uint32_t pasid,
 738                                          VTDPASIDEntry *pe)
 739{
 740    int ret;
 741    VTDPASIDDirEntry pdire;
 742
 743    ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
 744    if (ret) {
 745        return ret;
 746    }
 747
 748    ret = vtd_get_pasid_entry(s, pasid, &pdire, pe);
 749    if (ret) {
 750        return ret;
 751    }
 752
 753    return ret;
 754}
 755
 756static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
 757                                      VTDContextEntry *ce,
 758                                      VTDPASIDEntry *pe)
 759{
 760    uint32_t pasid;
 761    dma_addr_t pasid_dir_base;
 762    int ret = 0;
 763
 764    pasid = VTD_CE_GET_RID2PASID(ce);
 765    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 766    ret = vtd_get_pasid_entry_from_pasid(s, pasid_dir_base, pasid, pe);
 767
 768    return ret;
 769}
 770
 771static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
 772                                VTDContextEntry *ce,
 773                                bool *pe_fpd_set)
 774{
 775    int ret;
 776    uint32_t pasid;
 777    dma_addr_t pasid_dir_base;
 778    VTDPASIDDirEntry pdire;
 779    VTDPASIDEntry pe;
 780
 781    pasid = VTD_CE_GET_RID2PASID(ce);
 782    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 783
 784    ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
 785    if (ret) {
 786        return ret;
 787    }
 788
 789    if (pdire.val & VTD_PASID_DIR_FPD) {
 790        *pe_fpd_set = true;
 791        return 0;
 792    }
 793
 794    ret = vtd_get_pasid_entry(s, pasid, &pdire, &pe);
 795    if (ret) {
 796        return ret;
 797    }
 798
 799    if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
 800        *pe_fpd_set = true;
 801    }
 802
 803    return 0;
 804}
 805
 806/* Get the page-table level that hardware should use for the second-level
 807 * page-table walk from the Address Width field of context-entry.
 808 */
 809static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
 810{
 811    return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
 812}
 813
 814static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
 815                                   VTDContextEntry *ce)
 816{
 817    VTDPASIDEntry pe;
 818
 819    if (s->root_scalable) {
 820        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 821        return VTD_PE_GET_LEVEL(&pe);
 822    }
 823
 824    return vtd_ce_get_level(ce);
 825}
 826
 827static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
 828{
 829    return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
 830}
 831
 832static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
 833                                  VTDContextEntry *ce)
 834{
 835    VTDPASIDEntry pe;
 836
 837    if (s->root_scalable) {
 838        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 839        return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
 840    }
 841
 842    return vtd_ce_get_agaw(ce);
 843}
 844
 845static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
 846{
 847    return ce->lo & VTD_CONTEXT_ENTRY_TT;
 848}
 849
 850/* Only for Legacy Mode. Return true if check passed, otherwise false */
 851static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
 852                                     VTDContextEntry *ce)
 853{
 854    switch (vtd_ce_get_type(ce)) {
 855    case VTD_CONTEXT_TT_MULTI_LEVEL:
 856        /* Always supported */
 857        break;
 858    case VTD_CONTEXT_TT_DEV_IOTLB:
 859        if (!x86_iommu->dt_supported) {
 860            error_report_once("%s: DT specified but not supported", __func__);
 861            return false;
 862        }
 863        break;
 864    case VTD_CONTEXT_TT_PASS_THROUGH:
 865        if (!x86_iommu->pt_supported) {
 866            error_report_once("%s: PT specified but not supported", __func__);
 867            return false;
 868        }
 869        break;
 870    default:
 871        /* Unknown type */
 872        error_report_once("%s: unknown ce type: %"PRIu32, __func__,
 873                          vtd_ce_get_type(ce));
 874        return false;
 875    }
 876    return true;
 877}
 878
 879static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
 880                                      VTDContextEntry *ce, uint8_t aw)
 881{
 882    uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
 883    return 1ULL << MIN(ce_agaw, aw);
 884}
 885
 886/* Return true if IOVA passes range check, otherwise false. */
 887static inline bool vtd_iova_range_check(IntelIOMMUState *s,
 888                                        uint64_t iova, VTDContextEntry *ce,
 889                                        uint8_t aw)
 890{
 891    /*
 892     * Check if @iova is above 2^X-1, where X is the minimum of MGAW
 893     * in CAP_REG and AW in context-entry.
 894     */
 895    return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
 896}
 897
 898static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
 899                                          VTDContextEntry *ce)
 900{
 901    VTDPASIDEntry pe;
 902
 903    if (s->root_scalable) {
 904        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 905        return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
 906    }
 907
 908    return vtd_ce_get_slpt_base(ce);
 909}
 910
 911/*
 912 * Rsvd field masks for spte:
 913 *     vtd_spte_rsvd 4k pages
 914 *     vtd_spte_rsvd_large large pages
 915 */
 916static uint64_t vtd_spte_rsvd[5];
 917static uint64_t vtd_spte_rsvd_large[5];
 918
 919static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
 920{
 921    uint64_t rsvd_mask = vtd_spte_rsvd[level];
 922
 923    if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
 924        (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
 925        /* large page */
 926        rsvd_mask = vtd_spte_rsvd_large[level];
 927    }
 928
 929    return slpte & rsvd_mask;
 930}
 931
 932/* Find the VTD address space associated with a given bus number */
 933static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
 934{
 935    VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
 936    if (!vtd_bus) {
 937        /*
 938         * Iterate over the registered buses to find the one which
 939         * currently hold this bus number, and update the bus_num
 940         * lookup table:
 941         */
 942        GHashTableIter iter;
 943
 944        g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
 945        while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
 946            if (pci_bus_num(vtd_bus->bus) == bus_num) {
 947                s->vtd_as_by_bus_num[bus_num] = vtd_bus;
 948                return vtd_bus;
 949            }
 950        }
 951    }
 952    return vtd_bus;
 953}
 954
 955/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
 956 * of the translation, can be used for deciding the size of large page.
 957 */
 958static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
 959                             uint64_t iova, bool is_write,
 960                             uint64_t *slptep, uint32_t *slpte_level,
 961                             bool *reads, bool *writes, uint8_t aw_bits)
 962{
 963    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
 964    uint32_t level = vtd_get_iova_level(s, ce);
 965    uint32_t offset;
 966    uint64_t slpte;
 967    uint64_t access_right_check;
 968
 969    if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
 970        error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
 971                          __func__, iova);
 972        return -VTD_FR_ADDR_BEYOND_MGAW;
 973    }
 974
 975    /* FIXME: what is the Atomics request here? */
 976    access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
 977
 978    while (true) {
 979        offset = vtd_iova_level_offset(iova, level);
 980        slpte = vtd_get_slpte(addr, offset);
 981
 982        if (slpte == (uint64_t)-1) {
 983            error_report_once("%s: detected read error on DMAR slpte "
 984                              "(iova=0x%" PRIx64 ")", __func__, iova);
 985            if (level == vtd_get_iova_level(s, ce)) {
 986                /* Invalid programming of context-entry */
 987                return -VTD_FR_CONTEXT_ENTRY_INV;
 988            } else {
 989                return -VTD_FR_PAGING_ENTRY_INV;
 990            }
 991        }
 992        *reads = (*reads) && (slpte & VTD_SL_R);
 993        *writes = (*writes) && (slpte & VTD_SL_W);
 994        if (!(slpte & access_right_check)) {
 995            error_report_once("%s: detected slpte permission error "
 996                              "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
 997                              "slpte=0x%" PRIx64 ", write=%d)", __func__,
 998                              iova, level, slpte, is_write);
 999            return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1000        }
1001        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1002            error_report_once("%s: detected splte reserve non-zero "
1003                              "iova=0x%" PRIx64 ", level=0x%" PRIx32
1004                              "slpte=0x%" PRIx64 ")", __func__, iova,
1005                              level, slpte);
1006            return -VTD_FR_PAGING_ENTRY_RSVD;
1007        }
1008
1009        if (vtd_is_last_slpte(slpte, level)) {
1010            *slptep = slpte;
1011            *slpte_level = level;
1012            return 0;
1013        }
1014        addr = vtd_get_slpte_addr(slpte, aw_bits);
1015        level--;
1016    }
1017}
1018
1019typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
1020
1021/**
1022 * Constant information used during page walking
1023 *
1024 * @hook_fn: hook func to be called when detected page
1025 * @private: private data to be passed into hook func
1026 * @notify_unmap: whether we should notify invalid entries
1027 * @as: VT-d address space of the device
1028 * @aw: maximum address width
1029 * @domain: domain ID of the page walk
1030 */
1031typedef struct {
1032    VTDAddressSpace *as;
1033    vtd_page_walk_hook hook_fn;
1034    void *private;
1035    bool notify_unmap;
1036    uint8_t aw;
1037    uint16_t domain_id;
1038} vtd_page_walk_info;
1039
1040static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
1041{
1042    VTDAddressSpace *as = info->as;
1043    vtd_page_walk_hook hook_fn = info->hook_fn;
1044    void *private = info->private;
1045    DMAMap target = {
1046        .iova = entry->iova,
1047        .size = entry->addr_mask,
1048        .translated_addr = entry->translated_addr,
1049        .perm = entry->perm,
1050    };
1051    DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1052
1053    if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
1054        trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1055        return 0;
1056    }
1057
1058    assert(hook_fn);
1059
1060    /* Update local IOVA mapped ranges */
1061    if (entry->perm) {
1062        if (mapped) {
1063            /* If it's exactly the same translation, skip */
1064            if (!memcmp(mapped, &target, sizeof(target))) {
1065                trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1066                                                 entry->translated_addr);
1067                return 0;
1068            } else {
1069                /*
1070                 * Translation changed.  Normally this should not
1071                 * happen, but it can happen when with buggy guest
1072                 * OSes.  Note that there will be a small window that
1073                 * we don't have map at all.  But that's the best
1074                 * effort we can do.  The ideal way to emulate this is
1075                 * atomically modify the PTE to follow what has
1076                 * changed, but we can't.  One example is that vfio
1077                 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1078                 * interface to modify a mapping (meanwhile it seems
1079                 * meaningless to even provide one).  Anyway, let's
1080                 * mark this as a TODO in case one day we'll have
1081                 * a better solution.
1082                 */
1083                IOMMUAccessFlags cache_perm = entry->perm;
1084                int ret;
1085
1086                /* Emulate an UNMAP */
1087                entry->perm = IOMMU_NONE;
1088                trace_vtd_page_walk_one(info->domain_id,
1089                                        entry->iova,
1090                                        entry->translated_addr,
1091                                        entry->addr_mask,
1092                                        entry->perm);
1093                ret = hook_fn(entry, private);
1094                if (ret) {
1095                    return ret;
1096                }
1097                /* Drop any existing mapping */
1098                iova_tree_remove(as->iova_tree, &target);
1099                /* Recover the correct permission */
1100                entry->perm = cache_perm;
1101            }
1102        }
1103        iova_tree_insert(as->iova_tree, &target);
1104    } else {
1105        if (!mapped) {
1106            /* Skip since we didn't map this range at all */
1107            trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1108            return 0;
1109        }
1110        iova_tree_remove(as->iova_tree, &target);
1111    }
1112
1113    trace_vtd_page_walk_one(info->domain_id, entry->iova,
1114                            entry->translated_addr, entry->addr_mask,
1115                            entry->perm);
1116    return hook_fn(entry, private);
1117}
1118
1119/**
1120 * vtd_page_walk_level - walk over specific level for IOVA range
1121 *
1122 * @addr: base GPA addr to start the walk
1123 * @start: IOVA range start address
1124 * @end: IOVA range end address (start <= addr < end)
1125 * @read: whether parent level has read permission
1126 * @write: whether parent level has write permission
1127 * @info: constant information for the page walk
1128 */
1129static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1130                               uint64_t end, uint32_t level, bool read,
1131                               bool write, vtd_page_walk_info *info)
1132{
1133    bool read_cur, write_cur, entry_valid;
1134    uint32_t offset;
1135    uint64_t slpte;
1136    uint64_t subpage_size, subpage_mask;
1137    IOMMUTLBEntry entry;
1138    uint64_t iova = start;
1139    uint64_t iova_next;
1140    int ret = 0;
1141
1142    trace_vtd_page_walk_level(addr, level, start, end);
1143
1144    subpage_size = 1ULL << vtd_slpt_level_shift(level);
1145    subpage_mask = vtd_slpt_level_page_mask(level);
1146
1147    while (iova < end) {
1148        iova_next = (iova & subpage_mask) + subpage_size;
1149
1150        offset = vtd_iova_level_offset(iova, level);
1151        slpte = vtd_get_slpte(addr, offset);
1152
1153        if (slpte == (uint64_t)-1) {
1154            trace_vtd_page_walk_skip_read(iova, iova_next);
1155            goto next;
1156        }
1157
1158        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1159            trace_vtd_page_walk_skip_reserve(iova, iova_next);
1160            goto next;
1161        }
1162
1163        /* Permissions are stacked with parents' */
1164        read_cur = read && (slpte & VTD_SL_R);
1165        write_cur = write && (slpte & VTD_SL_W);
1166
1167        /*
1168         * As long as we have either read/write permission, this is a
1169         * valid entry. The rule works for both page entries and page
1170         * table entries.
1171         */
1172        entry_valid = read_cur | write_cur;
1173
1174        if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1175            /*
1176             * This is a valid PDE (or even bigger than PDE).  We need
1177             * to walk one further level.
1178             */
1179            ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1180                                      iova, MIN(iova_next, end), level - 1,
1181                                      read_cur, write_cur, info);
1182        } else {
1183            /*
1184             * This means we are either:
1185             *
1186             * (1) the real page entry (either 4K page, or huge page)
1187             * (2) the whole range is invalid
1188             *
1189             * In either case, we send an IOTLB notification down.
1190             */
1191            entry.target_as = &address_space_memory;
1192            entry.iova = iova & subpage_mask;
1193            entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1194            entry.addr_mask = ~subpage_mask;
1195            /* NOTE: this is only meaningful if entry_valid == true */
1196            entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1197            ret = vtd_page_walk_one(&entry, info);
1198        }
1199
1200        if (ret < 0) {
1201            return ret;
1202        }
1203
1204next:
1205        iova = iova_next;
1206    }
1207
1208    return 0;
1209}
1210
1211/**
1212 * vtd_page_walk - walk specific IOVA range, and call the hook
1213 *
1214 * @s: intel iommu state
1215 * @ce: context entry to walk upon
1216 * @start: IOVA address to start the walk
1217 * @end: IOVA range end address (start <= addr < end)
1218 * @info: page walking information struct
1219 */
1220static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1221                         uint64_t start, uint64_t end,
1222                         vtd_page_walk_info *info)
1223{
1224    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1225    uint32_t level = vtd_get_iova_level(s, ce);
1226
1227    if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1228        return -VTD_FR_ADDR_BEYOND_MGAW;
1229    }
1230
1231    if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1232        /* Fix end so that it reaches the maximum */
1233        end = vtd_iova_limit(s, ce, info->aw);
1234    }
1235
1236    return vtd_page_walk_level(addr, start, end, level, true, true, info);
1237}
1238
1239static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1240                                          VTDRootEntry *re)
1241{
1242    /* Legacy Mode reserved bits check */
1243    if (!s->root_scalable &&
1244        (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1245        goto rsvd_err;
1246
1247    /* Scalable Mode reserved bits check */
1248    if (s->root_scalable &&
1249        ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1250         (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1251        goto rsvd_err;
1252
1253    return 0;
1254
1255rsvd_err:
1256    error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1257                      ", lo=0x%"PRIx64,
1258                      __func__, re->hi, re->lo);
1259    return -VTD_FR_ROOT_ENTRY_RSVD;
1260}
1261
1262static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1263                                                    VTDContextEntry *ce)
1264{
1265    if (!s->root_scalable &&
1266        (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1267         ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1268        error_report_once("%s: invalid context entry: hi=%"PRIx64
1269                          ", lo=%"PRIx64" (reserved nonzero)",
1270                          __func__, ce->hi, ce->lo);
1271        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1272    }
1273
1274    if (s->root_scalable &&
1275        (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1276         ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1277         ce->val[2] ||
1278         ce->val[3])) {
1279        error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1280                          ", val[2]=%"PRIx64
1281                          ", val[1]=%"PRIx64
1282                          ", val[0]=%"PRIx64" (reserved nonzero)",
1283                          __func__, ce->val[3], ce->val[2],
1284                          ce->val[1], ce->val[0]);
1285        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1286    }
1287
1288    return 0;
1289}
1290
1291static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1292                                  VTDContextEntry *ce)
1293{
1294    VTDPASIDEntry pe;
1295
1296    /*
1297     * Make sure in Scalable Mode, a present context entry
1298     * has valid rid2pasid setting, which includes valid
1299     * rid2pasid field and corresponding pasid entry setting
1300     */
1301    return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1302}
1303
1304/* Map a device to its corresponding domain (context-entry) */
1305static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1306                                    uint8_t devfn, VTDContextEntry *ce)
1307{
1308    VTDRootEntry re;
1309    int ret_fr;
1310    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1311
1312    ret_fr = vtd_get_root_entry(s, bus_num, &re);
1313    if (ret_fr) {
1314        return ret_fr;
1315    }
1316
1317    if (!vtd_root_entry_present(s, &re, devfn)) {
1318        /* Not error - it's okay we don't have root entry. */
1319        trace_vtd_re_not_present(bus_num);
1320        return -VTD_FR_ROOT_ENTRY_P;
1321    }
1322
1323    ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1324    if (ret_fr) {
1325        return ret_fr;
1326    }
1327
1328    ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1329    if (ret_fr) {
1330        return ret_fr;
1331    }
1332
1333    if (!vtd_ce_present(ce)) {
1334        /* Not error - it's okay we don't have context entry. */
1335        trace_vtd_ce_not_present(bus_num, devfn);
1336        return -VTD_FR_CONTEXT_ENTRY_P;
1337    }
1338
1339    ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1340    if (ret_fr) {
1341        return ret_fr;
1342    }
1343
1344    /* Check if the programming of context-entry is valid */
1345    if (!s->root_scalable &&
1346        !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1347        error_report_once("%s: invalid context entry: hi=%"PRIx64
1348                          ", lo=%"PRIx64" (level %d not supported)",
1349                          __func__, ce->hi, ce->lo,
1350                          vtd_ce_get_level(ce));
1351        return -VTD_FR_CONTEXT_ENTRY_INV;
1352    }
1353
1354    if (!s->root_scalable) {
1355        /* Do translation type check */
1356        if (!vtd_ce_type_check(x86_iommu, ce)) {
1357            /* Errors dumped in vtd_ce_type_check() */
1358            return -VTD_FR_CONTEXT_ENTRY_INV;
1359        }
1360    } else {
1361        /*
1362         * Check if the programming of context-entry.rid2pasid
1363         * and corresponding pasid setting is valid, and thus
1364         * avoids to check pasid entry fetching result in future
1365         * helper function calling.
1366         */
1367        ret_fr = vtd_ce_rid2pasid_check(s, ce);
1368        if (ret_fr) {
1369            return ret_fr;
1370        }
1371    }
1372
1373    return 0;
1374}
1375
1376static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1377                                     void *private)
1378{
1379    memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1380    return 0;
1381}
1382
1383static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1384                                  VTDContextEntry *ce)
1385{
1386    VTDPASIDEntry pe;
1387
1388    if (s->root_scalable) {
1389        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1390        return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1391    }
1392
1393    return VTD_CONTEXT_ENTRY_DID(ce->hi);
1394}
1395
1396static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1397                                            VTDContextEntry *ce,
1398                                            hwaddr addr, hwaddr size)
1399{
1400    IntelIOMMUState *s = vtd_as->iommu_state;
1401    vtd_page_walk_info info = {
1402        .hook_fn = vtd_sync_shadow_page_hook,
1403        .private = (void *)&vtd_as->iommu,
1404        .notify_unmap = true,
1405        .aw = s->aw_bits,
1406        .as = vtd_as,
1407        .domain_id = vtd_get_domain_id(s, ce),
1408    };
1409
1410    return vtd_page_walk(s, ce, addr, addr + size, &info);
1411}
1412
1413static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1414{
1415    int ret;
1416    VTDContextEntry ce;
1417    IOMMUNotifier *n;
1418
1419    ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1420                                   pci_bus_num(vtd_as->bus),
1421                                   vtd_as->devfn, &ce);
1422    if (ret) {
1423        if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1424            /*
1425             * It's a valid scenario to have a context entry that is
1426             * not present.  For example, when a device is removed
1427             * from an existing domain then the context entry will be
1428             * zeroed by the guest before it was put into another
1429             * domain.  When this happens, instead of synchronizing
1430             * the shadow pages we should invalidate all existing
1431             * mappings and notify the backends.
1432             */
1433            IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1434                vtd_address_space_unmap(vtd_as, n);
1435            }
1436            ret = 0;
1437        }
1438        return ret;
1439    }
1440
1441    return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1442}
1443
1444/*
1445 * Check if specific device is configed to bypass address
1446 * translation for DMA requests. In Scalable Mode, bypass
1447 * 1st-level translation or 2nd-level translation, it depends
1448 * on PGTT setting.
1449 */
1450static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1451{
1452    IntelIOMMUState *s;
1453    VTDContextEntry ce;
1454    VTDPASIDEntry pe;
1455    int ret;
1456
1457    assert(as);
1458
1459    s = as->iommu_state;
1460    ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1461                                   as->devfn, &ce);
1462    if (ret) {
1463        /*
1464         * Possibly failed to parse the context entry for some reason
1465         * (e.g., during init, or any guest configuration errors on
1466         * context entries). We should assume PT not enabled for
1467         * safety.
1468         */
1469        return false;
1470    }
1471
1472    if (s->root_scalable) {
1473        ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1474        if (ret) {
1475            error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1476                              __func__, ret);
1477            return false;
1478        }
1479        return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1480    }
1481
1482    return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1483}
1484
1485/* Return whether the device is using IOMMU translation. */
1486static bool vtd_switch_address_space(VTDAddressSpace *as)
1487{
1488    bool use_iommu;
1489    /* Whether we need to take the BQL on our own */
1490    bool take_bql = !qemu_mutex_iothread_locked();
1491
1492    assert(as);
1493
1494    use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1495
1496    trace_vtd_switch_address_space(pci_bus_num(as->bus),
1497                                   VTD_PCI_SLOT(as->devfn),
1498                                   VTD_PCI_FUNC(as->devfn),
1499                                   use_iommu);
1500
1501    /*
1502     * It's possible that we reach here without BQL, e.g., when called
1503     * from vtd_pt_enable_fast_path(). However the memory APIs need
1504     * it. We'd better make sure we have had it already, or, take it.
1505     */
1506    if (take_bql) {
1507        qemu_mutex_lock_iothread();
1508    }
1509
1510    /* Turn off first then on the other */
1511    if (use_iommu) {
1512        memory_region_set_enabled(&as->nodmar, false);
1513        memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1514    } else {
1515        memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1516        memory_region_set_enabled(&as->nodmar, true);
1517    }
1518
1519    if (take_bql) {
1520        qemu_mutex_unlock_iothread();
1521    }
1522
1523    return use_iommu;
1524}
1525
1526static void vtd_switch_address_space_all(IntelIOMMUState *s)
1527{
1528    GHashTableIter iter;
1529    VTDBus *vtd_bus;
1530    int i;
1531
1532    g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1533    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1534        for (i = 0; i < PCI_DEVFN_MAX; i++) {
1535            if (!vtd_bus->dev_as[i]) {
1536                continue;
1537            }
1538            vtd_switch_address_space(vtd_bus->dev_as[i]);
1539        }
1540    }
1541}
1542
1543static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1544{
1545    return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1546}
1547
1548static const bool vtd_qualified_faults[] = {
1549    [VTD_FR_RESERVED] = false,
1550    [VTD_FR_ROOT_ENTRY_P] = false,
1551    [VTD_FR_CONTEXT_ENTRY_P] = true,
1552    [VTD_FR_CONTEXT_ENTRY_INV] = true,
1553    [VTD_FR_ADDR_BEYOND_MGAW] = true,
1554    [VTD_FR_WRITE] = true,
1555    [VTD_FR_READ] = true,
1556    [VTD_FR_PAGING_ENTRY_INV] = true,
1557    [VTD_FR_ROOT_TABLE_INV] = false,
1558    [VTD_FR_CONTEXT_TABLE_INV] = false,
1559    [VTD_FR_ROOT_ENTRY_RSVD] = false,
1560    [VTD_FR_PAGING_ENTRY_RSVD] = true,
1561    [VTD_FR_CONTEXT_ENTRY_TT] = true,
1562    [VTD_FR_PASID_TABLE_INV] = false,
1563    [VTD_FR_RESERVED_ERR] = false,
1564    [VTD_FR_MAX] = false,
1565};
1566
1567/* To see if a fault condition is "qualified", which is reported to software
1568 * only if the FPD field in the context-entry used to process the faulting
1569 * request is 0.
1570 */
1571static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1572{
1573    return vtd_qualified_faults[fault];
1574}
1575
1576static inline bool vtd_is_interrupt_addr(hwaddr addr)
1577{
1578    return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1579}
1580
1581static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1582{
1583    VTDBus *vtd_bus;
1584    VTDAddressSpace *vtd_as;
1585    bool success = false;
1586
1587    vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1588    if (!vtd_bus) {
1589        goto out;
1590    }
1591
1592    vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1593    if (!vtd_as) {
1594        goto out;
1595    }
1596
1597    if (vtd_switch_address_space(vtd_as) == false) {
1598        /* We switched off IOMMU region successfully. */
1599        success = true;
1600    }
1601
1602out:
1603    trace_vtd_pt_enable_fast_path(source_id, success);
1604}
1605
1606/* Map dev to context-entry then do a paging-structures walk to do a iommu
1607 * translation.
1608 *
1609 * Called from RCU critical section.
1610 *
1611 * @bus_num: The bus number
1612 * @devfn: The devfn, which is the  combined of device and function number
1613 * @is_write: The access is a write operation
1614 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1615 *
1616 * Returns true if translation is successful, otherwise false.
1617 */
1618static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1619                                   uint8_t devfn, hwaddr addr, bool is_write,
1620                                   IOMMUTLBEntry *entry)
1621{
1622    IntelIOMMUState *s = vtd_as->iommu_state;
1623    VTDContextEntry ce;
1624    uint8_t bus_num = pci_bus_num(bus);
1625    VTDContextCacheEntry *cc_entry;
1626    uint64_t slpte, page_mask;
1627    uint32_t level;
1628    uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1629    int ret_fr;
1630    bool is_fpd_set = false;
1631    bool reads = true;
1632    bool writes = true;
1633    uint8_t access_flags;
1634    VTDIOTLBEntry *iotlb_entry;
1635
1636    /*
1637     * We have standalone memory region for interrupt addresses, we
1638     * should never receive translation requests in this region.
1639     */
1640    assert(!vtd_is_interrupt_addr(addr));
1641
1642    vtd_iommu_lock(s);
1643
1644    cc_entry = &vtd_as->context_cache_entry;
1645
1646    /* Try to fetch slpte form IOTLB */
1647    iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1648    if (iotlb_entry) {
1649        trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1650                                 iotlb_entry->domain_id);
1651        slpte = iotlb_entry->slpte;
1652        access_flags = iotlb_entry->access_flags;
1653        page_mask = iotlb_entry->mask;
1654        goto out;
1655    }
1656
1657    /* Try to fetch context-entry from cache first */
1658    if (cc_entry->context_cache_gen == s->context_cache_gen) {
1659        trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1660                               cc_entry->context_entry.lo,
1661                               cc_entry->context_cache_gen);
1662        ce = cc_entry->context_entry;
1663        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1664        if (!is_fpd_set && s->root_scalable) {
1665            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1666            VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1667        }
1668    } else {
1669        ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1670        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1671        if (!ret_fr && !is_fpd_set && s->root_scalable) {
1672            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1673        }
1674        VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1675        /* Update context-cache */
1676        trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1677                                  cc_entry->context_cache_gen,
1678                                  s->context_cache_gen);
1679        cc_entry->context_entry = ce;
1680        cc_entry->context_cache_gen = s->context_cache_gen;
1681    }
1682
1683    /*
1684     * We don't need to translate for pass-through context entries.
1685     * Also, let's ignore IOTLB caching as well for PT devices.
1686     */
1687    if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1688        entry->iova = addr & VTD_PAGE_MASK_4K;
1689        entry->translated_addr = entry->iova;
1690        entry->addr_mask = ~VTD_PAGE_MASK_4K;
1691        entry->perm = IOMMU_RW;
1692        trace_vtd_translate_pt(source_id, entry->iova);
1693
1694        /*
1695         * When this happens, it means firstly caching-mode is not
1696         * enabled, and this is the first passthrough translation for
1697         * the device. Let's enable the fast path for passthrough.
1698         *
1699         * When passthrough is disabled again for the device, we can
1700         * capture it via the context entry invalidation, then the
1701         * IOMMU region can be swapped back.
1702         */
1703        vtd_pt_enable_fast_path(s, source_id);
1704        vtd_iommu_unlock(s);
1705        return true;
1706    }
1707
1708    ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1709                               &reads, &writes, s->aw_bits);
1710    VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1711
1712    page_mask = vtd_slpt_level_page_mask(level);
1713    access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1714    vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1715                     access_flags, level);
1716out:
1717    vtd_iommu_unlock(s);
1718    entry->iova = addr & page_mask;
1719    entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1720    entry->addr_mask = ~page_mask;
1721    entry->perm = access_flags;
1722    return true;
1723
1724error:
1725    vtd_iommu_unlock(s);
1726    entry->iova = 0;
1727    entry->translated_addr = 0;
1728    entry->addr_mask = 0;
1729    entry->perm = IOMMU_NONE;
1730    return false;
1731}
1732
1733static void vtd_root_table_setup(IntelIOMMUState *s)
1734{
1735    s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1736    s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1737
1738    vtd_update_scalable_state(s);
1739
1740    trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1741}
1742
1743static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1744                               uint32_t index, uint32_t mask)
1745{
1746    x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1747}
1748
1749static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1750{
1751    uint64_t value = 0;
1752    value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1753    s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1754    s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1755    s->intr_eime = value & VTD_IRTA_EIME;
1756
1757    /* Notify global invalidation */
1758    vtd_iec_notify_all(s, true, 0, 0);
1759
1760    trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1761}
1762
1763static void vtd_iommu_replay_all(IntelIOMMUState *s)
1764{
1765    VTDAddressSpace *vtd_as;
1766
1767    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1768        vtd_sync_shadow_page_table(vtd_as);
1769    }
1770}
1771
1772static void vtd_context_global_invalidate(IntelIOMMUState *s)
1773{
1774    trace_vtd_inv_desc_cc_global();
1775    /* Protects context cache */
1776    vtd_iommu_lock(s);
1777    s->context_cache_gen++;
1778    if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1779        vtd_reset_context_cache_locked(s);
1780    }
1781    vtd_iommu_unlock(s);
1782    vtd_address_space_refresh_all(s);
1783    /*
1784     * From VT-d spec 6.5.2.1, a global context entry invalidation
1785     * should be followed by a IOTLB global invalidation, so we should
1786     * be safe even without this. Hoewever, let's replay the region as
1787     * well to be safer, and go back here when we need finer tunes for
1788     * VT-d emulation codes.
1789     */
1790    vtd_iommu_replay_all(s);
1791}
1792
1793/* Do a context-cache device-selective invalidation.
1794 * @func_mask: FM field after shifting
1795 */
1796static void vtd_context_device_invalidate(IntelIOMMUState *s,
1797                                          uint16_t source_id,
1798                                          uint16_t func_mask)
1799{
1800    uint16_t mask;
1801    VTDBus *vtd_bus;
1802    VTDAddressSpace *vtd_as;
1803    uint8_t bus_n, devfn;
1804    uint16_t devfn_it;
1805
1806    trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1807
1808    switch (func_mask & 3) {
1809    case 0:
1810        mask = 0;   /* No bits in the SID field masked */
1811        break;
1812    case 1:
1813        mask = 4;   /* Mask bit 2 in the SID field */
1814        break;
1815    case 2:
1816        mask = 6;   /* Mask bit 2:1 in the SID field */
1817        break;
1818    case 3:
1819        mask = 7;   /* Mask bit 2:0 in the SID field */
1820        break;
1821    }
1822    mask = ~mask;
1823
1824    bus_n = VTD_SID_TO_BUS(source_id);
1825    vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1826    if (vtd_bus) {
1827        devfn = VTD_SID_TO_DEVFN(source_id);
1828        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1829            vtd_as = vtd_bus->dev_as[devfn_it];
1830            if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1831                trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1832                                             VTD_PCI_FUNC(devfn_it));
1833                vtd_iommu_lock(s);
1834                vtd_as->context_cache_entry.context_cache_gen = 0;
1835                vtd_iommu_unlock(s);
1836                /*
1837                 * Do switch address space when needed, in case if the
1838                 * device passthrough bit is switched.
1839                 */
1840                vtd_switch_address_space(vtd_as);
1841                /*
1842                 * So a device is moving out of (or moving into) a
1843                 * domain, resync the shadow page table.
1844                 * This won't bring bad even if we have no such
1845                 * notifier registered - the IOMMU notification
1846                 * framework will skip MAP notifications if that
1847                 * happened.
1848                 */
1849                vtd_sync_shadow_page_table(vtd_as);
1850            }
1851        }
1852    }
1853}
1854
1855/* Context-cache invalidation
1856 * Returns the Context Actual Invalidation Granularity.
1857 * @val: the content of the CCMD_REG
1858 */
1859static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1860{
1861    uint64_t caig;
1862    uint64_t type = val & VTD_CCMD_CIRG_MASK;
1863
1864    switch (type) {
1865    case VTD_CCMD_DOMAIN_INVL:
1866        /* Fall through */
1867    case VTD_CCMD_GLOBAL_INVL:
1868        caig = VTD_CCMD_GLOBAL_INVL_A;
1869        vtd_context_global_invalidate(s);
1870        break;
1871
1872    case VTD_CCMD_DEVICE_INVL:
1873        caig = VTD_CCMD_DEVICE_INVL_A;
1874        vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1875        break;
1876
1877    default:
1878        error_report_once("%s: invalid context: 0x%" PRIx64,
1879                          __func__, val);
1880        caig = 0;
1881    }
1882    return caig;
1883}
1884
1885static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1886{
1887    trace_vtd_inv_desc_iotlb_global();
1888    vtd_reset_iotlb(s);
1889    vtd_iommu_replay_all(s);
1890}
1891
1892static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1893{
1894    VTDContextEntry ce;
1895    VTDAddressSpace *vtd_as;
1896
1897    trace_vtd_inv_desc_iotlb_domain(domain_id);
1898
1899    vtd_iommu_lock(s);
1900    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1901                                &domain_id);
1902    vtd_iommu_unlock(s);
1903
1904    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1905        if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1906                                      vtd_as->devfn, &ce) &&
1907            domain_id == vtd_get_domain_id(s, &ce)) {
1908            vtd_sync_shadow_page_table(vtd_as);
1909        }
1910    }
1911}
1912
1913static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1914                                           uint16_t domain_id, hwaddr addr,
1915                                           uint8_t am)
1916{
1917    VTDAddressSpace *vtd_as;
1918    VTDContextEntry ce;
1919    int ret;
1920    hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1921
1922    QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1923        ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1924                                       vtd_as->devfn, &ce);
1925        if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1926            if (vtd_as_has_map_notifier(vtd_as)) {
1927                /*
1928                 * As long as we have MAP notifications registered in
1929                 * any of our IOMMU notifiers, we need to sync the
1930                 * shadow page table.
1931                 */
1932                vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1933            } else {
1934                /*
1935                 * For UNMAP-only notifiers, we don't need to walk the
1936                 * page tables.  We just deliver the PSI down to
1937                 * invalidate caches.
1938                 */
1939                IOMMUTLBEntry entry = {
1940                    .target_as = &address_space_memory,
1941                    .iova = addr,
1942                    .translated_addr = 0,
1943                    .addr_mask = size - 1,
1944                    .perm = IOMMU_NONE,
1945                };
1946                memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1947            }
1948        }
1949    }
1950}
1951
1952static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1953                                      hwaddr addr, uint8_t am)
1954{
1955    VTDIOTLBPageInvInfo info;
1956
1957    trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1958
1959    assert(am <= VTD_MAMV);
1960    info.domain_id = domain_id;
1961    info.addr = addr;
1962    info.mask = ~((1 << am) - 1);
1963    vtd_iommu_lock(s);
1964    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1965    vtd_iommu_unlock(s);
1966    vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1967}
1968
1969/* Flush IOTLB
1970 * Returns the IOTLB Actual Invalidation Granularity.
1971 * @val: the content of the IOTLB_REG
1972 */
1973static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1974{
1975    uint64_t iaig;
1976    uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1977    uint16_t domain_id;
1978    hwaddr addr;
1979    uint8_t am;
1980
1981    switch (type) {
1982    case VTD_TLB_GLOBAL_FLUSH:
1983        iaig = VTD_TLB_GLOBAL_FLUSH_A;
1984        vtd_iotlb_global_invalidate(s);
1985        break;
1986
1987    case VTD_TLB_DSI_FLUSH:
1988        domain_id = VTD_TLB_DID(val);
1989        iaig = VTD_TLB_DSI_FLUSH_A;
1990        vtd_iotlb_domain_invalidate(s, domain_id);
1991        break;
1992
1993    case VTD_TLB_PSI_FLUSH:
1994        domain_id = VTD_TLB_DID(val);
1995        addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1996        am = VTD_IVA_AM(addr);
1997        addr = VTD_IVA_ADDR(addr);
1998        if (am > VTD_MAMV) {
1999            error_report_once("%s: address mask overflow: 0x%" PRIx64,
2000                              __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2001            iaig = 0;
2002            break;
2003        }
2004        iaig = VTD_TLB_PSI_FLUSH_A;
2005        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2006        break;
2007
2008    default:
2009        error_report_once("%s: invalid granularity: 0x%" PRIx64,
2010                          __func__, val);
2011        iaig = 0;
2012    }
2013    return iaig;
2014}
2015
2016static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2017
2018static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2019{
2020    return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2021           (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2022}
2023
2024static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2025{
2026    uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2027
2028    trace_vtd_inv_qi_enable(en);
2029
2030    if (en) {
2031        s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2032        /* 2^(x+8) entries */
2033        s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2034        s->qi_enabled = true;
2035        trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2036        /* Ok - report back to driver */
2037        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2038
2039        if (s->iq_tail != 0) {
2040            /*
2041             * This is a spec violation but Windows guests are known to set up
2042             * Queued Invalidation this way so we allow the write and process
2043             * Invalidation Descriptors right away.
2044             */
2045            trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2046            if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2047                vtd_fetch_inv_desc(s);
2048            }
2049        }
2050    } else {
2051        if (vtd_queued_inv_disable_check(s)) {
2052            /* disable Queued Invalidation */
2053            vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2054            s->iq_head = 0;
2055            s->qi_enabled = false;
2056            /* Ok - report back to driver */
2057            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2058        } else {
2059            error_report_once("%s: detected improper state when disable QI "
2060                              "(head=0x%x, tail=0x%x, last_type=%d)",
2061                              __func__,
2062                              s->iq_head, s->iq_tail, s->iq_last_desc_type);
2063        }
2064    }
2065}
2066
2067/* Set Root Table Pointer */
2068static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2069{
2070    vtd_root_table_setup(s);
2071    /* Ok - report back to driver */
2072    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2073    vtd_reset_caches(s);
2074    vtd_address_space_refresh_all(s);
2075}
2076
2077/* Set Interrupt Remap Table Pointer */
2078static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2079{
2080    vtd_interrupt_remap_table_setup(s);
2081    /* Ok - report back to driver */
2082    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2083}
2084
2085/* Handle Translation Enable/Disable */
2086static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2087{
2088    if (s->dmar_enabled == en) {
2089        return;
2090    }
2091
2092    trace_vtd_dmar_enable(en);
2093
2094    if (en) {
2095        s->dmar_enabled = true;
2096        /* Ok - report back to driver */
2097        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2098    } else {
2099        s->dmar_enabled = false;
2100
2101        /* Clear the index of Fault Recording Register */
2102        s->next_frcd_reg = 0;
2103        /* Ok - report back to driver */
2104        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2105    }
2106
2107    vtd_reset_caches(s);
2108    vtd_address_space_refresh_all(s);
2109}
2110
2111/* Handle Interrupt Remap Enable/Disable */
2112static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2113{
2114    trace_vtd_ir_enable(en);
2115
2116    if (en) {
2117        s->intr_enabled = true;
2118        /* Ok - report back to driver */
2119        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2120    } else {
2121        s->intr_enabled = false;
2122        /* Ok - report back to driver */
2123        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2124    }
2125}
2126
2127/* Handle write to Global Command Register */
2128static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2129{
2130    uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2131    uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2132    uint32_t changed = status ^ val;
2133
2134    trace_vtd_reg_write_gcmd(status, val);
2135    if (changed & VTD_GCMD_TE) {
2136        /* Translation enable/disable */
2137        vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2138    }
2139    if (val & VTD_GCMD_SRTP) {
2140        /* Set/update the root-table pointer */
2141        vtd_handle_gcmd_srtp(s);
2142    }
2143    if (changed & VTD_GCMD_QIE) {
2144        /* Queued Invalidation Enable */
2145        vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2146    }
2147    if (val & VTD_GCMD_SIRTP) {
2148        /* Set/update the interrupt remapping root-table pointer */
2149        vtd_handle_gcmd_sirtp(s);
2150    }
2151    if (changed & VTD_GCMD_IRE) {
2152        /* Interrupt remap enable/disable */
2153        vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2154    }
2155}
2156
2157/* Handle write to Context Command Register */
2158static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2159{
2160    uint64_t ret;
2161    uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2162
2163    /* Context-cache invalidation request */
2164    if (val & VTD_CCMD_ICC) {
2165        if (s->qi_enabled) {
2166            error_report_once("Queued Invalidation enabled, "
2167                              "should not use register-based invalidation");
2168            return;
2169        }
2170        ret = vtd_context_cache_invalidate(s, val);
2171        /* Invalidation completed. Change something to show */
2172        vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2173        ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2174                                      ret);
2175    }
2176}
2177
2178/* Handle write to IOTLB Invalidation Register */
2179static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2180{
2181    uint64_t ret;
2182    uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2183
2184    /* IOTLB invalidation request */
2185    if (val & VTD_TLB_IVT) {
2186        if (s->qi_enabled) {
2187            error_report_once("Queued Invalidation enabled, "
2188                              "should not use register-based invalidation");
2189            return;
2190        }
2191        ret = vtd_iotlb_flush(s, val);
2192        /* Invalidation completed. Change something to show */
2193        vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2194        ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2195                                      VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2196    }
2197}
2198
2199/* Fetch an Invalidation Descriptor from the Invalidation Queue */
2200static bool vtd_get_inv_desc(IntelIOMMUState *s,
2201                             VTDInvDesc *inv_desc)
2202{
2203    dma_addr_t base_addr = s->iq;
2204    uint32_t offset = s->iq_head;
2205    uint32_t dw = s->iq_dw ? 32 : 16;
2206    dma_addr_t addr = base_addr + offset * dw;
2207
2208    if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2209        error_report_once("Read INV DESC failed.");
2210        return false;
2211    }
2212    inv_desc->lo = le64_to_cpu(inv_desc->lo);
2213    inv_desc->hi = le64_to_cpu(inv_desc->hi);
2214    if (dw == 32) {
2215        inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2216        inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2217    }
2218    return true;
2219}
2220
2221static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2222{
2223    if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2224        (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2225        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2226                          " (reserved nonzero)", __func__, inv_desc->hi,
2227                          inv_desc->lo);
2228        return false;
2229    }
2230    if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2231        /* Status Write */
2232        uint32_t status_data = (uint32_t)(inv_desc->lo >>
2233                               VTD_INV_DESC_WAIT_DATA_SHIFT);
2234
2235        assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2236
2237        /* FIXME: need to be masked with HAW? */
2238        dma_addr_t status_addr = inv_desc->hi;
2239        trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2240        status_data = cpu_to_le32(status_data);
2241        if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2242                             sizeof(status_data))) {
2243            trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2244            return false;
2245        }
2246    } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2247        /* Interrupt flag */
2248        vtd_generate_completion_event(s);
2249    } else {
2250        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2251                          " (unknown type)", __func__, inv_desc->hi,
2252                          inv_desc->lo);
2253        return false;
2254    }
2255    return true;
2256}
2257
2258static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2259                                           VTDInvDesc *inv_desc)
2260{
2261    uint16_t sid, fmask;
2262
2263    if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2264        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2265                          " (reserved nonzero)", __func__, inv_desc->hi,
2266                          inv_desc->lo);
2267        return false;
2268    }
2269    switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2270    case VTD_INV_DESC_CC_DOMAIN:
2271        trace_vtd_inv_desc_cc_domain(
2272            (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2273        /* Fall through */
2274    case VTD_INV_DESC_CC_GLOBAL:
2275        vtd_context_global_invalidate(s);
2276        break;
2277
2278    case VTD_INV_DESC_CC_DEVICE:
2279        sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2280        fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2281        vtd_context_device_invalidate(s, sid, fmask);
2282        break;
2283
2284    default:
2285        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2286                          " (invalid type)", __func__, inv_desc->hi,
2287                          inv_desc->lo);
2288        return false;
2289    }
2290    return true;
2291}
2292
2293static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2294{
2295    uint16_t domain_id;
2296    uint8_t am;
2297    hwaddr addr;
2298
2299    if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2300        (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2301        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2302                          ", lo=0x%"PRIx64" (reserved bits unzero)\n",
2303                          __func__, inv_desc->hi, inv_desc->lo);
2304        return false;
2305    }
2306
2307    switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2308    case VTD_INV_DESC_IOTLB_GLOBAL:
2309        vtd_iotlb_global_invalidate(s);
2310        break;
2311
2312    case VTD_INV_DESC_IOTLB_DOMAIN:
2313        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2314        vtd_iotlb_domain_invalidate(s, domain_id);
2315        break;
2316
2317    case VTD_INV_DESC_IOTLB_PAGE:
2318        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2319        addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2320        am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2321        if (am > VTD_MAMV) {
2322            error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2323                              ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
2324                              __func__, inv_desc->hi, inv_desc->lo,
2325                              am, (unsigned)VTD_MAMV);
2326            return false;
2327        }
2328        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2329        break;
2330
2331    default:
2332        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2333                          ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
2334                          __func__, inv_desc->hi, inv_desc->lo,
2335                          inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2336        return false;
2337    }
2338    return true;
2339}
2340
2341static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2342                                     VTDInvDesc *inv_desc)
2343{
2344    trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2345                           inv_desc->iec.index,
2346                           inv_desc->iec.index_mask);
2347
2348    vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2349                       inv_desc->iec.index,
2350                       inv_desc->iec.index_mask);
2351    return true;
2352}
2353
2354static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2355                                          VTDInvDesc *inv_desc)
2356{
2357    VTDAddressSpace *vtd_dev_as;
2358    IOMMUTLBEntry entry;
2359    struct VTDBus *vtd_bus;
2360    hwaddr addr;
2361    uint64_t sz;
2362    uint16_t sid;
2363    uint8_t devfn;
2364    bool size;
2365    uint8_t bus_num;
2366
2367    addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2368    sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2369    devfn = sid & 0xff;
2370    bus_num = sid >> 8;
2371    size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2372
2373    if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2374        (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2375        error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2376                          ", lo=%"PRIx64" (reserved nonzero)", __func__,
2377                          inv_desc->hi, inv_desc->lo);
2378        return false;
2379    }
2380
2381    vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2382    if (!vtd_bus) {
2383        goto done;
2384    }
2385
2386    vtd_dev_as = vtd_bus->dev_as[devfn];
2387    if (!vtd_dev_as) {
2388        goto done;
2389    }
2390
2391    /* According to ATS spec table 2.4:
2392     * S = 0, bits 15:12 = xxxx     range size: 4K
2393     * S = 1, bits 15:12 = xxx0     range size: 8K
2394     * S = 1, bits 15:12 = xx01     range size: 16K
2395     * S = 1, bits 15:12 = x011     range size: 32K
2396     * S = 1, bits 15:12 = 0111     range size: 64K
2397     * ...
2398     */
2399    if (size) {
2400        sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2401        addr &= ~(sz - 1);
2402    } else {
2403        sz = VTD_PAGE_SIZE;
2404    }
2405
2406    entry.target_as = &vtd_dev_as->as;
2407    entry.addr_mask = sz - 1;
2408    entry.iova = addr;
2409    entry.perm = IOMMU_NONE;
2410    entry.translated_addr = 0;
2411    memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2412
2413done:
2414    return true;
2415}
2416
2417static bool vtd_process_inv_desc(IntelIOMMUState *s)
2418{
2419    VTDInvDesc inv_desc;
2420    uint8_t desc_type;
2421
2422    trace_vtd_inv_qi_head(s->iq_head);
2423    if (!vtd_get_inv_desc(s, &inv_desc)) {
2424        s->iq_last_desc_type = VTD_INV_DESC_NONE;
2425        return false;
2426    }
2427
2428    desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2429    /* FIXME: should update at first or at last? */
2430    s->iq_last_desc_type = desc_type;
2431
2432    switch (desc_type) {
2433    case VTD_INV_DESC_CC:
2434        trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2435        if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2436            return false;
2437        }
2438        break;
2439
2440    case VTD_INV_DESC_IOTLB:
2441        trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2442        if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2443            return false;
2444        }
2445        break;
2446
2447    /*
2448     * TODO: the entity of below two cases will be implemented in future series.
2449     * To make guest (which integrates scalable mode support patch set in
2450     * iommu driver) work, just return true is enough so far.
2451     */
2452    case VTD_INV_DESC_PC:
2453        break;
2454
2455    case VTD_INV_DESC_PIOTLB:
2456        break;
2457
2458    case VTD_INV_DESC_WAIT:
2459        trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2460        if (!vtd_process_wait_desc(s, &inv_desc)) {
2461            return false;
2462        }
2463        break;
2464
2465    case VTD_INV_DESC_IEC:
2466        trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2467        if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2468            return false;
2469        }
2470        break;
2471
2472    case VTD_INV_DESC_DEVICE:
2473        trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2474        if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2475            return false;
2476        }
2477        break;
2478
2479    default:
2480        error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2481                          " (unknown type)", __func__, inv_desc.hi,
2482                          inv_desc.lo);
2483        return false;
2484    }
2485    s->iq_head++;
2486    if (s->iq_head == s->iq_size) {
2487        s->iq_head = 0;
2488    }
2489    return true;
2490}
2491
2492/* Try to fetch and process more Invalidation Descriptors */
2493static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2494{
2495    trace_vtd_inv_qi_fetch();
2496
2497    if (s->iq_tail >= s->iq_size) {
2498        /* Detects an invalid Tail pointer */
2499        error_report_once("%s: detected invalid QI tail "
2500                          "(tail=0x%x, size=0x%x)",
2501                          __func__, s->iq_tail, s->iq_size);
2502        vtd_handle_inv_queue_error(s);
2503        return;
2504    }
2505    while (s->iq_head != s->iq_tail) {
2506        if (!vtd_process_inv_desc(s)) {
2507            /* Invalidation Queue Errors */
2508            vtd_handle_inv_queue_error(s);
2509            break;
2510        }
2511        /* Must update the IQH_REG in time */
2512        vtd_set_quad_raw(s, DMAR_IQH_REG,
2513                         (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2514                         VTD_IQH_QH_MASK);
2515    }
2516}
2517
2518/* Handle write to Invalidation Queue Tail Register */
2519static void vtd_handle_iqt_write(IntelIOMMUState *s)
2520{
2521    uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2522
2523    if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2524        error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2525                          __func__, val);
2526        return;
2527    }
2528    s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2529    trace_vtd_inv_qi_tail(s->iq_tail);
2530
2531    if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2532        /* Process Invalidation Queue here */
2533        vtd_fetch_inv_desc(s);
2534    }
2535}
2536
2537static void vtd_handle_fsts_write(IntelIOMMUState *s)
2538{
2539    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2540    uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2541    uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2542
2543    if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2544        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2545        trace_vtd_fsts_clear_ip();
2546    }
2547    /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2548     * Descriptors if there are any when Queued Invalidation is enabled?
2549     */
2550}
2551
2552static void vtd_handle_fectl_write(IntelIOMMUState *s)
2553{
2554    uint32_t fectl_reg;
2555    /* FIXME: when software clears the IM field, check the IP field. But do we
2556     * need to compare the old value and the new value to conclude that
2557     * software clears the IM field? Or just check if the IM field is zero?
2558     */
2559    fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2560
2561    trace_vtd_reg_write_fectl(fectl_reg);
2562
2563    if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2564        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2565        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2566    }
2567}
2568
2569static void vtd_handle_ics_write(IntelIOMMUState *s)
2570{
2571    uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2572    uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2573
2574    if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2575        trace_vtd_reg_ics_clear_ip();
2576        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2577    }
2578}
2579
2580static void vtd_handle_iectl_write(IntelIOMMUState *s)
2581{
2582    uint32_t iectl_reg;
2583    /* FIXME: when software clears the IM field, check the IP field. But do we
2584     * need to compare the old value and the new value to conclude that
2585     * software clears the IM field? Or just check if the IM field is zero?
2586     */
2587    iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2588
2589    trace_vtd_reg_write_iectl(iectl_reg);
2590
2591    if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2592        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2593        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2594    }
2595}
2596
2597static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2598{
2599    IntelIOMMUState *s = opaque;
2600    uint64_t val;
2601
2602    trace_vtd_reg_read(addr, size);
2603
2604    if (addr + size > DMAR_REG_SIZE) {
2605        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2606                          " size=0x%u", __func__, addr, size);
2607        return (uint64_t)-1;
2608    }
2609
2610    switch (addr) {
2611    /* Root Table Address Register, 64-bit */
2612    case DMAR_RTADDR_REG:
2613        if (size == 4) {
2614            val = s->root & ((1ULL << 32) - 1);
2615        } else {
2616            val = s->root;
2617        }
2618        break;
2619
2620    case DMAR_RTADDR_REG_HI:
2621        assert(size == 4);
2622        val = s->root >> 32;
2623        break;
2624
2625    /* Invalidation Queue Address Register, 64-bit */
2626    case DMAR_IQA_REG:
2627        val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2628        if (size == 4) {
2629            val = val & ((1ULL << 32) - 1);
2630        }
2631        break;
2632
2633    case DMAR_IQA_REG_HI:
2634        assert(size == 4);
2635        val = s->iq >> 32;
2636        break;
2637
2638    default:
2639        if (size == 4) {
2640            val = vtd_get_long(s, addr);
2641        } else {
2642            val = vtd_get_quad(s, addr);
2643        }
2644    }
2645
2646    return val;
2647}
2648
2649static void vtd_mem_write(void *opaque, hwaddr addr,
2650                          uint64_t val, unsigned size)
2651{
2652    IntelIOMMUState *s = opaque;
2653
2654    trace_vtd_reg_write(addr, size, val);
2655
2656    if (addr + size > DMAR_REG_SIZE) {
2657        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2658                          " size=0x%u", __func__, addr, size);
2659        return;
2660    }
2661
2662    switch (addr) {
2663    /* Global Command Register, 32-bit */
2664    case DMAR_GCMD_REG:
2665        vtd_set_long(s, addr, val);
2666        vtd_handle_gcmd_write(s);
2667        break;
2668
2669    /* Context Command Register, 64-bit */
2670    case DMAR_CCMD_REG:
2671        if (size == 4) {
2672            vtd_set_long(s, addr, val);
2673        } else {
2674            vtd_set_quad(s, addr, val);
2675            vtd_handle_ccmd_write(s);
2676        }
2677        break;
2678
2679    case DMAR_CCMD_REG_HI:
2680        assert(size == 4);
2681        vtd_set_long(s, addr, val);
2682        vtd_handle_ccmd_write(s);
2683        break;
2684
2685    /* IOTLB Invalidation Register, 64-bit */
2686    case DMAR_IOTLB_REG:
2687        if (size == 4) {
2688            vtd_set_long(s, addr, val);
2689        } else {
2690            vtd_set_quad(s, addr, val);
2691            vtd_handle_iotlb_write(s);
2692        }
2693        break;
2694
2695    case DMAR_IOTLB_REG_HI:
2696        assert(size == 4);
2697        vtd_set_long(s, addr, val);
2698        vtd_handle_iotlb_write(s);
2699        break;
2700
2701    /* Invalidate Address Register, 64-bit */
2702    case DMAR_IVA_REG:
2703        if (size == 4) {
2704            vtd_set_long(s, addr, val);
2705        } else {
2706            vtd_set_quad(s, addr, val);
2707        }
2708        break;
2709
2710    case DMAR_IVA_REG_HI:
2711        assert(size == 4);
2712        vtd_set_long(s, addr, val);
2713        break;
2714
2715    /* Fault Status Register, 32-bit */
2716    case DMAR_FSTS_REG:
2717        assert(size == 4);
2718        vtd_set_long(s, addr, val);
2719        vtd_handle_fsts_write(s);
2720        break;
2721
2722    /* Fault Event Control Register, 32-bit */
2723    case DMAR_FECTL_REG:
2724        assert(size == 4);
2725        vtd_set_long(s, addr, val);
2726        vtd_handle_fectl_write(s);
2727        break;
2728
2729    /* Fault Event Data Register, 32-bit */
2730    case DMAR_FEDATA_REG:
2731        assert(size == 4);
2732        vtd_set_long(s, addr, val);
2733        break;
2734
2735    /* Fault Event Address Register, 32-bit */
2736    case DMAR_FEADDR_REG:
2737        if (size == 4) {
2738            vtd_set_long(s, addr, val);
2739        } else {
2740            /*
2741             * While the register is 32-bit only, some guests (Xen...) write to
2742             * it with 64-bit.
2743             */
2744            vtd_set_quad(s, addr, val);
2745        }
2746        break;
2747
2748    /* Fault Event Upper Address Register, 32-bit */
2749    case DMAR_FEUADDR_REG:
2750        assert(size == 4);
2751        vtd_set_long(s, addr, val);
2752        break;
2753
2754    /* Protected Memory Enable Register, 32-bit */
2755    case DMAR_PMEN_REG:
2756        assert(size == 4);
2757        vtd_set_long(s, addr, val);
2758        break;
2759
2760    /* Root Table Address Register, 64-bit */
2761    case DMAR_RTADDR_REG:
2762        if (size == 4) {
2763            vtd_set_long(s, addr, val);
2764        } else {
2765            vtd_set_quad(s, addr, val);
2766        }
2767        break;
2768
2769    case DMAR_RTADDR_REG_HI:
2770        assert(size == 4);
2771        vtd_set_long(s, addr, val);
2772        break;
2773
2774    /* Invalidation Queue Tail Register, 64-bit */
2775    case DMAR_IQT_REG:
2776        if (size == 4) {
2777            vtd_set_long(s, addr, val);
2778        } else {
2779            vtd_set_quad(s, addr, val);
2780        }
2781        vtd_handle_iqt_write(s);
2782        break;
2783
2784    case DMAR_IQT_REG_HI:
2785        assert(size == 4);
2786        vtd_set_long(s, addr, val);
2787        /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2788        break;
2789
2790    /* Invalidation Queue Address Register, 64-bit */
2791    case DMAR_IQA_REG:
2792        if (size == 4) {
2793            vtd_set_long(s, addr, val);
2794        } else {
2795            vtd_set_quad(s, addr, val);
2796        }
2797        if (s->ecap & VTD_ECAP_SMTS &&
2798            val & VTD_IQA_DW_MASK) {
2799            s->iq_dw = true;
2800        } else {
2801            s->iq_dw = false;
2802        }
2803        break;
2804
2805    case DMAR_IQA_REG_HI:
2806        assert(size == 4);
2807        vtd_set_long(s, addr, val);
2808        break;
2809
2810    /* Invalidation Completion Status Register, 32-bit */
2811    case DMAR_ICS_REG:
2812        assert(size == 4);
2813        vtd_set_long(s, addr, val);
2814        vtd_handle_ics_write(s);
2815        break;
2816
2817    /* Invalidation Event Control Register, 32-bit */
2818    case DMAR_IECTL_REG:
2819        assert(size == 4);
2820        vtd_set_long(s, addr, val);
2821        vtd_handle_iectl_write(s);
2822        break;
2823
2824    /* Invalidation Event Data Register, 32-bit */
2825    case DMAR_IEDATA_REG:
2826        assert(size == 4);
2827        vtd_set_long(s, addr, val);
2828        break;
2829
2830    /* Invalidation Event Address Register, 32-bit */
2831    case DMAR_IEADDR_REG:
2832        assert(size == 4);
2833        vtd_set_long(s, addr, val);
2834        break;
2835
2836    /* Invalidation Event Upper Address Register, 32-bit */
2837    case DMAR_IEUADDR_REG:
2838        assert(size == 4);
2839        vtd_set_long(s, addr, val);
2840        break;
2841
2842    /* Fault Recording Registers, 128-bit */
2843    case DMAR_FRCD_REG_0_0:
2844        if (size == 4) {
2845            vtd_set_long(s, addr, val);
2846        } else {
2847            vtd_set_quad(s, addr, val);
2848        }
2849        break;
2850
2851    case DMAR_FRCD_REG_0_1:
2852        assert(size == 4);
2853        vtd_set_long(s, addr, val);
2854        break;
2855
2856    case DMAR_FRCD_REG_0_2:
2857        if (size == 4) {
2858            vtd_set_long(s, addr, val);
2859        } else {
2860            vtd_set_quad(s, addr, val);
2861            /* May clear bit 127 (Fault), update PPF */
2862            vtd_update_fsts_ppf(s);
2863        }
2864        break;
2865
2866    case DMAR_FRCD_REG_0_3:
2867        assert(size == 4);
2868        vtd_set_long(s, addr, val);
2869        /* May clear bit 127 (Fault), update PPF */
2870        vtd_update_fsts_ppf(s);
2871        break;
2872
2873    case DMAR_IRTA_REG:
2874        if (size == 4) {
2875            vtd_set_long(s, addr, val);
2876        } else {
2877            vtd_set_quad(s, addr, val);
2878        }
2879        break;
2880
2881    case DMAR_IRTA_REG_HI:
2882        assert(size == 4);
2883        vtd_set_long(s, addr, val);
2884        break;
2885
2886    default:
2887        if (size == 4) {
2888            vtd_set_long(s, addr, val);
2889        } else {
2890            vtd_set_quad(s, addr, val);
2891        }
2892    }
2893}
2894
2895static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2896                                         IOMMUAccessFlags flag, int iommu_idx)
2897{
2898    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2899    IntelIOMMUState *s = vtd_as->iommu_state;
2900    IOMMUTLBEntry iotlb = {
2901        /* We'll fill in the rest later. */
2902        .target_as = &address_space_memory,
2903    };
2904    bool success;
2905
2906    if (likely(s->dmar_enabled)) {
2907        success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2908                                         addr, flag & IOMMU_WO, &iotlb);
2909    } else {
2910        /* DMAR disabled, passthrough, use 4k-page*/
2911        iotlb.iova = addr & VTD_PAGE_MASK_4K;
2912        iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2913        iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2914        iotlb.perm = IOMMU_RW;
2915        success = true;
2916    }
2917
2918    if (likely(success)) {
2919        trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2920                                 VTD_PCI_SLOT(vtd_as->devfn),
2921                                 VTD_PCI_FUNC(vtd_as->devfn),
2922                                 iotlb.iova, iotlb.translated_addr,
2923                                 iotlb.addr_mask);
2924    } else {
2925        error_report_once("%s: detected translation failure "
2926                          "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2927                          __func__, pci_bus_num(vtd_as->bus),
2928                          VTD_PCI_SLOT(vtd_as->devfn),
2929                          VTD_PCI_FUNC(vtd_as->devfn),
2930                          addr);
2931    }
2932
2933    return iotlb;
2934}
2935
2936static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2937                                         IOMMUNotifierFlag old,
2938                                         IOMMUNotifierFlag new,
2939                                         Error **errp)
2940{
2941    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2942    IntelIOMMUState *s = vtd_as->iommu_state;
2943
2944    /* Update per-address-space notifier flags */
2945    vtd_as->notifier_flags = new;
2946
2947    if (old == IOMMU_NOTIFIER_NONE) {
2948        QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2949    } else if (new == IOMMU_NOTIFIER_NONE) {
2950        QLIST_REMOVE(vtd_as, next);
2951    }
2952    return 0;
2953}
2954
2955static int vtd_post_load(void *opaque, int version_id)
2956{
2957    IntelIOMMUState *iommu = opaque;
2958
2959    /*
2960     * Memory regions are dynamically turned on/off depending on
2961     * context entry configurations from the guest. After migration,
2962     * we need to make sure the memory regions are still correct.
2963     */
2964    vtd_switch_address_space_all(iommu);
2965
2966    /*
2967     * We don't need to migrate the root_scalable because we can
2968     * simply do the calculation after the loading is complete.  We
2969     * can actually do similar things with root, dmar_enabled, etc.
2970     * however since we've had them already so we'd better keep them
2971     * for compatibility of migration.
2972     */
2973    vtd_update_scalable_state(iommu);
2974
2975    return 0;
2976}
2977
2978static const VMStateDescription vtd_vmstate = {
2979    .name = "iommu-intel",
2980    .version_id = 1,
2981    .minimum_version_id = 1,
2982    .priority = MIG_PRI_IOMMU,
2983    .post_load = vtd_post_load,
2984    .fields = (VMStateField[]) {
2985        VMSTATE_UINT64(root, IntelIOMMUState),
2986        VMSTATE_UINT64(intr_root, IntelIOMMUState),
2987        VMSTATE_UINT64(iq, IntelIOMMUState),
2988        VMSTATE_UINT32(intr_size, IntelIOMMUState),
2989        VMSTATE_UINT16(iq_head, IntelIOMMUState),
2990        VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2991        VMSTATE_UINT16(iq_size, IntelIOMMUState),
2992        VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2993        VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2994        VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2995        VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
2996        VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2997        VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2998        VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2999        VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3000        VMSTATE_END_OF_LIST()
3001    }
3002};
3003
3004static const MemoryRegionOps vtd_mem_ops = {
3005    .read = vtd_mem_read,
3006    .write = vtd_mem_write,
3007    .endianness = DEVICE_LITTLE_ENDIAN,
3008    .impl = {
3009        .min_access_size = 4,
3010        .max_access_size = 8,
3011    },
3012    .valid = {
3013        .min_access_size = 4,
3014        .max_access_size = 8,
3015    },
3016};
3017
3018static Property vtd_properties[] = {
3019    DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3020    DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3021                            ON_OFF_AUTO_AUTO),
3022    DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3023    DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3024                      VTD_HOST_ADDRESS_WIDTH),
3025    DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3026    DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3027    DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3028    DEFINE_PROP_END_OF_LIST(),
3029};
3030
3031/* Read IRTE entry with specific index */
3032static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3033                        VTD_IR_TableEntry *entry, uint16_t sid)
3034{
3035    static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3036        {0xffff, 0xfffb, 0xfff9, 0xfff8};
3037    dma_addr_t addr = 0x00;
3038    uint16_t mask, source_id;
3039    uint8_t bus, bus_max, bus_min;
3040
3041    addr = iommu->intr_root + index * sizeof(*entry);
3042    if (dma_memory_read(&address_space_memory, addr, entry,
3043                        sizeof(*entry))) {
3044        error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3045                          __func__, index, addr);
3046        return -VTD_FR_IR_ROOT_INVAL;
3047    }
3048
3049    trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3050                          le64_to_cpu(entry->data[0]));
3051
3052    if (!entry->irte.present) {
3053        error_report_once("%s: detected non-present IRTE "
3054                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3055                          __func__, index, le64_to_cpu(entry->data[1]),
3056                          le64_to_cpu(entry->data[0]));
3057        return -VTD_FR_IR_ENTRY_P;
3058    }
3059
3060    if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3061        entry->irte.__reserved_2) {
3062        error_report_once("%s: detected non-zero reserved IRTE "
3063                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3064                          __func__, index, le64_to_cpu(entry->data[1]),
3065                          le64_to_cpu(entry->data[0]));
3066        return -VTD_FR_IR_IRTE_RSVD;
3067    }
3068
3069    if (sid != X86_IOMMU_SID_INVALID) {
3070        /* Validate IRTE SID */
3071        source_id = le32_to_cpu(entry->irte.source_id);
3072        switch (entry->irte.sid_vtype) {
3073        case VTD_SVT_NONE:
3074            break;
3075
3076        case VTD_SVT_ALL:
3077            mask = vtd_svt_mask[entry->irte.sid_q];
3078            if ((source_id & mask) != (sid & mask)) {
3079                error_report_once("%s: invalid IRTE SID "
3080                                  "(index=%u, sid=%u, source_id=%u)",
3081                                  __func__, index, sid, source_id);
3082                return -VTD_FR_IR_SID_ERR;
3083            }
3084            break;
3085
3086        case VTD_SVT_BUS:
3087            bus_max = source_id >> 8;
3088            bus_min = source_id & 0xff;
3089            bus = sid >> 8;
3090            if (bus > bus_max || bus < bus_min) {
3091                error_report_once("%s: invalid SVT_BUS "
3092                                  "(index=%u, bus=%u, min=%u, max=%u)",
3093                                  __func__, index, bus, bus_min, bus_max);
3094                return -VTD_FR_IR_SID_ERR;
3095            }
3096            break;
3097
3098        default:
3099            error_report_once("%s: detected invalid IRTE SVT "
3100                              "(index=%u, type=%d)", __func__,
3101                              index, entry->irte.sid_vtype);
3102            /* Take this as verification failure. */
3103            return -VTD_FR_IR_SID_ERR;
3104            break;
3105        }
3106    }
3107
3108    return 0;
3109}
3110
3111/* Fetch IRQ information of specific IR index */
3112static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3113                             X86IOMMUIrq *irq, uint16_t sid)
3114{
3115    VTD_IR_TableEntry irte = {};
3116    int ret = 0;
3117
3118    ret = vtd_irte_get(iommu, index, &irte, sid);
3119    if (ret) {
3120        return ret;
3121    }
3122
3123    irq->trigger_mode = irte.irte.trigger_mode;
3124    irq->vector = irte.irte.vector;
3125    irq->delivery_mode = irte.irte.delivery_mode;
3126    irq->dest = le32_to_cpu(irte.irte.dest_id);
3127    if (!iommu->intr_eime) {
3128#define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
3129#define  VTD_IR_APIC_DEST_SHIFT        (8)
3130        irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3131            VTD_IR_APIC_DEST_SHIFT;
3132    }
3133    irq->dest_mode = irte.irte.dest_mode;
3134    irq->redir_hint = irte.irte.redir_hint;
3135
3136    trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3137                       irq->delivery_mode, irq->dest, irq->dest_mode);
3138
3139    return 0;
3140}
3141
3142/* Interrupt remapping for MSI/MSI-X entry */
3143static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3144                                   MSIMessage *origin,
3145                                   MSIMessage *translated,
3146                                   uint16_t sid)
3147{
3148    int ret = 0;
3149    VTD_IR_MSIAddress addr;
3150    uint16_t index;
3151    X86IOMMUIrq irq = {};
3152
3153    assert(origin && translated);
3154
3155    trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3156
3157    if (!iommu || !iommu->intr_enabled) {
3158        memcpy(translated, origin, sizeof(*origin));
3159        goto out;
3160    }
3161
3162    if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3163        error_report_once("%s: MSI address high 32 bits non-zero detected: "
3164                          "address=0x%" PRIx64, __func__, origin->address);
3165        return -VTD_FR_IR_REQ_RSVD;
3166    }
3167
3168    addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3169    if (addr.addr.__head != 0xfee) {
3170        error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3171                          __func__, addr.data);
3172        return -VTD_FR_IR_REQ_RSVD;
3173    }
3174
3175    /* This is compatible mode. */
3176    if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3177        memcpy(translated, origin, sizeof(*origin));
3178        goto out;
3179    }
3180
3181    index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3182
3183#define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
3184#define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
3185
3186    if (addr.addr.sub_valid) {
3187        /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3188        index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3189    }
3190
3191    ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3192    if (ret) {
3193        return ret;
3194    }
3195
3196    if (addr.addr.sub_valid) {
3197        trace_vtd_ir_remap_type("MSI");
3198        if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3199            error_report_once("%s: invalid IR MSI "
3200                              "(sid=%u, address=0x%" PRIx64
3201                              ", data=0x%" PRIx32 ")",
3202                              __func__, sid, origin->address, origin->data);
3203            return -VTD_FR_IR_REQ_RSVD;
3204        }
3205    } else {
3206        uint8_t vector = origin->data & 0xff;
3207        uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3208
3209        trace_vtd_ir_remap_type("IOAPIC");
3210        /* IOAPIC entry vector should be aligned with IRTE vector
3211         * (see vt-d spec 5.1.5.1). */
3212        if (vector != irq.vector) {
3213            trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3214        }
3215
3216        /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3217         * (see vt-d spec 5.1.5.1). */
3218        if (trigger_mode != irq.trigger_mode) {
3219            trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3220                                      irq.trigger_mode);
3221        }
3222    }
3223
3224    /*
3225     * We'd better keep the last two bits, assuming that guest OS
3226     * might modify it. Keep it does not hurt after all.
3227     */
3228    irq.msi_addr_last_bits = addr.addr.__not_care;
3229
3230    /* Translate X86IOMMUIrq to MSI message */
3231    x86_iommu_irq_to_msi_message(&irq, translated);
3232
3233out:
3234    trace_vtd_ir_remap_msi(origin->address, origin->data,
3235                           translated->address, translated->data);
3236    return 0;
3237}
3238
3239static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3240                         MSIMessage *dst, uint16_t sid)
3241{
3242    return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3243                                   src, dst, sid);
3244}
3245
3246static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3247                                   uint64_t *data, unsigned size,
3248                                   MemTxAttrs attrs)
3249{
3250    return MEMTX_OK;
3251}
3252
3253static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3254                                    uint64_t value, unsigned size,
3255                                    MemTxAttrs attrs)
3256{
3257    int ret = 0;
3258    MSIMessage from = {}, to = {};
3259    uint16_t sid = X86_IOMMU_SID_INVALID;
3260
3261    from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3262    from.data = (uint32_t) value;
3263
3264    if (!attrs.unspecified) {
3265        /* We have explicit Source ID */
3266        sid = attrs.requester_id;
3267    }
3268
3269    ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3270    if (ret) {
3271        /* TODO: report error */
3272        /* Drop this interrupt */
3273        return MEMTX_ERROR;
3274    }
3275
3276    apic_get_class()->send_msi(&to);
3277
3278    return MEMTX_OK;
3279}
3280
3281static const MemoryRegionOps vtd_mem_ir_ops = {
3282    .read_with_attrs = vtd_mem_ir_read,
3283    .write_with_attrs = vtd_mem_ir_write,
3284    .endianness = DEVICE_LITTLE_ENDIAN,
3285    .impl = {
3286        .min_access_size = 4,
3287        .max_access_size = 4,
3288    },
3289    .valid = {
3290        .min_access_size = 4,
3291        .max_access_size = 4,
3292    },
3293};
3294
3295VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3296{
3297    uintptr_t key = (uintptr_t)bus;
3298    VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3299    VTDAddressSpace *vtd_dev_as;
3300    char name[128];
3301
3302    if (!vtd_bus) {
3303        uintptr_t *new_key = g_malloc(sizeof(*new_key));
3304        *new_key = (uintptr_t)bus;
3305        /* No corresponding free() */
3306        vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3307                            PCI_DEVFN_MAX);
3308        vtd_bus->bus = bus;
3309        g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3310    }
3311
3312    vtd_dev_as = vtd_bus->dev_as[devfn];
3313
3314    if (!vtd_dev_as) {
3315        snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3316                 PCI_FUNC(devfn));
3317        vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3318
3319        vtd_dev_as->bus = bus;
3320        vtd_dev_as->devfn = (uint8_t)devfn;
3321        vtd_dev_as->iommu_state = s;
3322        vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3323        vtd_dev_as->iova_tree = iova_tree_new();
3324
3325        memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3326        address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3327
3328        /*
3329         * Build the DMAR-disabled container with aliases to the
3330         * shared MRs.  Note that aliasing to a shared memory region
3331         * could help the memory API to detect same FlatViews so we
3332         * can have devices to share the same FlatView when DMAR is
3333         * disabled (either by not providing "intel_iommu=on" or with
3334         * "iommu=pt").  It will greatly reduce the total number of
3335         * FlatViews of the system hence VM runs faster.
3336         */
3337        memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3338                                 "vtd-nodmar", &s->mr_nodmar, 0,
3339                                 memory_region_size(&s->mr_nodmar));
3340
3341        /*
3342         * Build the per-device DMAR-enabled container.
3343         *
3344         * TODO: currently we have per-device IOMMU memory region only
3345         * because we have per-device IOMMU notifiers for devices.  If
3346         * one day we can abstract the IOMMU notifiers out of the
3347         * memory regions then we can also share the same memory
3348         * region here just like what we've done above with the nodmar
3349         * region.
3350         */
3351        strcat(name, "-dmar");
3352        memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3353                                 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3354                                 name, UINT64_MAX);
3355        memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3356                                 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3357        memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3358                                            VTD_INTERRUPT_ADDR_FIRST,
3359                                            &vtd_dev_as->iommu_ir, 1);
3360
3361        /*
3362         * Hook both the containers under the root container, we
3363         * switch between DMAR & noDMAR by enable/disable
3364         * corresponding sub-containers
3365         */
3366        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3367                                            MEMORY_REGION(&vtd_dev_as->iommu),
3368                                            0);
3369        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3370                                            &vtd_dev_as->nodmar, 0);
3371
3372        vtd_switch_address_space(vtd_dev_as);
3373    }
3374    return vtd_dev_as;
3375}
3376
3377static uint64_t get_naturally_aligned_size(uint64_t start,
3378                                           uint64_t size, int gaw)
3379{
3380    uint64_t max_mask = 1ULL << gaw;
3381    uint64_t alignment = start ? start & -start : max_mask;
3382
3383    alignment = MIN(alignment, max_mask);
3384    size = MIN(size, max_mask);
3385
3386    if (alignment <= size) {
3387        /* Increase the alignment of start */
3388        return alignment;
3389    } else {
3390        /* Find the largest page mask from size */
3391        return 1ULL << (63 - clz64(size));
3392    }
3393}
3394
3395/* Unmap the whole range in the notifier's scope. */
3396static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3397{
3398    hwaddr size, remain;
3399    hwaddr start = n->start;
3400    hwaddr end = n->end;
3401    IntelIOMMUState *s = as->iommu_state;
3402    DMAMap map;
3403
3404    /*
3405     * Note: all the codes in this function has a assumption that IOVA
3406     * bits are no more than VTD_MGAW bits (which is restricted by
3407     * VT-d spec), otherwise we need to consider overflow of 64 bits.
3408     */
3409
3410    if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3411        /*
3412         * Don't need to unmap regions that is bigger than the whole
3413         * VT-d supported address space size
3414         */
3415        end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3416    }
3417
3418    assert(start <= end);
3419    size = remain = end - start + 1;
3420
3421    while (remain >= VTD_PAGE_SIZE) {
3422        IOMMUTLBEntry entry;
3423        uint64_t mask = get_naturally_aligned_size(start, remain, s->aw_bits);
3424
3425        assert(mask);
3426
3427        entry.iova = start;
3428        entry.addr_mask = mask - 1;
3429        entry.target_as = &address_space_memory;
3430        entry.perm = IOMMU_NONE;
3431        /* This field is meaningless for unmap */
3432        entry.translated_addr = 0;
3433
3434        memory_region_notify_one(n, &entry);
3435
3436        start += mask;
3437        remain -= mask;
3438    }
3439
3440    assert(!remain);
3441
3442    trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3443                             VTD_PCI_SLOT(as->devfn),
3444                             VTD_PCI_FUNC(as->devfn),
3445                             n->start, size);
3446
3447    map.iova = n->start;
3448    map.size = size;
3449    iova_tree_remove(as->iova_tree, &map);
3450}
3451
3452static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3453{
3454    VTDAddressSpace *vtd_as;
3455    IOMMUNotifier *n;
3456
3457    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3458        IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3459            vtd_address_space_unmap(vtd_as, n);
3460        }
3461    }
3462}
3463
3464static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3465{
3466    vtd_address_space_unmap_all(s);
3467    vtd_switch_address_space_all(s);
3468}
3469
3470static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3471{
3472    memory_region_notify_one((IOMMUNotifier *)private, entry);
3473    return 0;
3474}
3475
3476static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3477{
3478    VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3479    IntelIOMMUState *s = vtd_as->iommu_state;
3480    uint8_t bus_n = pci_bus_num(vtd_as->bus);
3481    VTDContextEntry ce;
3482
3483    /*
3484     * The replay can be triggered by either a invalidation or a newly
3485     * created entry. No matter what, we release existing mappings
3486     * (it means flushing caches for UNMAP-only registers).
3487     */
3488    vtd_address_space_unmap(vtd_as, n);
3489
3490    if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3491        trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3492                                  "legacy mode",
3493                                  bus_n, PCI_SLOT(vtd_as->devfn),
3494                                  PCI_FUNC(vtd_as->devfn),
3495                                  vtd_get_domain_id(s, &ce),
3496                                  ce.hi, ce.lo);
3497        if (vtd_as_has_map_notifier(vtd_as)) {
3498            /* This is required only for MAP typed notifiers */
3499            vtd_page_walk_info info = {
3500                .hook_fn = vtd_replay_hook,
3501                .private = (void *)n,
3502                .notify_unmap = false,
3503                .aw = s->aw_bits,
3504                .as = vtd_as,
3505                .domain_id = vtd_get_domain_id(s, &ce),
3506            };
3507
3508            vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3509        }
3510    } else {
3511        trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3512                                    PCI_FUNC(vtd_as->devfn));
3513    }
3514
3515    return;
3516}
3517
3518/* Do the initialization. It will also be called when reset, so pay
3519 * attention when adding new initialization stuff.
3520 */
3521static void vtd_init(IntelIOMMUState *s)
3522{
3523    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3524
3525    memset(s->csr, 0, DMAR_REG_SIZE);
3526    memset(s->wmask, 0, DMAR_REG_SIZE);
3527    memset(s->w1cmask, 0, DMAR_REG_SIZE);
3528    memset(s->womask, 0, DMAR_REG_SIZE);
3529
3530    s->root = 0;
3531    s->root_scalable = false;
3532    s->dmar_enabled = false;
3533    s->intr_enabled = false;
3534    s->iq_head = 0;
3535    s->iq_tail = 0;
3536    s->iq = 0;
3537    s->iq_size = 0;
3538    s->qi_enabled = false;
3539    s->iq_last_desc_type = VTD_INV_DESC_NONE;
3540    s->iq_dw = false;
3541    s->next_frcd_reg = 0;
3542    s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3543             VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3544             VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3545    if (s->dma_drain) {
3546        s->cap |= VTD_CAP_DRAIN;
3547    }
3548    if (s->aw_bits == VTD_HOST_AW_48BIT) {
3549        s->cap |= VTD_CAP_SAGAW_48bit;
3550    }
3551    s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3552
3553    /*
3554     * Rsvd field masks for spte
3555     */
3556    vtd_spte_rsvd[0] = ~0ULL;
3557    vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3558                                                  x86_iommu->dt_supported);
3559    vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3560    vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3561    vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3562
3563    vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3564                                                         x86_iommu->dt_supported);
3565    vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3566                                                         x86_iommu->dt_supported);
3567
3568    if (x86_iommu_ir_supported(x86_iommu)) {
3569        s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3570        if (s->intr_eim == ON_OFF_AUTO_ON) {
3571            s->ecap |= VTD_ECAP_EIM;
3572        }
3573        assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3574    }
3575
3576    if (x86_iommu->dt_supported) {
3577        s->ecap |= VTD_ECAP_DT;
3578    }
3579
3580    if (x86_iommu->pt_supported) {
3581        s->ecap |= VTD_ECAP_PT;
3582    }
3583
3584    if (s->caching_mode) {
3585        s->cap |= VTD_CAP_CM;
3586    }
3587
3588    /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3589    if (s->scalable_mode) {
3590        s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3591    }
3592
3593    vtd_reset_caches(s);
3594
3595    /* Define registers with default values and bit semantics */
3596    vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3597    vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3598    vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3599    vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3600    vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3601    vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3602    vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3603    vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3604    vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3605
3606    /* Advanced Fault Logging not supported */
3607    vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3608    vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3609    vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3610    vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3611
3612    /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3613     * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3614     */
3615    vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3616
3617    /* Treated as RO for implementations that PLMR and PHMR fields reported
3618     * as Clear in the CAP_REG.
3619     * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3620     */
3621    vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3622
3623    vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3624    vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3625    vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3626    vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3627    vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3628    vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3629    vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3630    /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3631    vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3632
3633    /* IOTLB registers */
3634    vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3635    vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3636    vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3637
3638    /* Fault Recording Registers, 128-bit */
3639    vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3640    vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3641
3642    /*
3643     * Interrupt remapping registers.
3644     */
3645    vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3646}
3647
3648/* Should not reset address_spaces when reset because devices will still use
3649 * the address space they got at first (won't ask the bus again).
3650 */
3651static void vtd_reset(DeviceState *dev)
3652{
3653    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3654
3655    vtd_init(s);
3656    vtd_address_space_refresh_all(s);
3657}
3658
3659static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3660{
3661    IntelIOMMUState *s = opaque;
3662    VTDAddressSpace *vtd_as;
3663
3664    assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3665
3666    vtd_as = vtd_find_add_as(s, bus, devfn);
3667    return &vtd_as->as;
3668}
3669
3670static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3671{
3672    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3673
3674    if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3675        error_setg(errp, "eim=on cannot be selected without intremap=on");
3676        return false;
3677    }
3678
3679    if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3680        s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3681                      && x86_iommu_ir_supported(x86_iommu) ?
3682                                              ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3683    }
3684    if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3685        if (!kvm_irqchip_in_kernel()) {
3686            error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3687            return false;
3688        }
3689        if (!kvm_enable_x2apic()) {
3690            error_setg(errp, "eim=on requires support on the KVM side"
3691                             "(X2APIC_API, first shipped in v4.7)");
3692            return false;
3693        }
3694    }
3695
3696    /* Currently only address widths supported are 39 and 48 bits */
3697    if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3698        (s->aw_bits != VTD_HOST_AW_48BIT)) {
3699        error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3700                   VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3701        return false;
3702    }
3703
3704    if (s->scalable_mode && !s->dma_drain) {
3705        error_setg(errp, "Need to set dma_drain for scalable mode");
3706        return false;
3707    }
3708
3709    return true;
3710}
3711
3712static int vtd_machine_done_notify_one(Object *child, void *unused)
3713{
3714    IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3715
3716    /*
3717     * We hard-coded here because vfio-pci is the only special case
3718     * here.  Let's be more elegant in the future when we can, but so
3719     * far there seems to be no better way.
3720     */
3721    if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3722        vtd_panic_require_caching_mode();
3723    }
3724
3725    return 0;
3726}
3727
3728static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3729{
3730    object_child_foreach_recursive(object_get_root(),
3731                                   vtd_machine_done_notify_one, NULL);
3732}
3733
3734static Notifier vtd_machine_done_notify = {
3735    .notify = vtd_machine_done_hook,
3736};
3737
3738static void vtd_realize(DeviceState *dev, Error **errp)
3739{
3740    MachineState *ms = MACHINE(qdev_get_machine());
3741    PCMachineState *pcms = PC_MACHINE(ms);
3742    X86MachineState *x86ms = X86_MACHINE(ms);
3743    PCIBus *bus = pcms->bus;
3744    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3745    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3746
3747    x86_iommu->type = TYPE_INTEL;
3748
3749    if (!vtd_decide_config(s, errp)) {
3750        return;
3751    }
3752
3753    QLIST_INIT(&s->vtd_as_with_notifiers);
3754    qemu_mutex_init(&s->iommu_lock);
3755    memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3756    memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3757                          "intel_iommu", DMAR_REG_SIZE);
3758
3759    /* Create the shared memory regions by all devices */
3760    memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3761                       UINT64_MAX);
3762    memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3763                          s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3764    memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3765                             "vtd-sys-alias", get_system_memory(), 0,
3766                             memory_region_size(get_system_memory()));
3767    memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3768                                        &s->mr_sys_alias, 0);
3769    memory_region_add_subregion_overlap(&s->mr_nodmar,
3770                                        VTD_INTERRUPT_ADDR_FIRST,
3771                                        &s->mr_ir, 1);
3772
3773    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3774    /* No corresponding destroy */
3775    s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3776                                     g_free, g_free);
3777    s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3778                                              g_free, g_free);
3779    vtd_init(s);
3780    sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3781    pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3782    /* Pseudo address space under root PCI bus. */
3783    x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3784    qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
3785}
3786
3787static void vtd_class_init(ObjectClass *klass, void *data)
3788{
3789    DeviceClass *dc = DEVICE_CLASS(klass);
3790    X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3791
3792    dc->reset = vtd_reset;
3793    dc->vmsd = &vtd_vmstate;
3794    dc->props = vtd_properties;
3795    dc->hotpluggable = false;
3796    x86_class->realize = vtd_realize;
3797    x86_class->int_remap = vtd_int_remap;
3798    /* Supported by the pc-q35-* machine types */
3799    dc->user_creatable = true;
3800    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3801    dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3802}
3803
3804static const TypeInfo vtd_info = {
3805    .name          = TYPE_INTEL_IOMMU_DEVICE,
3806    .parent        = TYPE_X86_IOMMU_DEVICE,
3807    .instance_size = sizeof(IntelIOMMUState),
3808    .class_init    = vtd_class_init,
3809};
3810
3811static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3812                                                     void *data)
3813{
3814    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3815
3816    imrc->translate = vtd_iommu_translate;
3817    imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3818    imrc->replay = vtd_iommu_replay;
3819}
3820
3821static const TypeInfo vtd_iommu_memory_region_info = {
3822    .parent = TYPE_IOMMU_MEMORY_REGION,
3823    .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3824    .class_init = vtd_iommu_memory_region_class_init,
3825};
3826
3827static void vtd_register_types(void)
3828{
3829    type_register_static(&vtd_info);
3830    type_register_static(&vtd_iommu_memory_region_info);
3831}
3832
3833type_init(vtd_register_types)
3834