qemu/target/arm/vfp_helper.c
<<
>>
Prefs
   1/*
   2 * ARM VFP floating-point operations
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "exec/helper-proto.h"
  23#include "internals.h"
  24#ifdef CONFIG_TCG
  25#include "qemu/log.h"
  26#include "fpu/softfloat.h"
  27#endif
  28
  29/* VFP support.  We follow the convention used for VFP instructions:
  30   Single precision routines have a "s" suffix, double precision a
  31   "d" suffix.  */
  32
  33#ifdef CONFIG_TCG
  34
  35/* Convert host exception flags to vfp form.  */
  36static inline int vfp_exceptbits_from_host(int host_bits)
  37{
  38    int target_bits = 0;
  39
  40    if (host_bits & float_flag_invalid) {
  41        target_bits |= 1;
  42    }
  43    if (host_bits & float_flag_divbyzero) {
  44        target_bits |= 2;
  45    }
  46    if (host_bits & float_flag_overflow) {
  47        target_bits |= 4;
  48    }
  49    if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
  50        target_bits |= 8;
  51    }
  52    if (host_bits & float_flag_inexact) {
  53        target_bits |= 0x10;
  54    }
  55    if (host_bits & float_flag_input_denormal) {
  56        target_bits |= 0x80;
  57    }
  58    return target_bits;
  59}
  60
  61/* Convert vfp exception flags to target form.  */
  62static inline int vfp_exceptbits_to_host(int target_bits)
  63{
  64    int host_bits = 0;
  65
  66    if (target_bits & 1) {
  67        host_bits |= float_flag_invalid;
  68    }
  69    if (target_bits & 2) {
  70        host_bits |= float_flag_divbyzero;
  71    }
  72    if (target_bits & 4) {
  73        host_bits |= float_flag_overflow;
  74    }
  75    if (target_bits & 8) {
  76        host_bits |= float_flag_underflow;
  77    }
  78    if (target_bits & 0x10) {
  79        host_bits |= float_flag_inexact;
  80    }
  81    if (target_bits & 0x80) {
  82        host_bits |= float_flag_input_denormal;
  83    }
  84    return host_bits;
  85}
  86
  87static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
  88{
  89    uint32_t i;
  90
  91    i = get_float_exception_flags(&env->vfp.fp_status);
  92    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
  93    /* FZ16 does not generate an input denormal exception.  */
  94    i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
  95          & ~float_flag_input_denormal);
  96    return vfp_exceptbits_from_host(i);
  97}
  98
  99static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
 100{
 101    int i;
 102    uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
 103
 104    changed ^= val;
 105    if (changed & (3 << 22)) {
 106        i = (val >> 22) & 3;
 107        switch (i) {
 108        case FPROUNDING_TIEEVEN:
 109            i = float_round_nearest_even;
 110            break;
 111        case FPROUNDING_POSINF:
 112            i = float_round_up;
 113            break;
 114        case FPROUNDING_NEGINF:
 115            i = float_round_down;
 116            break;
 117        case FPROUNDING_ZERO:
 118            i = float_round_to_zero;
 119            break;
 120        }
 121        set_float_rounding_mode(i, &env->vfp.fp_status);
 122        set_float_rounding_mode(i, &env->vfp.fp_status_f16);
 123    }
 124    if (changed & FPCR_FZ16) {
 125        bool ftz_enabled = val & FPCR_FZ16;
 126        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
 127        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
 128    }
 129    if (changed & FPCR_FZ) {
 130        bool ftz_enabled = val & FPCR_FZ;
 131        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
 132        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
 133    }
 134    if (changed & FPCR_DN) {
 135        bool dnan_enabled = val & FPCR_DN;
 136        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
 137        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
 138    }
 139
 140    /*
 141     * The exception flags are ORed together when we read fpscr so we
 142     * only need to preserve the current state in one of our
 143     * float_status values.
 144     */
 145    i = vfp_exceptbits_to_host(val);
 146    set_float_exception_flags(i, &env->vfp.fp_status);
 147    set_float_exception_flags(0, &env->vfp.fp_status_f16);
 148    set_float_exception_flags(0, &env->vfp.standard_fp_status);
 149}
 150
 151#else
 152
 153static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
 154{
 155    return 0;
 156}
 157
 158static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
 159{
 160}
 161
 162#endif
 163
 164uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
 165{
 166    uint32_t i, fpscr;
 167
 168    fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
 169            | (env->vfp.vec_len << 16)
 170            | (env->vfp.vec_stride << 20);
 171
 172    fpscr |= vfp_get_fpscr_from_host(env);
 173
 174    i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
 175    fpscr |= i ? FPCR_QC : 0;
 176
 177    return fpscr;
 178}
 179
 180uint32_t vfp_get_fpscr(CPUARMState *env)
 181{
 182    return HELPER(vfp_get_fpscr)(env);
 183}
 184
 185void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
 186{
 187    /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
 188    if (!cpu_isar_feature(aa64_fp16, env_archcpu(env))) {
 189        val &= ~FPCR_FZ16;
 190    }
 191
 192    if (arm_feature(env, ARM_FEATURE_M)) {
 193        /*
 194         * M profile FPSCR is RES0 for the QC, STRIDE, FZ16, LEN bits
 195         * and also for the trapped-exception-handling bits IxE.
 196         */
 197        val &= 0xf7c0009f;
 198    }
 199
 200    vfp_set_fpscr_to_host(env, val);
 201
 202    /*
 203     * We don't implement trapped exception handling, so the
 204     * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
 205     *
 206     * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC
 207     * (which are stored in fp_status), and the other RES0 bits
 208     * in between, then we clear all of the low 16 bits.
 209     */
 210    env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
 211    env->vfp.vec_len = (val >> 16) & 7;
 212    env->vfp.vec_stride = (val >> 20) & 3;
 213
 214    /*
 215     * The bit we set within fpscr_q is arbitrary; the register as a
 216     * whole being zero/non-zero is what counts.
 217     */
 218    env->vfp.qc[0] = val & FPCR_QC;
 219    env->vfp.qc[1] = 0;
 220    env->vfp.qc[2] = 0;
 221    env->vfp.qc[3] = 0;
 222}
 223
 224void vfp_set_fpscr(CPUARMState *env, uint32_t val)
 225{
 226    HELPER(vfp_set_fpscr)(env, val);
 227}
 228
 229#ifdef CONFIG_TCG
 230
 231#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
 232
 233#define VFP_BINOP(name) \
 234float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
 235{ \
 236    float_status *fpst = fpstp; \
 237    return float32_ ## name(a, b, fpst); \
 238} \
 239float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
 240{ \
 241    float_status *fpst = fpstp; \
 242    return float64_ ## name(a, b, fpst); \
 243}
 244VFP_BINOP(add)
 245VFP_BINOP(sub)
 246VFP_BINOP(mul)
 247VFP_BINOP(div)
 248VFP_BINOP(min)
 249VFP_BINOP(max)
 250VFP_BINOP(minnum)
 251VFP_BINOP(maxnum)
 252#undef VFP_BINOP
 253
 254float32 VFP_HELPER(neg, s)(float32 a)
 255{
 256    return float32_chs(a);
 257}
 258
 259float64 VFP_HELPER(neg, d)(float64 a)
 260{
 261    return float64_chs(a);
 262}
 263
 264float32 VFP_HELPER(abs, s)(float32 a)
 265{
 266    return float32_abs(a);
 267}
 268
 269float64 VFP_HELPER(abs, d)(float64 a)
 270{
 271    return float64_abs(a);
 272}
 273
 274float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
 275{
 276    return float32_sqrt(a, &env->vfp.fp_status);
 277}
 278
 279float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
 280{
 281    return float64_sqrt(a, &env->vfp.fp_status);
 282}
 283
 284static void softfloat_to_vfp_compare(CPUARMState *env, int cmp)
 285{
 286    uint32_t flags;
 287    switch (cmp) {
 288    case float_relation_equal:
 289        flags = 0x6;
 290        break;
 291    case float_relation_less:
 292        flags = 0x8;
 293        break;
 294    case float_relation_greater:
 295        flags = 0x2;
 296        break;
 297    case float_relation_unordered:
 298        flags = 0x3;
 299        break;
 300    default:
 301        g_assert_not_reached();
 302    }
 303    env->vfp.xregs[ARM_VFP_FPSCR] =
 304        deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
 305}
 306
 307/* XXX: check quiet/signaling case */
 308#define DO_VFP_cmp(p, type) \
 309void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
 310{ \
 311    softfloat_to_vfp_compare(env, \
 312        type ## _compare_quiet(a, b, &env->vfp.fp_status)); \
 313} \
 314void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
 315{ \
 316    softfloat_to_vfp_compare(env, \
 317        type ## _compare(a, b, &env->vfp.fp_status)); \
 318}
 319DO_VFP_cmp(s, float32)
 320DO_VFP_cmp(d, float64)
 321#undef DO_VFP_cmp
 322
 323/* Integer to float and float to integer conversions */
 324
 325#define CONV_ITOF(name, ftype, fsz, sign)                           \
 326ftype HELPER(name)(uint32_t x, void *fpstp)                         \
 327{                                                                   \
 328    float_status *fpst = fpstp;                                     \
 329    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
 330}
 331
 332#define CONV_FTOI(name, ftype, fsz, sign, round)                \
 333sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
 334{                                                               \
 335    float_status *fpst = fpstp;                                 \
 336    if (float##fsz##_is_any_nan(x)) {                           \
 337        float_raise(float_flag_invalid, fpst);                  \
 338        return 0;                                               \
 339    }                                                           \
 340    return float##fsz##_to_##sign##int32##round(x, fpst);       \
 341}
 342
 343#define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
 344    CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
 345    CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
 346    CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
 347
 348FLOAT_CONVS(si, h, uint32_t, 16, )
 349FLOAT_CONVS(si, s, float32, 32, )
 350FLOAT_CONVS(si, d, float64, 64, )
 351FLOAT_CONVS(ui, h, uint32_t, 16, u)
 352FLOAT_CONVS(ui, s, float32, 32, u)
 353FLOAT_CONVS(ui, d, float64, 64, u)
 354
 355#undef CONV_ITOF
 356#undef CONV_FTOI
 357#undef FLOAT_CONVS
 358
 359/* floating point conversion */
 360float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
 361{
 362    return float32_to_float64(x, &env->vfp.fp_status);
 363}
 364
 365float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
 366{
 367    return float64_to_float32(x, &env->vfp.fp_status);
 368}
 369
 370/* VFP3 fixed point conversion.  */
 371#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
 372float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
 373                                     void *fpstp) \
 374{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
 375
 376#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff)   \
 377uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
 378                                            void *fpst)                   \
 379{                                                                         \
 380    if (unlikely(float##fsz##_is_any_nan(x))) {                           \
 381        float_raise(float_flag_invalid, fpst);                            \
 382        return 0;                                                         \
 383    }                                                                     \
 384    return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
 385}
 386
 387#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
 388VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
 389VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
 390                         float_round_to_zero, _round_to_zero)    \
 391VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
 392                         get_float_rounding_mode(fpst), )
 393
 394#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
 395VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
 396VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
 397                         get_float_rounding_mode(fpst), )
 398
 399VFP_CONV_FIX(sh, d, 64, 64, int16)
 400VFP_CONV_FIX(sl, d, 64, 64, int32)
 401VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
 402VFP_CONV_FIX(uh, d, 64, 64, uint16)
 403VFP_CONV_FIX(ul, d, 64, 64, uint32)
 404VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
 405VFP_CONV_FIX(sh, s, 32, 32, int16)
 406VFP_CONV_FIX(sl, s, 32, 32, int32)
 407VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
 408VFP_CONV_FIX(uh, s, 32, 32, uint16)
 409VFP_CONV_FIX(ul, s, 32, 32, uint32)
 410VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
 411
 412#undef VFP_CONV_FIX
 413#undef VFP_CONV_FIX_FLOAT
 414#undef VFP_CONV_FLOAT_FIX_ROUND
 415#undef VFP_CONV_FIX_A64
 416
 417uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
 418{
 419    return int32_to_float16_scalbn(x, -shift, fpst);
 420}
 421
 422uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
 423{
 424    return uint32_to_float16_scalbn(x, -shift, fpst);
 425}
 426
 427uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
 428{
 429    return int64_to_float16_scalbn(x, -shift, fpst);
 430}
 431
 432uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
 433{
 434    return uint64_to_float16_scalbn(x, -shift, fpst);
 435}
 436
 437uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
 438{
 439    if (unlikely(float16_is_any_nan(x))) {
 440        float_raise(float_flag_invalid, fpst);
 441        return 0;
 442    }
 443    return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
 444                                   shift, fpst);
 445}
 446
 447uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
 448{
 449    if (unlikely(float16_is_any_nan(x))) {
 450        float_raise(float_flag_invalid, fpst);
 451        return 0;
 452    }
 453    return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
 454                                    shift, fpst);
 455}
 456
 457uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
 458{
 459    if (unlikely(float16_is_any_nan(x))) {
 460        float_raise(float_flag_invalid, fpst);
 461        return 0;
 462    }
 463    return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
 464                                   shift, fpst);
 465}
 466
 467uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
 468{
 469    if (unlikely(float16_is_any_nan(x))) {
 470        float_raise(float_flag_invalid, fpst);
 471        return 0;
 472    }
 473    return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
 474                                    shift, fpst);
 475}
 476
 477uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
 478{
 479    if (unlikely(float16_is_any_nan(x))) {
 480        float_raise(float_flag_invalid, fpst);
 481        return 0;
 482    }
 483    return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
 484                                   shift, fpst);
 485}
 486
 487uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
 488{
 489    if (unlikely(float16_is_any_nan(x))) {
 490        float_raise(float_flag_invalid, fpst);
 491        return 0;
 492    }
 493    return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
 494                                    shift, fpst);
 495}
 496
 497/* Set the current fp rounding mode and return the old one.
 498 * The argument is a softfloat float_round_ value.
 499 */
 500uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
 501{
 502    float_status *fp_status = fpstp;
 503
 504    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
 505    set_float_rounding_mode(rmode, fp_status);
 506
 507    return prev_rmode;
 508}
 509
 510/* Set the current fp rounding mode in the standard fp status and return
 511 * the old one. This is for NEON instructions that need to change the
 512 * rounding mode but wish to use the standard FPSCR values for everything
 513 * else. Always set the rounding mode back to the correct value after
 514 * modifying it.
 515 * The argument is a softfloat float_round_ value.
 516 */
 517uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
 518{
 519    float_status *fp_status = &env->vfp.standard_fp_status;
 520
 521    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
 522    set_float_rounding_mode(rmode, fp_status);
 523
 524    return prev_rmode;
 525}
 526
 527/* Half precision conversions.  */
 528float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
 529{
 530    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 531     * it would affect flushing input denormals.
 532     */
 533    float_status *fpst = fpstp;
 534    flag save = get_flush_inputs_to_zero(fpst);
 535    set_flush_inputs_to_zero(false, fpst);
 536    float32 r = float16_to_float32(a, !ahp_mode, fpst);
 537    set_flush_inputs_to_zero(save, fpst);
 538    return r;
 539}
 540
 541uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
 542{
 543    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 544     * it would affect flushing output denormals.
 545     */
 546    float_status *fpst = fpstp;
 547    flag save = get_flush_to_zero(fpst);
 548    set_flush_to_zero(false, fpst);
 549    float16 r = float32_to_float16(a, !ahp_mode, fpst);
 550    set_flush_to_zero(save, fpst);
 551    return r;
 552}
 553
 554float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
 555{
 556    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 557     * it would affect flushing input denormals.
 558     */
 559    float_status *fpst = fpstp;
 560    flag save = get_flush_inputs_to_zero(fpst);
 561    set_flush_inputs_to_zero(false, fpst);
 562    float64 r = float16_to_float64(a, !ahp_mode, fpst);
 563    set_flush_inputs_to_zero(save, fpst);
 564    return r;
 565}
 566
 567uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
 568{
 569    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 570     * it would affect flushing output denormals.
 571     */
 572    float_status *fpst = fpstp;
 573    flag save = get_flush_to_zero(fpst);
 574    set_flush_to_zero(false, fpst);
 575    float16 r = float64_to_float16(a, !ahp_mode, fpst);
 576    set_flush_to_zero(save, fpst);
 577    return r;
 578}
 579
 580#define float32_two make_float32(0x40000000)
 581#define float32_three make_float32(0x40400000)
 582#define float32_one_point_five make_float32(0x3fc00000)
 583
 584float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
 585{
 586    float_status *s = &env->vfp.standard_fp_status;
 587    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
 588        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
 589        if (!(float32_is_zero(a) || float32_is_zero(b))) {
 590            float_raise(float_flag_input_denormal, s);
 591        }
 592        return float32_two;
 593    }
 594    return float32_sub(float32_two, float32_mul(a, b, s), s);
 595}
 596
 597float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
 598{
 599    float_status *s = &env->vfp.standard_fp_status;
 600    float32 product;
 601    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
 602        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
 603        if (!(float32_is_zero(a) || float32_is_zero(b))) {
 604            float_raise(float_flag_input_denormal, s);
 605        }
 606        return float32_one_point_five;
 607    }
 608    product = float32_mul(a, b, s);
 609    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
 610}
 611
 612/* NEON helpers.  */
 613
 614/* Constants 256 and 512 are used in some helpers; we avoid relying on
 615 * int->float conversions at run-time.  */
 616#define float64_256 make_float64(0x4070000000000000LL)
 617#define float64_512 make_float64(0x4080000000000000LL)
 618#define float16_maxnorm make_float16(0x7bff)
 619#define float32_maxnorm make_float32(0x7f7fffff)
 620#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
 621
 622/* Reciprocal functions
 623 *
 624 * The algorithm that must be used to calculate the estimate
 625 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
 626 */
 627
 628/* See RecipEstimate()
 629 *
 630 * input is a 9 bit fixed point number
 631 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
 632 * result range 256 .. 511 for a number from 1.0 to 511/256.
 633 */
 634
 635static int recip_estimate(int input)
 636{
 637    int a, b, r;
 638    assert(256 <= input && input < 512);
 639    a = (input * 2) + 1;
 640    b = (1 << 19) / a;
 641    r = (b + 1) >> 1;
 642    assert(256 <= r && r < 512);
 643    return r;
 644}
 645
 646/*
 647 * Common wrapper to call recip_estimate
 648 *
 649 * The parameters are exponent and 64 bit fraction (without implicit
 650 * bit) where the binary point is nominally at bit 52. Returns a
 651 * float64 which can then be rounded to the appropriate size by the
 652 * callee.
 653 */
 654
 655static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
 656{
 657    uint32_t scaled, estimate;
 658    uint64_t result_frac;
 659    int result_exp;
 660
 661    /* Handle sub-normals */
 662    if (*exp == 0) {
 663        if (extract64(frac, 51, 1) == 0) {
 664            *exp = -1;
 665            frac <<= 2;
 666        } else {
 667            frac <<= 1;
 668        }
 669    }
 670
 671    /* scaled = UInt('1':fraction<51:44>) */
 672    scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
 673    estimate = recip_estimate(scaled);
 674
 675    result_exp = exp_off - *exp;
 676    result_frac = deposit64(0, 44, 8, estimate);
 677    if (result_exp == 0) {
 678        result_frac = deposit64(result_frac >> 1, 51, 1, 1);
 679    } else if (result_exp == -1) {
 680        result_frac = deposit64(result_frac >> 2, 50, 2, 1);
 681        result_exp = 0;
 682    }
 683
 684    *exp = result_exp;
 685
 686    return result_frac;
 687}
 688
 689static bool round_to_inf(float_status *fpst, bool sign_bit)
 690{
 691    switch (fpst->float_rounding_mode) {
 692    case float_round_nearest_even: /* Round to Nearest */
 693        return true;
 694    case float_round_up: /* Round to +Inf */
 695        return !sign_bit;
 696    case float_round_down: /* Round to -Inf */
 697        return sign_bit;
 698    case float_round_to_zero: /* Round to Zero */
 699        return false;
 700    }
 701
 702    g_assert_not_reached();
 703}
 704
 705uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
 706{
 707    float_status *fpst = fpstp;
 708    float16 f16 = float16_squash_input_denormal(input, fpst);
 709    uint32_t f16_val = float16_val(f16);
 710    uint32_t f16_sign = float16_is_neg(f16);
 711    int f16_exp = extract32(f16_val, 10, 5);
 712    uint32_t f16_frac = extract32(f16_val, 0, 10);
 713    uint64_t f64_frac;
 714
 715    if (float16_is_any_nan(f16)) {
 716        float16 nan = f16;
 717        if (float16_is_signaling_nan(f16, fpst)) {
 718            float_raise(float_flag_invalid, fpst);
 719            nan = float16_silence_nan(f16, fpst);
 720        }
 721        if (fpst->default_nan_mode) {
 722            nan =  float16_default_nan(fpst);
 723        }
 724        return nan;
 725    } else if (float16_is_infinity(f16)) {
 726        return float16_set_sign(float16_zero, float16_is_neg(f16));
 727    } else if (float16_is_zero(f16)) {
 728        float_raise(float_flag_divbyzero, fpst);
 729        return float16_set_sign(float16_infinity, float16_is_neg(f16));
 730    } else if (float16_abs(f16) < (1 << 8)) {
 731        /* Abs(value) < 2.0^-16 */
 732        float_raise(float_flag_overflow | float_flag_inexact, fpst);
 733        if (round_to_inf(fpst, f16_sign)) {
 734            return float16_set_sign(float16_infinity, f16_sign);
 735        } else {
 736            return float16_set_sign(float16_maxnorm, f16_sign);
 737        }
 738    } else if (f16_exp >= 29 && fpst->flush_to_zero) {
 739        float_raise(float_flag_underflow, fpst);
 740        return float16_set_sign(float16_zero, float16_is_neg(f16));
 741    }
 742
 743    f64_frac = call_recip_estimate(&f16_exp, 29,
 744                                   ((uint64_t) f16_frac) << (52 - 10));
 745
 746    /* result = sign : result_exp<4:0> : fraction<51:42> */
 747    f16_val = deposit32(0, 15, 1, f16_sign);
 748    f16_val = deposit32(f16_val, 10, 5, f16_exp);
 749    f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
 750    return make_float16(f16_val);
 751}
 752
 753float32 HELPER(recpe_f32)(float32 input, void *fpstp)
 754{
 755    float_status *fpst = fpstp;
 756    float32 f32 = float32_squash_input_denormal(input, fpst);
 757    uint32_t f32_val = float32_val(f32);
 758    bool f32_sign = float32_is_neg(f32);
 759    int f32_exp = extract32(f32_val, 23, 8);
 760    uint32_t f32_frac = extract32(f32_val, 0, 23);
 761    uint64_t f64_frac;
 762
 763    if (float32_is_any_nan(f32)) {
 764        float32 nan = f32;
 765        if (float32_is_signaling_nan(f32, fpst)) {
 766            float_raise(float_flag_invalid, fpst);
 767            nan = float32_silence_nan(f32, fpst);
 768        }
 769        if (fpst->default_nan_mode) {
 770            nan =  float32_default_nan(fpst);
 771        }
 772        return nan;
 773    } else if (float32_is_infinity(f32)) {
 774        return float32_set_sign(float32_zero, float32_is_neg(f32));
 775    } else if (float32_is_zero(f32)) {
 776        float_raise(float_flag_divbyzero, fpst);
 777        return float32_set_sign(float32_infinity, float32_is_neg(f32));
 778    } else if (float32_abs(f32) < (1ULL << 21)) {
 779        /* Abs(value) < 2.0^-128 */
 780        float_raise(float_flag_overflow | float_flag_inexact, fpst);
 781        if (round_to_inf(fpst, f32_sign)) {
 782            return float32_set_sign(float32_infinity, f32_sign);
 783        } else {
 784            return float32_set_sign(float32_maxnorm, f32_sign);
 785        }
 786    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
 787        float_raise(float_flag_underflow, fpst);
 788        return float32_set_sign(float32_zero, float32_is_neg(f32));
 789    }
 790
 791    f64_frac = call_recip_estimate(&f32_exp, 253,
 792                                   ((uint64_t) f32_frac) << (52 - 23));
 793
 794    /* result = sign : result_exp<7:0> : fraction<51:29> */
 795    f32_val = deposit32(0, 31, 1, f32_sign);
 796    f32_val = deposit32(f32_val, 23, 8, f32_exp);
 797    f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
 798    return make_float32(f32_val);
 799}
 800
 801float64 HELPER(recpe_f64)(float64 input, void *fpstp)
 802{
 803    float_status *fpst = fpstp;
 804    float64 f64 = float64_squash_input_denormal(input, fpst);
 805    uint64_t f64_val = float64_val(f64);
 806    bool f64_sign = float64_is_neg(f64);
 807    int f64_exp = extract64(f64_val, 52, 11);
 808    uint64_t f64_frac = extract64(f64_val, 0, 52);
 809
 810    /* Deal with any special cases */
 811    if (float64_is_any_nan(f64)) {
 812        float64 nan = f64;
 813        if (float64_is_signaling_nan(f64, fpst)) {
 814            float_raise(float_flag_invalid, fpst);
 815            nan = float64_silence_nan(f64, fpst);
 816        }
 817        if (fpst->default_nan_mode) {
 818            nan =  float64_default_nan(fpst);
 819        }
 820        return nan;
 821    } else if (float64_is_infinity(f64)) {
 822        return float64_set_sign(float64_zero, float64_is_neg(f64));
 823    } else if (float64_is_zero(f64)) {
 824        float_raise(float_flag_divbyzero, fpst);
 825        return float64_set_sign(float64_infinity, float64_is_neg(f64));
 826    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
 827        /* Abs(value) < 2.0^-1024 */
 828        float_raise(float_flag_overflow | float_flag_inexact, fpst);
 829        if (round_to_inf(fpst, f64_sign)) {
 830            return float64_set_sign(float64_infinity, f64_sign);
 831        } else {
 832            return float64_set_sign(float64_maxnorm, f64_sign);
 833        }
 834    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
 835        float_raise(float_flag_underflow, fpst);
 836        return float64_set_sign(float64_zero, float64_is_neg(f64));
 837    }
 838
 839    f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
 840
 841    /* result = sign : result_exp<10:0> : fraction<51:0>; */
 842    f64_val = deposit64(0, 63, 1, f64_sign);
 843    f64_val = deposit64(f64_val, 52, 11, f64_exp);
 844    f64_val = deposit64(f64_val, 0, 52, f64_frac);
 845    return make_float64(f64_val);
 846}
 847
 848/* The algorithm that must be used to calculate the estimate
 849 * is specified by the ARM ARM.
 850 */
 851
 852static int do_recip_sqrt_estimate(int a)
 853{
 854    int b, estimate;
 855
 856    assert(128 <= a && a < 512);
 857    if (a < 256) {
 858        a = a * 2 + 1;
 859    } else {
 860        a = (a >> 1) << 1;
 861        a = (a + 1) * 2;
 862    }
 863    b = 512;
 864    while (a * (b + 1) * (b + 1) < (1 << 28)) {
 865        b += 1;
 866    }
 867    estimate = (b + 1) / 2;
 868    assert(256 <= estimate && estimate < 512);
 869
 870    return estimate;
 871}
 872
 873
 874static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
 875{
 876    int estimate;
 877    uint32_t scaled;
 878
 879    if (*exp == 0) {
 880        while (extract64(frac, 51, 1) == 0) {
 881            frac = frac << 1;
 882            *exp -= 1;
 883        }
 884        frac = extract64(frac, 0, 51) << 1;
 885    }
 886
 887    if (*exp & 1) {
 888        /* scaled = UInt('01':fraction<51:45>) */
 889        scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
 890    } else {
 891        /* scaled = UInt('1':fraction<51:44>) */
 892        scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
 893    }
 894    estimate = do_recip_sqrt_estimate(scaled);
 895
 896    *exp = (exp_off - *exp) / 2;
 897    return extract64(estimate, 0, 8) << 44;
 898}
 899
 900uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
 901{
 902    float_status *s = fpstp;
 903    float16 f16 = float16_squash_input_denormal(input, s);
 904    uint16_t val = float16_val(f16);
 905    bool f16_sign = float16_is_neg(f16);
 906    int f16_exp = extract32(val, 10, 5);
 907    uint16_t f16_frac = extract32(val, 0, 10);
 908    uint64_t f64_frac;
 909
 910    if (float16_is_any_nan(f16)) {
 911        float16 nan = f16;
 912        if (float16_is_signaling_nan(f16, s)) {
 913            float_raise(float_flag_invalid, s);
 914            nan = float16_silence_nan(f16, s);
 915        }
 916        if (s->default_nan_mode) {
 917            nan =  float16_default_nan(s);
 918        }
 919        return nan;
 920    } else if (float16_is_zero(f16)) {
 921        float_raise(float_flag_divbyzero, s);
 922        return float16_set_sign(float16_infinity, f16_sign);
 923    } else if (f16_sign) {
 924        float_raise(float_flag_invalid, s);
 925        return float16_default_nan(s);
 926    } else if (float16_is_infinity(f16)) {
 927        return float16_zero;
 928    }
 929
 930    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
 931     * preserving the parity of the exponent.  */
 932
 933    f64_frac = ((uint64_t) f16_frac) << (52 - 10);
 934
 935    f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
 936
 937    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
 938    val = deposit32(0, 15, 1, f16_sign);
 939    val = deposit32(val, 10, 5, f16_exp);
 940    val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
 941    return make_float16(val);
 942}
 943
 944float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
 945{
 946    float_status *s = fpstp;
 947    float32 f32 = float32_squash_input_denormal(input, s);
 948    uint32_t val = float32_val(f32);
 949    uint32_t f32_sign = float32_is_neg(f32);
 950    int f32_exp = extract32(val, 23, 8);
 951    uint32_t f32_frac = extract32(val, 0, 23);
 952    uint64_t f64_frac;
 953
 954    if (float32_is_any_nan(f32)) {
 955        float32 nan = f32;
 956        if (float32_is_signaling_nan(f32, s)) {
 957            float_raise(float_flag_invalid, s);
 958            nan = float32_silence_nan(f32, s);
 959        }
 960        if (s->default_nan_mode) {
 961            nan =  float32_default_nan(s);
 962        }
 963        return nan;
 964    } else if (float32_is_zero(f32)) {
 965        float_raise(float_flag_divbyzero, s);
 966        return float32_set_sign(float32_infinity, float32_is_neg(f32));
 967    } else if (float32_is_neg(f32)) {
 968        float_raise(float_flag_invalid, s);
 969        return float32_default_nan(s);
 970    } else if (float32_is_infinity(f32)) {
 971        return float32_zero;
 972    }
 973
 974    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
 975     * preserving the parity of the exponent.  */
 976
 977    f64_frac = ((uint64_t) f32_frac) << 29;
 978
 979    f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
 980
 981    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
 982    val = deposit32(0, 31, 1, f32_sign);
 983    val = deposit32(val, 23, 8, f32_exp);
 984    val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
 985    return make_float32(val);
 986}
 987
 988float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
 989{
 990    float_status *s = fpstp;
 991    float64 f64 = float64_squash_input_denormal(input, s);
 992    uint64_t val = float64_val(f64);
 993    bool f64_sign = float64_is_neg(f64);
 994    int f64_exp = extract64(val, 52, 11);
 995    uint64_t f64_frac = extract64(val, 0, 52);
 996
 997    if (float64_is_any_nan(f64)) {
 998        float64 nan = f64;
 999        if (float64_is_signaling_nan(f64, s)) {
1000            float_raise(float_flag_invalid, s);
1001            nan = float64_silence_nan(f64, s);
1002        }
1003        if (s->default_nan_mode) {
1004            nan =  float64_default_nan(s);
1005        }
1006        return nan;
1007    } else if (float64_is_zero(f64)) {
1008        float_raise(float_flag_divbyzero, s);
1009        return float64_set_sign(float64_infinity, float64_is_neg(f64));
1010    } else if (float64_is_neg(f64)) {
1011        float_raise(float_flag_invalid, s);
1012        return float64_default_nan(s);
1013    } else if (float64_is_infinity(f64)) {
1014        return float64_zero;
1015    }
1016
1017    f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
1018
1019    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
1020    val = deposit64(0, 61, 1, f64_sign);
1021    val = deposit64(val, 52, 11, f64_exp);
1022    val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
1023    return make_float64(val);
1024}
1025
1026uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
1027{
1028    /* float_status *s = fpstp; */
1029    int input, estimate;
1030
1031    if ((a & 0x80000000) == 0) {
1032        return 0xffffffff;
1033    }
1034
1035    input = extract32(a, 23, 9);
1036    estimate = recip_estimate(input);
1037
1038    return deposit32(0, (32 - 9), 9, estimate);
1039}
1040
1041uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
1042{
1043    int estimate;
1044
1045    if ((a & 0xc0000000) == 0) {
1046        return 0xffffffff;
1047    }
1048
1049    estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1050
1051    return deposit32(0, 23, 9, estimate);
1052}
1053
1054/* VFPv4 fused multiply-accumulate */
1055float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1056{
1057    float_status *fpst = fpstp;
1058    return float32_muladd(a, b, c, 0, fpst);
1059}
1060
1061float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1062{
1063    float_status *fpst = fpstp;
1064    return float64_muladd(a, b, c, 0, fpst);
1065}
1066
1067/* ARMv8 round to integral */
1068float32 HELPER(rints_exact)(float32 x, void *fp_status)
1069{
1070    return float32_round_to_int(x, fp_status);
1071}
1072
1073float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1074{
1075    return float64_round_to_int(x, fp_status);
1076}
1077
1078float32 HELPER(rints)(float32 x, void *fp_status)
1079{
1080    int old_flags = get_float_exception_flags(fp_status), new_flags;
1081    float32 ret;
1082
1083    ret = float32_round_to_int(x, fp_status);
1084
1085    /* Suppress any inexact exceptions the conversion produced */
1086    if (!(old_flags & float_flag_inexact)) {
1087        new_flags = get_float_exception_flags(fp_status);
1088        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1089    }
1090
1091    return ret;
1092}
1093
1094float64 HELPER(rintd)(float64 x, void *fp_status)
1095{
1096    int old_flags = get_float_exception_flags(fp_status), new_flags;
1097    float64 ret;
1098
1099    ret = float64_round_to_int(x, fp_status);
1100
1101    new_flags = get_float_exception_flags(fp_status);
1102
1103    /* Suppress any inexact exceptions the conversion produced */
1104    if (!(old_flags & float_flag_inexact)) {
1105        new_flags = get_float_exception_flags(fp_status);
1106        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1107    }
1108
1109    return ret;
1110}
1111
1112/* Convert ARM rounding mode to softfloat */
1113int arm_rmode_to_sf(int rmode)
1114{
1115    switch (rmode) {
1116    case FPROUNDING_TIEAWAY:
1117        rmode = float_round_ties_away;
1118        break;
1119    case FPROUNDING_ODD:
1120        /* FIXME: add support for TIEAWAY and ODD */
1121        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
1122                      rmode);
1123        /* fall through for now */
1124    case FPROUNDING_TIEEVEN:
1125    default:
1126        rmode = float_round_nearest_even;
1127        break;
1128    case FPROUNDING_POSINF:
1129        rmode = float_round_up;
1130        break;
1131    case FPROUNDING_NEGINF:
1132        rmode = float_round_down;
1133        break;
1134    case FPROUNDING_ZERO:
1135        rmode = float_round_to_zero;
1136        break;
1137    }
1138    return rmode;
1139}
1140
1141/*
1142 * Implement float64 to int32_t conversion without saturation;
1143 * the result is supplied modulo 2^32.
1144 */
1145uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1146{
1147    float_status *status = vstatus;
1148    uint32_t exp, sign;
1149    uint64_t frac;
1150    uint32_t inexact = 1; /* !Z */
1151
1152    sign = extract64(value, 63, 1);
1153    exp = extract64(value, 52, 11);
1154    frac = extract64(value, 0, 52);
1155
1156    if (exp == 0) {
1157        /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript.  */
1158        inexact = sign;
1159        if (frac != 0) {
1160            if (status->flush_inputs_to_zero) {
1161                float_raise(float_flag_input_denormal, status);
1162            } else {
1163                float_raise(float_flag_inexact, status);
1164                inexact = 1;
1165            }
1166        }
1167        frac = 0;
1168    } else if (exp == 0x7ff) {
1169        /* This operation raises Invalid for both NaN and overflow (Inf).  */
1170        float_raise(float_flag_invalid, status);
1171        frac = 0;
1172    } else {
1173        int true_exp = exp - 1023;
1174        int shift = true_exp - 52;
1175
1176        /* Restore implicit bit.  */
1177        frac |= 1ull << 52;
1178
1179        /* Shift the fraction into place.  */
1180        if (shift >= 0) {
1181            /* The number is so large we must shift the fraction left.  */
1182            if (shift >= 64) {
1183                /* The fraction is shifted out entirely.  */
1184                frac = 0;
1185            } else {
1186                frac <<= shift;
1187            }
1188        } else if (shift > -64) {
1189            /* Normal case -- shift right and notice if bits shift out.  */
1190            inexact = (frac << (64 + shift)) != 0;
1191            frac >>= -shift;
1192        } else {
1193            /* The fraction is shifted out entirely.  */
1194            frac = 0;
1195        }
1196
1197        /* Notice overflow or inexact exceptions.  */
1198        if (true_exp > 31 || frac > (sign ? 0x80000000ull : 0x7fffffff)) {
1199            /* Overflow, for which this operation raises invalid.  */
1200            float_raise(float_flag_invalid, status);
1201            inexact = 1;
1202        } else if (inexact) {
1203            float_raise(float_flag_inexact, status);
1204        }
1205
1206        /* Honor the sign.  */
1207        if (sign) {
1208            frac = -frac;
1209        }
1210    }
1211
1212    /* Pack the result and the env->ZF representation of Z together.  */
1213    return deposit64(frac, 32, 32, inexact);
1214}
1215
1216uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1217{
1218    uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1219    uint32_t result = pair;
1220    uint32_t z = (pair >> 32) == 0;
1221
1222    /* Store Z, clear NCV, in FPSCR.NZCV.  */
1223    env->vfp.xregs[ARM_VFP_FPSCR]
1224        = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
1225
1226    return result;
1227}
1228
1229/* Round a float32 to an integer that fits in int32_t or int64_t.  */
1230static float32 frint_s(float32 f, float_status *fpst, int intsize)
1231{
1232    int old_flags = get_float_exception_flags(fpst);
1233    uint32_t exp = extract32(f, 23, 8);
1234
1235    if (unlikely(exp == 0xff)) {
1236        /* NaN or Inf.  */
1237        goto overflow;
1238    }
1239
1240    /* Round and re-extract the exponent.  */
1241    f = float32_round_to_int(f, fpst);
1242    exp = extract32(f, 23, 8);
1243
1244    /* Validate the range of the result.  */
1245    if (exp < 126 + intsize) {
1246        /* abs(F) <= INT{N}_MAX */
1247        return f;
1248    }
1249    if (exp == 126 + intsize) {
1250        uint32_t sign = extract32(f, 31, 1);
1251        uint32_t frac = extract32(f, 0, 23);
1252        if (sign && frac == 0) {
1253            /* F == INT{N}_MIN */
1254            return f;
1255        }
1256    }
1257
1258 overflow:
1259    /*
1260     * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1261     * inexact exception float32_round_to_int may have raised.
1262     */
1263    set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1264    return (0x100u + 126u + intsize) << 23;
1265}
1266
1267float32 HELPER(frint32_s)(float32 f, void *fpst)
1268{
1269    return frint_s(f, fpst, 32);
1270}
1271
1272float32 HELPER(frint64_s)(float32 f, void *fpst)
1273{
1274    return frint_s(f, fpst, 64);
1275}
1276
1277/* Round a float64 to an integer that fits in int32_t or int64_t.  */
1278static float64 frint_d(float64 f, float_status *fpst, int intsize)
1279{
1280    int old_flags = get_float_exception_flags(fpst);
1281    uint32_t exp = extract64(f, 52, 11);
1282
1283    if (unlikely(exp == 0x7ff)) {
1284        /* NaN or Inf.  */
1285        goto overflow;
1286    }
1287
1288    /* Round and re-extract the exponent.  */
1289    f = float64_round_to_int(f, fpst);
1290    exp = extract64(f, 52, 11);
1291
1292    /* Validate the range of the result.  */
1293    if (exp < 1022 + intsize) {
1294        /* abs(F) <= INT{N}_MAX */
1295        return f;
1296    }
1297    if (exp == 1022 + intsize) {
1298        uint64_t sign = extract64(f, 63, 1);
1299        uint64_t frac = extract64(f, 0, 52);
1300        if (sign && frac == 0) {
1301            /* F == INT{N}_MIN */
1302            return f;
1303        }
1304    }
1305
1306 overflow:
1307    /*
1308     * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1309     * inexact exception float64_round_to_int may have raised.
1310     */
1311    set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1312    return (uint64_t)(0x800 + 1022 + intsize) << 52;
1313}
1314
1315float64 HELPER(frint32_d)(float64 f, void *fpst)
1316{
1317    return frint_d(f, fpst, 32);
1318}
1319
1320float64 HELPER(frint64_d)(float64 f, void *fpst)
1321{
1322    return frint_d(f, fpst, 64);
1323}
1324
1325#endif
1326