qemu/target/arm/cpu.h
<<
>>
Prefs
   1/*
   2 * ARM virtual CPU header
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef ARM_CPU_H
  21#define ARM_CPU_H
  22
  23#include "kvm-consts.h"
  24#include "hw/registerfields.h"
  25#include "cpu-qom.h"
  26#include "exec/cpu-defs.h"
  27
  28/* ARM processors have a weak memory model */
  29#define TCG_GUEST_DEFAULT_MO      (0)
  30
  31#ifdef TARGET_AARCH64
  32#define KVM_HAVE_MCE_INJECTION 1
  33#endif
  34
  35#define EXCP_UDEF            1   /* undefined instruction */
  36#define EXCP_SWI             2   /* software interrupt */
  37#define EXCP_PREFETCH_ABORT  3
  38#define EXCP_DATA_ABORT      4
  39#define EXCP_IRQ             5
  40#define EXCP_FIQ             6
  41#define EXCP_BKPT            7
  42#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
  43#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
  44#define EXCP_HVC            11   /* HyperVisor Call */
  45#define EXCP_HYP_TRAP       12
  46#define EXCP_SMC            13   /* Secure Monitor Call */
  47#define EXCP_VIRQ           14
  48#define EXCP_VFIQ           15
  49#define EXCP_SEMIHOST       16   /* semihosting call */
  50#define EXCP_NOCP           17   /* v7M NOCP UsageFault */
  51#define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
  52#define EXCP_STKOF          19   /* v8M STKOF UsageFault */
  53#define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
  54#define EXCP_LSERR          21   /* v8M LSERR SecureFault */
  55#define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
  56/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
  57
  58#define ARMV7M_EXCP_RESET   1
  59#define ARMV7M_EXCP_NMI     2
  60#define ARMV7M_EXCP_HARD    3
  61#define ARMV7M_EXCP_MEM     4
  62#define ARMV7M_EXCP_BUS     5
  63#define ARMV7M_EXCP_USAGE   6
  64#define ARMV7M_EXCP_SECURE  7
  65#define ARMV7M_EXCP_SVC     11
  66#define ARMV7M_EXCP_DEBUG   12
  67#define ARMV7M_EXCP_PENDSV  14
  68#define ARMV7M_EXCP_SYSTICK 15
  69
  70/* For M profile, some registers are banked secure vs non-secure;
  71 * these are represented as a 2-element array where the first element
  72 * is the non-secure copy and the second is the secure copy.
  73 * When the CPU does not have implement the security extension then
  74 * only the first element is used.
  75 * This means that the copy for the current security state can be
  76 * accessed via env->registerfield[env->v7m.secure] (whether the security
  77 * extension is implemented or not).
  78 */
  79enum {
  80    M_REG_NS = 0,
  81    M_REG_S = 1,
  82    M_REG_NUM_BANKS = 2,
  83};
  84
  85/* ARM-specific interrupt pending bits.  */
  86#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
  87#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
  88#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
  89
  90/* The usual mapping for an AArch64 system register to its AArch32
  91 * counterpart is for the 32 bit world to have access to the lower
  92 * half only (with writes leaving the upper half untouched). It's
  93 * therefore useful to be able to pass TCG the offset of the least
  94 * significant half of a uint64_t struct member.
  95 */
  96#ifdef HOST_WORDS_BIGENDIAN
  97#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
  98#define offsetofhigh32(S, M) offsetof(S, M)
  99#else
 100#define offsetoflow32(S, M) offsetof(S, M)
 101#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 102#endif
 103
 104/* Meanings of the ARMCPU object's four inbound GPIO lines */
 105#define ARM_CPU_IRQ 0
 106#define ARM_CPU_FIQ 1
 107#define ARM_CPU_VIRQ 2
 108#define ARM_CPU_VFIQ 3
 109
 110#undef NB_MEM_ATTR
 111#define NB_MEM_ATTR 2
 112#define MEM_ATTR_NS 0
 113#define MEM_ATTR_SEC 1
 114
 115/* ARM-specific extra insn start words:
 116 * 1: Conditional execution bits
 117 * 2: Partial exception syndrome for data aborts
 118 */
 119#define TARGET_INSN_START_EXTRA_WORDS 2
 120
 121/* The 2nd extra word holding syndrome info for data aborts does not use
 122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 123 * help the sleb128 encoder do a better job.
 124 * When restoring the CPU state, we shift it back up.
 125 */
 126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
 127#define ARM_INSN_START_WORD2_SHIFT 14
 128
 129/* We currently assume float and double are IEEE single and double
 130   precision respectively.
 131   Doing runtime conversions is tricky because VFP registers may contain
 132   integer values (eg. as the result of a FTOSI instruction).
 133   s<2n> maps to the least significant half of d<n>
 134   s<2n+1> maps to the most significant half of d<n>
 135 */
 136
 137/**
 138 * DynamicGDBXMLInfo:
 139 * @desc: Contains the XML descriptions.
 140 * @num: Number of the registers in this XML seen by GDB.
 141 * @data: A union with data specific to the set of registers
 142 *    @cpregs_keys: Array that contains the corresponding Key of
 143 *                  a given cpreg with the same order of the cpreg
 144 *                  in the XML description.
 145 */
 146typedef struct DynamicGDBXMLInfo {
 147    char *desc;
 148    int num;
 149    union {
 150        struct {
 151            uint32_t *keys;
 152        } cpregs;
 153    } data;
 154} DynamicGDBXMLInfo;
 155
 156/* CPU state for each instance of a generic timer (in cp15 c14) */
 157typedef struct ARMGenericTimer {
 158    uint64_t cval; /* Timer CompareValue register */
 159    uint64_t ctl; /* Timer Control register */
 160} ARMGenericTimer;
 161
 162#define GTIMER_PHYS     0
 163#define GTIMER_VIRT     1
 164#define GTIMER_HYP      2
 165#define GTIMER_SEC      3
 166#define GTIMER_HYPVIRT  4
 167#define NUM_GTIMERS     5
 168
 169typedef struct {
 170    uint64_t raw_tcr;
 171    uint32_t mask;
 172    uint32_t base_mask;
 173} TCR;
 174
 175/* Define a maximum sized vector register.
 176 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
 177 * For 64-bit, this is a 2048-bit SVE register.
 178 *
 179 * Note that the mapping between S, D, and Q views of the register bank
 180 * differs between AArch64 and AArch32.
 181 * In AArch32:
 182 *  Qn = regs[n].d[1]:regs[n].d[0]
 183 *  Dn = regs[n / 2].d[n & 1]
 184 *  Sn = regs[n / 4].d[n % 4 / 2],
 185 *       bits 31..0 for even n, and bits 63..32 for odd n
 186 *       (and regs[16] to regs[31] are inaccessible)
 187 * In AArch64:
 188 *  Zn = regs[n].d[*]
 189 *  Qn = regs[n].d[1]:regs[n].d[0]
 190 *  Dn = regs[n].d[0]
 191 *  Sn = regs[n].d[0] bits 31..0
 192 *  Hn = regs[n].d[0] bits 15..0
 193 *
 194 * This corresponds to the architecturally defined mapping between
 195 * the two execution states, and means we do not need to explicitly
 196 * map these registers when changing states.
 197 *
 198 * Align the data for use with TCG host vector operations.
 199 */
 200
 201#ifdef TARGET_AARCH64
 202# define ARM_MAX_VQ    16
 203void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
 204#else
 205# define ARM_MAX_VQ    1
 206static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
 207#endif
 208
 209typedef struct ARMVectorReg {
 210    uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
 211} ARMVectorReg;
 212
 213#ifdef TARGET_AARCH64
 214/* In AArch32 mode, predicate registers do not exist at all.  */
 215typedef struct ARMPredicateReg {
 216    uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
 217} ARMPredicateReg;
 218
 219/* In AArch32 mode, PAC keys do not exist at all.  */
 220typedef struct ARMPACKey {
 221    uint64_t lo, hi;
 222} ARMPACKey;
 223#endif
 224
 225
 226typedef struct CPUARMState {
 227    /* Regs for current mode.  */
 228    uint32_t regs[16];
 229
 230    /* 32/64 switch only happens when taking and returning from
 231     * exceptions so the overlap semantics are taken care of then
 232     * instead of having a complicated union.
 233     */
 234    /* Regs for A64 mode.  */
 235    uint64_t xregs[32];
 236    uint64_t pc;
 237    /* PSTATE isn't an architectural register for ARMv8. However, it is
 238     * convenient for us to assemble the underlying state into a 32 bit format
 239     * identical to the architectural format used for the SPSR. (This is also
 240     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 241     * 'pstate' register are.) Of the PSTATE bits:
 242     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 243     *    semantics as for AArch32, as described in the comments on each field)
 244     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 245     *  DAIF (exception masks) are kept in env->daif
 246     *  BTYPE is kept in env->btype
 247     *  all other bits are stored in their correct places in env->pstate
 248     */
 249    uint32_t pstate;
 250    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
 251
 252    /* Cached TBFLAGS state.  See below for which bits are included.  */
 253    uint32_t hflags;
 254
 255    /* Frequently accessed CPSR bits are stored separately for efficiency.
 256       This contains all the other bits.  Use cpsr_{read,write} to access
 257       the whole CPSR.  */
 258    uint32_t uncached_cpsr;
 259    uint32_t spsr;
 260
 261    /* Banked registers.  */
 262    uint64_t banked_spsr[8];
 263    uint32_t banked_r13[8];
 264    uint32_t banked_r14[8];
 265
 266    /* These hold r8-r12.  */
 267    uint32_t usr_regs[5];
 268    uint32_t fiq_regs[5];
 269
 270    /* cpsr flag cache for faster execution */
 271    uint32_t CF; /* 0 or 1 */
 272    uint32_t VF; /* V is the bit 31. All other bits are undefined */
 273    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 274    uint32_t ZF; /* Z set if zero.  */
 275    uint32_t QF; /* 0 or 1 */
 276    uint32_t GE; /* cpsr[19:16] */
 277    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
 278    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 279    uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
 280    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
 281
 282    uint64_t elr_el[4]; /* AArch64 exception link regs  */
 283    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 284
 285    /* System control coprocessor (cp15) */
 286    struct {
 287        uint32_t c0_cpuid;
 288        union { /* Cache size selection */
 289            struct {
 290                uint64_t _unused_csselr0;
 291                uint64_t csselr_ns;
 292                uint64_t _unused_csselr1;
 293                uint64_t csselr_s;
 294            };
 295            uint64_t csselr_el[4];
 296        };
 297        union { /* System control register. */
 298            struct {
 299                uint64_t _unused_sctlr;
 300                uint64_t sctlr_ns;
 301                uint64_t hsctlr;
 302                uint64_t sctlr_s;
 303            };
 304            uint64_t sctlr_el[4];
 305        };
 306        uint64_t cpacr_el1; /* Architectural feature access control register */
 307        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
 308        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 309        uint64_t sder; /* Secure debug enable register. */
 310        uint32_t nsacr; /* Non-secure access control register. */
 311        union { /* MMU translation table base 0. */
 312            struct {
 313                uint64_t _unused_ttbr0_0;
 314                uint64_t ttbr0_ns;
 315                uint64_t _unused_ttbr0_1;
 316                uint64_t ttbr0_s;
 317            };
 318            uint64_t ttbr0_el[4];
 319        };
 320        union { /* MMU translation table base 1. */
 321            struct {
 322                uint64_t _unused_ttbr1_0;
 323                uint64_t ttbr1_ns;
 324                uint64_t _unused_ttbr1_1;
 325                uint64_t ttbr1_s;
 326            };
 327            uint64_t ttbr1_el[4];
 328        };
 329        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
 330        /* MMU translation table base control. */
 331        TCR tcr_el[4];
 332        TCR vtcr_el2; /* Virtualization Translation Control.  */
 333        uint32_t c2_data; /* MPU data cacheable bits.  */
 334        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
 335        union { /* MMU domain access control register
 336                 * MPU write buffer control.
 337                 */
 338            struct {
 339                uint64_t dacr_ns;
 340                uint64_t dacr_s;
 341            };
 342            struct {
 343                uint64_t dacr32_el2;
 344            };
 345        };
 346        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 347        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 348        uint64_t hcr_el2; /* Hypervisor configuration register */
 349        uint64_t scr_el3; /* Secure configuration register.  */
 350        union { /* Fault status registers.  */
 351            struct {
 352                uint64_t ifsr_ns;
 353                uint64_t ifsr_s;
 354            };
 355            struct {
 356                uint64_t ifsr32_el2;
 357            };
 358        };
 359        union {
 360            struct {
 361                uint64_t _unused_dfsr;
 362                uint64_t dfsr_ns;
 363                uint64_t hsr;
 364                uint64_t dfsr_s;
 365            };
 366            uint64_t esr_el[4];
 367        };
 368        uint32_t c6_region[8]; /* MPU base/size registers.  */
 369        union { /* Fault address registers. */
 370            struct {
 371                uint64_t _unused_far0;
 372#ifdef HOST_WORDS_BIGENDIAN
 373                uint32_t ifar_ns;
 374                uint32_t dfar_ns;
 375                uint32_t ifar_s;
 376                uint32_t dfar_s;
 377#else
 378                uint32_t dfar_ns;
 379                uint32_t ifar_ns;
 380                uint32_t dfar_s;
 381                uint32_t ifar_s;
 382#endif
 383                uint64_t _unused_far3;
 384            };
 385            uint64_t far_el[4];
 386        };
 387        uint64_t hpfar_el2;
 388        uint64_t hstr_el2;
 389        union { /* Translation result. */
 390            struct {
 391                uint64_t _unused_par_0;
 392                uint64_t par_ns;
 393                uint64_t _unused_par_1;
 394                uint64_t par_s;
 395            };
 396            uint64_t par_el[4];
 397        };
 398
 399        uint32_t c9_insn; /* Cache lockdown registers.  */
 400        uint32_t c9_data;
 401        uint64_t c9_pmcr; /* performance monitor control register */
 402        uint64_t c9_pmcnten; /* perf monitor counter enables */
 403        uint64_t c9_pmovsr; /* perf monitor overflow status */
 404        uint64_t c9_pmuserenr; /* perf monitor user enable */
 405        uint64_t c9_pmselr; /* perf monitor counter selection register */
 406        uint64_t c9_pminten; /* perf monitor interrupt enables */
 407        uint32_t c9_pmxevtyper; /* perf monitor event type */
 408        union { /* Memory attribute redirection */
 409            struct {
 410#ifdef HOST_WORDS_BIGENDIAN
 411                uint64_t _unused_mair_0;
 412                uint32_t mair1_ns;
 413                uint32_t mair0_ns;
 414                uint64_t _unused_mair_1;
 415                uint32_t mair1_s;
 416                uint32_t mair0_s;
 417#else
 418                uint64_t _unused_mair_0;
 419                uint32_t mair0_ns;
 420                uint32_t mair1_ns;
 421                uint64_t _unused_mair_1;
 422                uint32_t mair0_s;
 423                uint32_t mair1_s;
 424#endif
 425            };
 426            uint64_t mair_el[4];
 427        };
 428        union { /* vector base address register */
 429            struct {
 430                uint64_t _unused_vbar;
 431                uint64_t vbar_ns;
 432                uint64_t hvbar;
 433                uint64_t vbar_s;
 434            };
 435            uint64_t vbar_el[4];
 436        };
 437        uint32_t mvbar; /* (monitor) vector base address register */
 438        struct { /* FCSE PID. */
 439            uint32_t fcseidr_ns;
 440            uint32_t fcseidr_s;
 441        };
 442        union { /* Context ID. */
 443            struct {
 444                uint64_t _unused_contextidr_0;
 445                uint64_t contextidr_ns;
 446                uint64_t _unused_contextidr_1;
 447                uint64_t contextidr_s;
 448            };
 449            uint64_t contextidr_el[4];
 450        };
 451        union { /* User RW Thread register. */
 452            struct {
 453                uint64_t tpidrurw_ns;
 454                uint64_t tpidrprw_ns;
 455                uint64_t htpidr;
 456                uint64_t _tpidr_el3;
 457            };
 458            uint64_t tpidr_el[4];
 459        };
 460        /* The secure banks of these registers don't map anywhere */
 461        uint64_t tpidrurw_s;
 462        uint64_t tpidrprw_s;
 463        uint64_t tpidruro_s;
 464
 465        union { /* User RO Thread register. */
 466            uint64_t tpidruro_ns;
 467            uint64_t tpidrro_el[1];
 468        };
 469        uint64_t c14_cntfrq; /* Counter Frequency register */
 470        uint64_t c14_cntkctl; /* Timer Control register */
 471        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
 472        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
 473        ARMGenericTimer c14_timer[NUM_GTIMERS];
 474        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 475        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 476        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 477        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 478        uint32_t c15_threadid; /* TI debugger thread-ID.  */
 479        uint32_t c15_config_base_address; /* SCU base address.  */
 480        uint32_t c15_diagnostic; /* diagnostic register */
 481        uint32_t c15_power_diagnostic;
 482        uint32_t c15_power_control; /* power control */
 483        uint64_t dbgbvr[16]; /* breakpoint value registers */
 484        uint64_t dbgbcr[16]; /* breakpoint control registers */
 485        uint64_t dbgwvr[16]; /* watchpoint value registers */
 486        uint64_t dbgwcr[16]; /* watchpoint control registers */
 487        uint64_t mdscr_el1;
 488        uint64_t oslsr_el1; /* OS Lock Status */
 489        uint64_t mdcr_el2;
 490        uint64_t mdcr_el3;
 491        /* Stores the architectural value of the counter *the last time it was
 492         * updated* by pmccntr_op_start. Accesses should always be surrounded
 493         * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
 494         * architecturally-correct value is being read/set.
 495         */
 496        uint64_t c15_ccnt;
 497        /* Stores the delta between the architectural value and the underlying
 498         * cycle count during normal operation. It is used to update c15_ccnt
 499         * to be the correct architectural value before accesses. During
 500         * accesses, c15_ccnt_delta contains the underlying count being used
 501         * for the access, after which it reverts to the delta value in
 502         * pmccntr_op_finish.
 503         */
 504        uint64_t c15_ccnt_delta;
 505        uint64_t c14_pmevcntr[31];
 506        uint64_t c14_pmevcntr_delta[31];
 507        uint64_t c14_pmevtyper[31];
 508        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 509        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
 510        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
 511    } cp15;
 512
 513    struct {
 514        /* M profile has up to 4 stack pointers:
 515         * a Main Stack Pointer and a Process Stack Pointer for each
 516         * of the Secure and Non-Secure states. (If the CPU doesn't support
 517         * the security extension then it has only two SPs.)
 518         * In QEMU we always store the currently active SP in regs[13],
 519         * and the non-active SP for the current security state in
 520         * v7m.other_sp. The stack pointers for the inactive security state
 521         * are stored in other_ss_msp and other_ss_psp.
 522         * switch_v7m_security_state() is responsible for rearranging them
 523         * when we change security state.
 524         */
 525        uint32_t other_sp;
 526        uint32_t other_ss_msp;
 527        uint32_t other_ss_psp;
 528        uint32_t vecbase[M_REG_NUM_BANKS];
 529        uint32_t basepri[M_REG_NUM_BANKS];
 530        uint32_t control[M_REG_NUM_BANKS];
 531        uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
 532        uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
 533        uint32_t hfsr; /* HardFault Status */
 534        uint32_t dfsr; /* Debug Fault Status Register */
 535        uint32_t sfsr; /* Secure Fault Status Register */
 536        uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
 537        uint32_t bfar; /* BusFault Address */
 538        uint32_t sfar; /* Secure Fault Address Register */
 539        unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
 540        int exception;
 541        uint32_t primask[M_REG_NUM_BANKS];
 542        uint32_t faultmask[M_REG_NUM_BANKS];
 543        uint32_t aircr; /* only holds r/w state if security extn implemented */
 544        uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
 545        uint32_t csselr[M_REG_NUM_BANKS];
 546        uint32_t scr[M_REG_NUM_BANKS];
 547        uint32_t msplim[M_REG_NUM_BANKS];
 548        uint32_t psplim[M_REG_NUM_BANKS];
 549        uint32_t fpcar[M_REG_NUM_BANKS];
 550        uint32_t fpccr[M_REG_NUM_BANKS];
 551        uint32_t fpdscr[M_REG_NUM_BANKS];
 552        uint32_t cpacr[M_REG_NUM_BANKS];
 553        uint32_t nsacr;
 554    } v7m;
 555
 556    /* Information associated with an exception about to be taken:
 557     * code which raises an exception must set cs->exception_index and
 558     * the relevant parts of this structure; the cpu_do_interrupt function
 559     * will then set the guest-visible registers as part of the exception
 560     * entry process.
 561     */
 562    struct {
 563        uint32_t syndrome; /* AArch64 format syndrome register */
 564        uint32_t fsr; /* AArch32 format fault status register info */
 565        uint64_t vaddress; /* virtual addr associated with exception, if any */
 566        uint32_t target_el; /* EL the exception should be targeted for */
 567        /* If we implement EL2 we will also need to store information
 568         * about the intermediate physical address for stage 2 faults.
 569         */
 570    } exception;
 571
 572    /* Information associated with an SError */
 573    struct {
 574        uint8_t pending;
 575        uint8_t has_esr;
 576        uint64_t esr;
 577    } serror;
 578
 579    /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
 580    uint32_t irq_line_state;
 581
 582    /* Thumb-2 EE state.  */
 583    uint32_t teecr;
 584    uint32_t teehbr;
 585
 586    /* VFP coprocessor state.  */
 587    struct {
 588        ARMVectorReg zregs[32];
 589
 590#ifdef TARGET_AARCH64
 591        /* Store FFR as pregs[16] to make it easier to treat as any other.  */
 592#define FFR_PRED_NUM 16
 593        ARMPredicateReg pregs[17];
 594        /* Scratch space for aa64 sve predicate temporary.  */
 595        ARMPredicateReg preg_tmp;
 596#endif
 597
 598        /* We store these fpcsr fields separately for convenience.  */
 599        uint32_t qc[4] QEMU_ALIGNED(16);
 600        int vec_len;
 601        int vec_stride;
 602
 603        uint32_t xregs[16];
 604
 605        /* Scratch space for aa32 neon expansion.  */
 606        uint32_t scratch[8];
 607
 608        /* There are a number of distinct float control structures:
 609         *
 610         *  fp_status: is the "normal" fp status.
 611         *  fp_status_fp16: used for half-precision calculations
 612         *  standard_fp_status : the ARM "Standard FPSCR Value"
 613         *
 614         * Half-precision operations are governed by a separate
 615         * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
 616         * status structure to control this.
 617         *
 618         * The "Standard FPSCR", ie default-NaN, flush-to-zero,
 619         * round-to-nearest and is used by any operations (generally
 620         * Neon) which the architecture defines as controlled by the
 621         * standard FPSCR value rather than the FPSCR.
 622         *
 623         * To avoid having to transfer exception bits around, we simply
 624         * say that the FPSCR cumulative exception flags are the logical
 625         * OR of the flags in the three fp statuses. This relies on the
 626         * only thing which needs to read the exception flags being
 627         * an explicit FPSCR read.
 628         */
 629        float_status fp_status;
 630        float_status fp_status_f16;
 631        float_status standard_fp_status;
 632
 633        /* ZCR_EL[1-3] */
 634        uint64_t zcr_el[4];
 635    } vfp;
 636    uint64_t exclusive_addr;
 637    uint64_t exclusive_val;
 638    uint64_t exclusive_high;
 639
 640    uint32_t debug_ctx;
 641
 642    /* iwMMXt coprocessor state.  */
 643    struct {
 644        uint64_t regs[16];
 645        uint64_t val;
 646
 647        uint32_t cregs[16];
 648    } iwmmxt;
 649
 650#ifdef TARGET_AARCH64
 651    struct {
 652        ARMPACKey apia;
 653        ARMPACKey apib;
 654        ARMPACKey apda;
 655        ARMPACKey apdb;
 656        ARMPACKey apga;
 657    } keys;
 658#endif
 659
 660#if defined(CONFIG_USER_ONLY)
 661    /* For usermode syscall translation.  */
 662    int eabi;
 663#endif
 664
 665    struct CPUBreakpoint *cpu_breakpoint[16];
 666    struct CPUWatchpoint *cpu_watchpoint[16];
 667
 668    /* Fields up to this point are cleared by a CPU reset */
 669    struct {} end_reset_fields;
 670
 671    /* Fields after this point are preserved across CPU reset. */
 672    bool irq_wires[4];
 673
 674    /* Internal CPU feature flags.  */
 675    uint64_t features;
 676
 677    /* Controls the reset value of SCTLR_V.  */
 678    bool vinithi;
 679
 680    /* PMSAv7 MPU */
 681    struct {
 682        uint32_t *drbar;
 683        uint32_t *drsr;
 684        uint32_t *dracr;
 685        uint32_t rnr[M_REG_NUM_BANKS];
 686    } pmsav7;
 687
 688    MemTxAttrs *memattr_ns;
 689    MemTxAttrs *memattr_s;
 690
 691    /* PMSAv8 MPU */
 692    struct {
 693        /* The PMSAv8 implementation also shares some PMSAv7 config
 694         * and state:
 695         *  pmsav7.rnr (region number register)
 696         *  pmsav7_dregion (number of configured regions)
 697         */
 698        uint32_t *rbar[M_REG_NUM_BANKS];
 699        uint32_t *rlar[M_REG_NUM_BANKS];
 700        uint32_t mair0[M_REG_NUM_BANKS];
 701        uint32_t mair1[M_REG_NUM_BANKS];
 702    } pmsav8;
 703
 704    /* v8M SAU */
 705    struct {
 706        uint32_t *rbar;
 707        uint32_t *rlar;
 708        uint32_t rnr;
 709        uint32_t ctrl;
 710    } sau;
 711
 712    void *nvic;
 713    const struct arm_boot_info *boot_info;
 714    /* Store GICv3CPUState to access from this struct */
 715    void *gicv3state;
 716} CPUARMState;
 717
 718enum {
 719        DEBUG_CURRENT_EL = 0,
 720        DEBUG_EL0 = 1,
 721        DEBUG_EL1 = 2,
 722        DEBUG_EL2 = 3,
 723        DEBUG_EL3 = 4,
 724        DEBUG_PHYS = 5,
 725};
 726
 727static inline void set_feature(CPUARMState *env, int feature)
 728{
 729    env->features |= 1ULL << feature;
 730}
 731
 732static inline void unset_feature(CPUARMState *env, int feature)
 733{
 734    env->features &= ~(1ULL << feature);
 735}
 736
 737/**
 738 * ARMELChangeHookFn:
 739 * type of a function which can be registered via arm_register_el_change_hook()
 740 * to get callbacks when the CPU changes its exception level or mode.
 741 */
 742typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
 743typedef struct ARMELChangeHook ARMELChangeHook;
 744struct ARMELChangeHook {
 745    ARMELChangeHookFn *hook;
 746    void *opaque;
 747    QLIST_ENTRY(ARMELChangeHook) node;
 748};
 749
 750/* These values map onto the return values for
 751 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
 752typedef enum ARMPSCIState {
 753    PSCI_ON = 0,
 754    PSCI_OFF = 1,
 755    PSCI_ON_PENDING = 2
 756} ARMPSCIState;
 757
 758typedef struct ARMISARegisters ARMISARegisters;
 759
 760/**
 761 * ARMCPU:
 762 * @env: #CPUARMState
 763 *
 764 * An ARM CPU core.
 765 */
 766struct ARMCPU {
 767    /*< private >*/
 768    CPUState parent_obj;
 769    /*< public >*/
 770
 771    CPUNegativeOffsetState neg;
 772    CPUARMState env;
 773
 774    bool is_in_wfi;
 775
 776    /* Coprocessor information */
 777    GHashTable *cp_regs;
 778    /* For marshalling (mostly coprocessor) register state between the
 779     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
 780     * we use these arrays.
 781     */
 782    /* List of register indexes managed via these arrays; (full KVM style
 783     * 64 bit indexes, not CPRegInfo 32 bit indexes)
 784     */
 785    uint64_t *cpreg_indexes;
 786    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
 787    uint64_t *cpreg_values;
 788    /* Length of the indexes, values, reset_values arrays */
 789    int32_t cpreg_array_len;
 790    /* These are used only for migration: incoming data arrives in
 791     * these fields and is sanity checked in post_load before copying
 792     * to the working data structures above.
 793     */
 794    uint64_t *cpreg_vmstate_indexes;
 795    uint64_t *cpreg_vmstate_values;
 796    int32_t cpreg_vmstate_array_len;
 797
 798    DynamicGDBXMLInfo dyn_sysreg_xml;
 799    DynamicGDBXMLInfo dyn_svereg_xml;
 800
 801    /* Timers used by the generic (architected) timer */
 802    QEMUTimer *gt_timer[NUM_GTIMERS];
 803    /*
 804     * Timer used by the PMU. Its state is restored after migration by
 805     * pmu_op_finish() - it does not need other handling during migration
 806     */
 807    QEMUTimer *pmu_timer;
 808    /* GPIO outputs for generic timer */
 809    qemu_irq gt_timer_outputs[NUM_GTIMERS];
 810    /* GPIO output for GICv3 maintenance interrupt signal */
 811    qemu_irq gicv3_maintenance_interrupt;
 812    /* GPIO output for the PMU interrupt */
 813    qemu_irq pmu_interrupt;
 814
 815    /* WFI notification */
 816    qemu_irq wfi;
 817
 818    /* MemoryRegion to use for secure physical accesses */
 819    MemoryRegion *secure_memory;
 820
 821    /* For v8M, pointer to the IDAU interface provided by board/SoC */
 822    Object *idau;
 823
 824    /* 'compatible' string for this CPU for Linux device trees */
 825    const char *dtb_compatible;
 826
 827    /* PSCI version for this CPU
 828     * Bits[31:16] = Major Version
 829     * Bits[15:0] = Minor Version
 830     */
 831    uint32_t psci_version;
 832
 833    /* Should CPU start in PSCI powered-off state? */
 834    bool start_powered_off;
 835
 836    /* Current power state, access guarded by BQL */
 837    ARMPSCIState power_state;
 838
 839    /* CPU has virtualization extension */
 840    bool has_el2;
 841    /* CPU has security extension */
 842    bool has_el3;
 843    /* CPU has PMU (Performance Monitor Unit) */
 844    bool has_pmu;
 845    /* CPU has VFP */
 846    bool has_vfp;
 847    /* CPU has Neon */
 848    bool has_neon;
 849    /* CPU has M-profile DSP extension */
 850    bool has_dsp;
 851
 852    /* CPU has memory protection unit */
 853    bool has_mpu;
 854    /* PMSAv7 MPU number of supported regions */
 855    uint32_t pmsav7_dregion;
 856    /* v8M SAU number of supported regions */
 857    uint32_t sau_sregion;
 858
 859    /* PSCI conduit used to invoke PSCI methods
 860     * 0 - disabled, 1 - smc, 2 - hvc
 861     */
 862    uint32_t psci_conduit;
 863
 864    /* For v8M, initial value of the Secure VTOR */
 865    uint32_t init_svtor;
 866
 867    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
 868     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
 869     */
 870    uint32_t kvm_target;
 871
 872    /* KVM init features for this CPU */
 873    uint32_t kvm_init_features[7];
 874
 875    /* KVM CPU state */
 876
 877    /* KVM virtual time adjustment */
 878    bool kvm_adjvtime;
 879    bool kvm_vtime_dirty;
 880    uint64_t kvm_vtime;
 881
 882    /* Uniprocessor system with MP extensions */
 883    bool mp_is_up;
 884
 885    /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
 886     * and the probe failed (so we need to report the error in realize)
 887     */
 888    bool host_cpu_probe_failed;
 889
 890    /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
 891     * register.
 892     */
 893    int32_t core_count;
 894
 895    /* The instance init functions for implementation-specific subclasses
 896     * set these fields to specify the implementation-dependent values of
 897     * various constant registers and reset values of non-constant
 898     * registers.
 899     * Some of these might become QOM properties eventually.
 900     * Field names match the official register names as defined in the
 901     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
 902     * is used for reset values of non-constant registers; no reset_
 903     * prefix means a constant register.
 904     * Some of these registers are split out into a substructure that
 905     * is shared with the translators to control the ISA.
 906     *
 907     * Note that if you add an ID register to the ARMISARegisters struct
 908     * you need to also update the 32-bit and 64-bit versions of the
 909     * kvm_arm_get_host_cpu_features() function to correctly populate the
 910     * field by reading the value from the KVM vCPU.
 911     */
 912    struct ARMISARegisters {
 913        uint32_t id_isar0;
 914        uint32_t id_isar1;
 915        uint32_t id_isar2;
 916        uint32_t id_isar3;
 917        uint32_t id_isar4;
 918        uint32_t id_isar5;
 919        uint32_t id_isar6;
 920        uint32_t id_mmfr0;
 921        uint32_t id_mmfr1;
 922        uint32_t id_mmfr2;
 923        uint32_t id_mmfr3;
 924        uint32_t id_mmfr4;
 925        uint32_t mvfr0;
 926        uint32_t mvfr1;
 927        uint32_t mvfr2;
 928        uint32_t id_dfr0;
 929        uint32_t dbgdidr;
 930        uint64_t id_aa64isar0;
 931        uint64_t id_aa64isar1;
 932        uint64_t id_aa64pfr0;
 933        uint64_t id_aa64pfr1;
 934        uint64_t id_aa64mmfr0;
 935        uint64_t id_aa64mmfr1;
 936        uint64_t id_aa64mmfr2;
 937        uint64_t id_aa64dfr0;
 938        uint64_t id_aa64dfr1;
 939    } isar;
 940    uint64_t midr;
 941    uint32_t revidr;
 942    uint32_t reset_fpsid;
 943    uint32_t ctr;
 944    uint32_t reset_sctlr;
 945    uint32_t id_pfr0;
 946    uint32_t id_pfr1;
 947    uint64_t pmceid0;
 948    uint64_t pmceid1;
 949    uint32_t id_afr0;
 950    uint64_t id_aa64afr0;
 951    uint64_t id_aa64afr1;
 952    uint32_t clidr;
 953    uint64_t mp_affinity; /* MP ID without feature bits */
 954    /* The elements of this array are the CCSIDR values for each cache,
 955     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
 956     */
 957    uint64_t ccsidr[16];
 958    uint64_t reset_cbar;
 959    uint32_t reset_auxcr;
 960    bool reset_hivecs;
 961    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
 962    uint32_t dcz_blocksize;
 963    uint64_t rvbar;
 964    int pe;
 965
 966    /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
 967    int gic_num_lrs; /* number of list registers */
 968    int gic_vpribits; /* number of virtual priority bits */
 969    int gic_vprebits; /* number of virtual preemption bits */
 970
 971    /* Whether the cfgend input is high (i.e. this CPU should reset into
 972     * big-endian mode).  This setting isn't used directly: instead it modifies
 973     * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
 974     * architecture version.
 975     */
 976    bool cfgend;
 977
 978    MemoryRegion *mr_secure;
 979
 980    QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
 981    QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
 982
 983    int32_t node_id; /* NUMA node this CPU belongs to */
 984
 985    /* Used to synchronize KVM and QEMU in-kernel device levels */
 986    uint8_t device_irq_level;
 987
 988    /* Used to set the maximum vector length the cpu will support.  */
 989    uint32_t sve_max_vq;
 990
 991    /*
 992     * In sve_vq_map each set bit is a supported vector length of
 993     * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
 994     * length in quadwords.
 995     *
 996     * While processing properties during initialization, corresponding
 997     * sve_vq_init bits are set for bits in sve_vq_map that have been
 998     * set by properties.
 999     */
1000    DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1001    DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1002
1003    /* Generic timer counter frequency, in Hz */
1004    uint64_t gt_cntfrq_hz;
1005};
1006
1007unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1008
1009void arm_cpu_post_init(Object *obj);
1010
1011uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1012
1013#ifndef CONFIG_USER_ONLY
1014extern const VMStateDescription vmstate_arm_cpu;
1015#endif
1016
1017void arm_cpu_do_interrupt(CPUState *cpu);
1018void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1019bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
1020
1021hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1022                                         MemTxAttrs *attrs);
1023
1024int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1025int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1026
1027/*
1028 * Helpers to dynamically generates XML descriptions of the sysregs
1029 * and SVE registers. Returns the number of registers in each set.
1030 */
1031int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1032int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1033
1034/* Returns the dynamically generated XML for the gdb stub.
1035 * Returns a pointer to the XML contents for the specified XML file or NULL
1036 * if the XML name doesn't match the predefined one.
1037 */
1038const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1039
1040int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1041                             int cpuid, void *opaque);
1042int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1043                             int cpuid, void *opaque);
1044
1045#ifdef TARGET_AARCH64
1046int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1047int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1048void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1049void aarch64_sve_change_el(CPUARMState *env, int old_el,
1050                           int new_el, bool el0_a64);
1051void aarch64_add_sve_properties(Object *obj);
1052
1053/*
1054 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1055 * The byte at offset i from the start of the in-memory representation contains
1056 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1057 * lowest offsets are stored in the lowest memory addresses, then that nearly
1058 * matches QEMU's representation, which is to use an array of host-endian
1059 * uint64_t's, where the lower offsets are at the lower indices. To complete
1060 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1061 */
1062static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1063{
1064#ifdef HOST_WORDS_BIGENDIAN
1065    int i;
1066
1067    for (i = 0; i < nr; ++i) {
1068        dst[i] = bswap64(src[i]);
1069    }
1070
1071    return dst;
1072#else
1073    return src;
1074#endif
1075}
1076
1077#else
1078static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1079static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1080                                         int n, bool a)
1081{ }
1082static inline void aarch64_add_sve_properties(Object *obj) { }
1083#endif
1084
1085#if !defined(CONFIG_TCG)
1086static inline target_ulong do_arm_semihosting(CPUARMState *env)
1087{
1088    g_assert_not_reached();
1089}
1090#else
1091target_ulong do_arm_semihosting(CPUARMState *env);
1092#endif
1093void aarch64_sync_32_to_64(CPUARMState *env);
1094void aarch64_sync_64_to_32(CPUARMState *env);
1095
1096int fp_exception_el(CPUARMState *env, int cur_el);
1097int sve_exception_el(CPUARMState *env, int cur_el);
1098uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1099
1100static inline bool is_a64(CPUARMState *env)
1101{
1102    return env->aarch64;
1103}
1104
1105/* you can call this signal handler from your SIGBUS and SIGSEGV
1106   signal handlers to inform the virtual CPU of exceptions. non zero
1107   is returned if the signal was handled by the virtual CPU.  */
1108int cpu_arm_signal_handler(int host_signum, void *pinfo,
1109                           void *puc);
1110
1111/**
1112 * pmu_op_start/finish
1113 * @env: CPUARMState
1114 *
1115 * Convert all PMU counters between their delta form (the typical mode when
1116 * they are enabled) and the guest-visible values. These two calls must
1117 * surround any action which might affect the counters.
1118 */
1119void pmu_op_start(CPUARMState *env);
1120void pmu_op_finish(CPUARMState *env);
1121
1122/*
1123 * Called when a PMU counter is due to overflow
1124 */
1125void arm_pmu_timer_cb(void *opaque);
1126
1127/**
1128 * Functions to register as EL change hooks for PMU mode filtering
1129 */
1130void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1131void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1132
1133/*
1134 * pmu_init
1135 * @cpu: ARMCPU
1136 *
1137 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1138 * for the current configuration
1139 */
1140void pmu_init(ARMCPU *cpu);
1141
1142/* SCTLR bit meanings. Several bits have been reused in newer
1143 * versions of the architecture; in that case we define constants
1144 * for both old and new bit meanings. Code which tests against those
1145 * bits should probably check or otherwise arrange that the CPU
1146 * is the architectural version it expects.
1147 */
1148#define SCTLR_M       (1U << 0)
1149#define SCTLR_A       (1U << 1)
1150#define SCTLR_C       (1U << 2)
1151#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1152#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1153#define SCTLR_SA      (1U << 3) /* AArch64 only */
1154#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1155#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1156#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1157#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1158#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1159#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1160#define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1161#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1162#define SCTLR_ITD     (1U << 7) /* v8 onward */
1163#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1164#define SCTLR_SED     (1U << 8) /* v8 onward */
1165#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1166#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1167#define SCTLR_F       (1U << 10) /* up to v6 */
1168#define SCTLR_SW      (1U << 10) /* v7 */
1169#define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1170#define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1171#define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1172#define SCTLR_I       (1U << 12)
1173#define SCTLR_V       (1U << 13) /* AArch32 only */
1174#define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1175#define SCTLR_RR      (1U << 14) /* up to v7 */
1176#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1177#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1178#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1179#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1180#define SCTLR_nTWI    (1U << 16) /* v8 onward */
1181#define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1182#define SCTLR_BR      (1U << 17) /* PMSA only */
1183#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1184#define SCTLR_nTWE    (1U << 18) /* v8 onward */
1185#define SCTLR_WXN     (1U << 19)
1186#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1187#define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1188#define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1189#define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1190#define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1191#define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1192#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1193#define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1194#define SCTLR_VE      (1U << 24) /* up to v7 */
1195#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1196#define SCTLR_EE      (1U << 25)
1197#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1198#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1199#define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1200#define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1201#define SCTLR_TRE     (1U << 28) /* AArch32 only */
1202#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1203#define SCTLR_AFE     (1U << 29) /* AArch32 only */
1204#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1205#define SCTLR_TE      (1U << 30) /* AArch32 only */
1206#define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1207#define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1208#define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1209#define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1210#define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1211#define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1212#define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1213#define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1214#define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1215#define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1216
1217#define CPTR_TCPAC    (1U << 31)
1218#define CPTR_TTA      (1U << 20)
1219#define CPTR_TFP      (1U << 10)
1220#define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1221#define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1222
1223#define MDCR_EPMAD    (1U << 21)
1224#define MDCR_EDAD     (1U << 20)
1225#define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1226#define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1227#define MDCR_SDD      (1U << 16)
1228#define MDCR_SPD      (3U << 14)
1229#define MDCR_TDRA     (1U << 11)
1230#define MDCR_TDOSA    (1U << 10)
1231#define MDCR_TDA      (1U << 9)
1232#define MDCR_TDE      (1U << 8)
1233#define MDCR_HPME     (1U << 7)
1234#define MDCR_TPM      (1U << 6)
1235#define MDCR_TPMCR    (1U << 5)
1236#define MDCR_HPMN     (0x1fU)
1237
1238/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1239#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1240
1241#define CPSR_M (0x1fU)
1242#define CPSR_T (1U << 5)
1243#define CPSR_F (1U << 6)
1244#define CPSR_I (1U << 7)
1245#define CPSR_A (1U << 8)
1246#define CPSR_E (1U << 9)
1247#define CPSR_IT_2_7 (0xfc00U)
1248#define CPSR_GE (0xfU << 16)
1249#define CPSR_IL (1U << 20)
1250#define CPSR_PAN (1U << 22)
1251#define CPSR_J (1U << 24)
1252#define CPSR_IT_0_1 (3U << 25)
1253#define CPSR_Q (1U << 27)
1254#define CPSR_V (1U << 28)
1255#define CPSR_C (1U << 29)
1256#define CPSR_Z (1U << 30)
1257#define CPSR_N (1U << 31)
1258#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1259#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1260
1261#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1262#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1263    | CPSR_NZCV)
1264/* Bits writable in user mode.  */
1265#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1266/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1267#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1268
1269/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1270#define XPSR_EXCP 0x1ffU
1271#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1272#define XPSR_IT_2_7 CPSR_IT_2_7
1273#define XPSR_GE CPSR_GE
1274#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1275#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1276#define XPSR_IT_0_1 CPSR_IT_0_1
1277#define XPSR_Q CPSR_Q
1278#define XPSR_V CPSR_V
1279#define XPSR_C CPSR_C
1280#define XPSR_Z CPSR_Z
1281#define XPSR_N CPSR_N
1282#define XPSR_NZCV CPSR_NZCV
1283#define XPSR_IT CPSR_IT
1284
1285#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1286#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1287#define TTBCR_PD0    (1U << 4)
1288#define TTBCR_PD1    (1U << 5)
1289#define TTBCR_EPD0   (1U << 7)
1290#define TTBCR_IRGN0  (3U << 8)
1291#define TTBCR_ORGN0  (3U << 10)
1292#define TTBCR_SH0    (3U << 12)
1293#define TTBCR_T1SZ   (3U << 16)
1294#define TTBCR_A1     (1U << 22)
1295#define TTBCR_EPD1   (1U << 23)
1296#define TTBCR_IRGN1  (3U << 24)
1297#define TTBCR_ORGN1  (3U << 26)
1298#define TTBCR_SH1    (1U << 28)
1299#define TTBCR_EAE    (1U << 31)
1300
1301/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1302 * Only these are valid when in AArch64 mode; in
1303 * AArch32 mode SPSRs are basically CPSR-format.
1304 */
1305#define PSTATE_SP (1U)
1306#define PSTATE_M (0xFU)
1307#define PSTATE_nRW (1U << 4)
1308#define PSTATE_F (1U << 6)
1309#define PSTATE_I (1U << 7)
1310#define PSTATE_A (1U << 8)
1311#define PSTATE_D (1U << 9)
1312#define PSTATE_BTYPE (3U << 10)
1313#define PSTATE_IL (1U << 20)
1314#define PSTATE_SS (1U << 21)
1315#define PSTATE_PAN (1U << 22)
1316#define PSTATE_UAO (1U << 23)
1317#define PSTATE_V (1U << 28)
1318#define PSTATE_C (1U << 29)
1319#define PSTATE_Z (1U << 30)
1320#define PSTATE_N (1U << 31)
1321#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1322#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1323#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1324/* Mode values for AArch64 */
1325#define PSTATE_MODE_EL3h 13
1326#define PSTATE_MODE_EL3t 12
1327#define PSTATE_MODE_EL2h 9
1328#define PSTATE_MODE_EL2t 8
1329#define PSTATE_MODE_EL1h 5
1330#define PSTATE_MODE_EL1t 4
1331#define PSTATE_MODE_EL0t 0
1332
1333/* Write a new value to v7m.exception, thus transitioning into or out
1334 * of Handler mode; this may result in a change of active stack pointer.
1335 */
1336void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1337
1338/* Map EL and handler into a PSTATE_MODE.  */
1339static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1340{
1341    return (el << 2) | handler;
1342}
1343
1344/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1345 * interprocessing, so we don't attempt to sync with the cpsr state used by
1346 * the 32 bit decoder.
1347 */
1348static inline uint32_t pstate_read(CPUARMState *env)
1349{
1350    int ZF;
1351
1352    ZF = (env->ZF == 0);
1353    return (env->NF & 0x80000000) | (ZF << 30)
1354        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1355        | env->pstate | env->daif | (env->btype << 10);
1356}
1357
1358static inline void pstate_write(CPUARMState *env, uint32_t val)
1359{
1360    env->ZF = (~val) & PSTATE_Z;
1361    env->NF = val;
1362    env->CF = (val >> 29) & 1;
1363    env->VF = (val << 3) & 0x80000000;
1364    env->daif = val & PSTATE_DAIF;
1365    env->btype = (val >> 10) & 3;
1366    env->pstate = val & ~CACHED_PSTATE_BITS;
1367}
1368
1369/* Return the current CPSR value.  */
1370uint32_t cpsr_read(CPUARMState *env);
1371
1372typedef enum CPSRWriteType {
1373    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1374    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1375    CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1376    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1377} CPSRWriteType;
1378
1379/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1380void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1381                CPSRWriteType write_type);
1382uint64_t mpidr_read_val(CPUARMState *env);
1383
1384/* Return the current xPSR value.  */
1385static inline uint32_t xpsr_read(CPUARMState *env)
1386{
1387    int ZF;
1388    ZF = (env->ZF == 0);
1389    return (env->NF & 0x80000000) | (ZF << 30)
1390        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1391        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1392        | ((env->condexec_bits & 0xfc) << 8)
1393        | (env->GE << 16)
1394        | env->v7m.exception;
1395}
1396
1397/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1398static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1399{
1400    if (mask & XPSR_NZCV) {
1401        env->ZF = (~val) & XPSR_Z;
1402        env->NF = val;
1403        env->CF = (val >> 29) & 1;
1404        env->VF = (val << 3) & 0x80000000;
1405    }
1406    if (mask & XPSR_Q) {
1407        env->QF = ((val & XPSR_Q) != 0);
1408    }
1409    if (mask & XPSR_GE) {
1410        env->GE = (val & XPSR_GE) >> 16;
1411    }
1412#ifndef CONFIG_USER_ONLY
1413    if (mask & XPSR_T) {
1414        env->thumb = ((val & XPSR_T) != 0);
1415    }
1416    if (mask & XPSR_IT_0_1) {
1417        env->condexec_bits &= ~3;
1418        env->condexec_bits |= (val >> 25) & 3;
1419    }
1420    if (mask & XPSR_IT_2_7) {
1421        env->condexec_bits &= 3;
1422        env->condexec_bits |= (val >> 8) & 0xfc;
1423    }
1424    if (mask & XPSR_EXCP) {
1425        /* Note that this only happens on exception exit */
1426        write_v7m_exception(env, val & XPSR_EXCP);
1427    }
1428#endif
1429}
1430
1431#define HCR_VM        (1ULL << 0)
1432#define HCR_SWIO      (1ULL << 1)
1433#define HCR_PTW       (1ULL << 2)
1434#define HCR_FMO       (1ULL << 3)
1435#define HCR_IMO       (1ULL << 4)
1436#define HCR_AMO       (1ULL << 5)
1437#define HCR_VF        (1ULL << 6)
1438#define HCR_VI        (1ULL << 7)
1439#define HCR_VSE       (1ULL << 8)
1440#define HCR_FB        (1ULL << 9)
1441#define HCR_BSU_MASK  (3ULL << 10)
1442#define HCR_DC        (1ULL << 12)
1443#define HCR_TWI       (1ULL << 13)
1444#define HCR_TWE       (1ULL << 14)
1445#define HCR_TID0      (1ULL << 15)
1446#define HCR_TID1      (1ULL << 16)
1447#define HCR_TID2      (1ULL << 17)
1448#define HCR_TID3      (1ULL << 18)
1449#define HCR_TSC       (1ULL << 19)
1450#define HCR_TIDCP     (1ULL << 20)
1451#define HCR_TACR      (1ULL << 21)
1452#define HCR_TSW       (1ULL << 22)
1453#define HCR_TPCP      (1ULL << 23)
1454#define HCR_TPU       (1ULL << 24)
1455#define HCR_TTLB      (1ULL << 25)
1456#define HCR_TVM       (1ULL << 26)
1457#define HCR_TGE       (1ULL << 27)
1458#define HCR_TDZ       (1ULL << 28)
1459#define HCR_HCD       (1ULL << 29)
1460#define HCR_TRVM      (1ULL << 30)
1461#define HCR_RW        (1ULL << 31)
1462#define HCR_CD        (1ULL << 32)
1463#define HCR_ID        (1ULL << 33)
1464#define HCR_E2H       (1ULL << 34)
1465#define HCR_TLOR      (1ULL << 35)
1466#define HCR_TERR      (1ULL << 36)
1467#define HCR_TEA       (1ULL << 37)
1468#define HCR_MIOCNCE   (1ULL << 38)
1469/* RES0 bit 39 */
1470#define HCR_APK       (1ULL << 40)
1471#define HCR_API       (1ULL << 41)
1472#define HCR_NV        (1ULL << 42)
1473#define HCR_NV1       (1ULL << 43)
1474#define HCR_AT        (1ULL << 44)
1475#define HCR_NV2       (1ULL << 45)
1476#define HCR_FWB       (1ULL << 46)
1477#define HCR_FIEN      (1ULL << 47)
1478/* RES0 bit 48 */
1479#define HCR_TID4      (1ULL << 49)
1480#define HCR_TICAB     (1ULL << 50)
1481#define HCR_AMVOFFEN  (1ULL << 51)
1482#define HCR_TOCU      (1ULL << 52)
1483#define HCR_ENSCXT    (1ULL << 53)
1484#define HCR_TTLBIS    (1ULL << 54)
1485#define HCR_TTLBOS    (1ULL << 55)
1486#define HCR_ATA       (1ULL << 56)
1487#define HCR_DCT       (1ULL << 57)
1488#define HCR_TID5      (1ULL << 58)
1489#define HCR_TWEDEN    (1ULL << 59)
1490#define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1491
1492#define SCR_NS                (1U << 0)
1493#define SCR_IRQ               (1U << 1)
1494#define SCR_FIQ               (1U << 2)
1495#define SCR_EA                (1U << 3)
1496#define SCR_FW                (1U << 4)
1497#define SCR_AW                (1U << 5)
1498#define SCR_NET               (1U << 6)
1499#define SCR_SMD               (1U << 7)
1500#define SCR_HCE               (1U << 8)
1501#define SCR_SIF               (1U << 9)
1502#define SCR_RW                (1U << 10)
1503#define SCR_ST                (1U << 11)
1504#define SCR_TWI               (1U << 12)
1505#define SCR_TWE               (1U << 13)
1506#define SCR_TLOR              (1U << 14)
1507#define SCR_TERR              (1U << 15)
1508#define SCR_APK               (1U << 16)
1509#define SCR_API               (1U << 17)
1510#define SCR_EEL2              (1U << 18)
1511#define SCR_EASE              (1U << 19)
1512#define SCR_NMEA              (1U << 20)
1513#define SCR_FIEN              (1U << 21)
1514#define SCR_ENSCXT            (1U << 25)
1515#define SCR_ATA               (1U << 26)
1516
1517/* Return the current FPSCR value.  */
1518uint32_t vfp_get_fpscr(CPUARMState *env);
1519void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1520
1521/* FPCR, Floating Point Control Register
1522 * FPSR, Floating Poiht Status Register
1523 *
1524 * For A64 the FPSCR is split into two logically distinct registers,
1525 * FPCR and FPSR. However since they still use non-overlapping bits
1526 * we store the underlying state in fpscr and just mask on read/write.
1527 */
1528#define FPSR_MASK 0xf800009f
1529#define FPCR_MASK 0x07ff9f00
1530
1531#define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1532#define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1533#define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1534#define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1535#define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1536#define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1537#define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1538#define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1539#define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1540#define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1541
1542static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1543{
1544    return vfp_get_fpscr(env) & FPSR_MASK;
1545}
1546
1547static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1548{
1549    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1550    vfp_set_fpscr(env, new_fpscr);
1551}
1552
1553static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1554{
1555    return vfp_get_fpscr(env) & FPCR_MASK;
1556}
1557
1558static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1559{
1560    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1561    vfp_set_fpscr(env, new_fpscr);
1562}
1563
1564enum arm_cpu_mode {
1565  ARM_CPU_MODE_USR = 0x10,
1566  ARM_CPU_MODE_FIQ = 0x11,
1567  ARM_CPU_MODE_IRQ = 0x12,
1568  ARM_CPU_MODE_SVC = 0x13,
1569  ARM_CPU_MODE_MON = 0x16,
1570  ARM_CPU_MODE_ABT = 0x17,
1571  ARM_CPU_MODE_HYP = 0x1a,
1572  ARM_CPU_MODE_UND = 0x1b,
1573  ARM_CPU_MODE_SYS = 0x1f
1574};
1575
1576/* VFP system registers.  */
1577#define ARM_VFP_FPSID   0
1578#define ARM_VFP_FPSCR   1
1579#define ARM_VFP_MVFR2   5
1580#define ARM_VFP_MVFR1   6
1581#define ARM_VFP_MVFR0   7
1582#define ARM_VFP_FPEXC   8
1583#define ARM_VFP_FPINST  9
1584#define ARM_VFP_FPINST2 10
1585
1586/* iwMMXt coprocessor control registers.  */
1587#define ARM_IWMMXT_wCID  0
1588#define ARM_IWMMXT_wCon  1
1589#define ARM_IWMMXT_wCSSF 2
1590#define ARM_IWMMXT_wCASF 3
1591#define ARM_IWMMXT_wCGR0 8
1592#define ARM_IWMMXT_wCGR1 9
1593#define ARM_IWMMXT_wCGR2 10
1594#define ARM_IWMMXT_wCGR3 11
1595
1596/* V7M CCR bits */
1597FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1598FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1599FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1600FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1601FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1602FIELD(V7M_CCR, STKALIGN, 9, 1)
1603FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1604FIELD(V7M_CCR, DC, 16, 1)
1605FIELD(V7M_CCR, IC, 17, 1)
1606FIELD(V7M_CCR, BP, 18, 1)
1607
1608/* V7M SCR bits */
1609FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1610FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1611FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1612FIELD(V7M_SCR, SEVONPEND, 4, 1)
1613
1614/* V7M AIRCR bits */
1615FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1616FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1617FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1618FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1619FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1620FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1621FIELD(V7M_AIRCR, PRIS, 14, 1)
1622FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1623FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1624
1625/* V7M CFSR bits for MMFSR */
1626FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1627FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1628FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1629FIELD(V7M_CFSR, MSTKERR, 4, 1)
1630FIELD(V7M_CFSR, MLSPERR, 5, 1)
1631FIELD(V7M_CFSR, MMARVALID, 7, 1)
1632
1633/* V7M CFSR bits for BFSR */
1634FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1635FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1636FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1637FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1638FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1639FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1640FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1641
1642/* V7M CFSR bits for UFSR */
1643FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1644FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1645FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1646FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1647FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1648FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1649FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1650
1651/* V7M CFSR bit masks covering all of the subregister bits */
1652FIELD(V7M_CFSR, MMFSR, 0, 8)
1653FIELD(V7M_CFSR, BFSR, 8, 8)
1654FIELD(V7M_CFSR, UFSR, 16, 16)
1655
1656/* V7M HFSR bits */
1657FIELD(V7M_HFSR, VECTTBL, 1, 1)
1658FIELD(V7M_HFSR, FORCED, 30, 1)
1659FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1660
1661/* V7M DFSR bits */
1662FIELD(V7M_DFSR, HALTED, 0, 1)
1663FIELD(V7M_DFSR, BKPT, 1, 1)
1664FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1665FIELD(V7M_DFSR, VCATCH, 3, 1)
1666FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1667
1668/* V7M SFSR bits */
1669FIELD(V7M_SFSR, INVEP, 0, 1)
1670FIELD(V7M_SFSR, INVIS, 1, 1)
1671FIELD(V7M_SFSR, INVER, 2, 1)
1672FIELD(V7M_SFSR, AUVIOL, 3, 1)
1673FIELD(V7M_SFSR, INVTRAN, 4, 1)
1674FIELD(V7M_SFSR, LSPERR, 5, 1)
1675FIELD(V7M_SFSR, SFARVALID, 6, 1)
1676FIELD(V7M_SFSR, LSERR, 7, 1)
1677
1678/* v7M MPU_CTRL bits */
1679FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1680FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1681FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1682
1683/* v7M CLIDR bits */
1684FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1685FIELD(V7M_CLIDR, LOUIS, 21, 3)
1686FIELD(V7M_CLIDR, LOC, 24, 3)
1687FIELD(V7M_CLIDR, LOUU, 27, 3)
1688FIELD(V7M_CLIDR, ICB, 30, 2)
1689
1690FIELD(V7M_CSSELR, IND, 0, 1)
1691FIELD(V7M_CSSELR, LEVEL, 1, 3)
1692/* We use the combination of InD and Level to index into cpu->ccsidr[];
1693 * define a mask for this and check that it doesn't permit running off
1694 * the end of the array.
1695 */
1696FIELD(V7M_CSSELR, INDEX, 0, 4)
1697
1698/* v7M FPCCR bits */
1699FIELD(V7M_FPCCR, LSPACT, 0, 1)
1700FIELD(V7M_FPCCR, USER, 1, 1)
1701FIELD(V7M_FPCCR, S, 2, 1)
1702FIELD(V7M_FPCCR, THREAD, 3, 1)
1703FIELD(V7M_FPCCR, HFRDY, 4, 1)
1704FIELD(V7M_FPCCR, MMRDY, 5, 1)
1705FIELD(V7M_FPCCR, BFRDY, 6, 1)
1706FIELD(V7M_FPCCR, SFRDY, 7, 1)
1707FIELD(V7M_FPCCR, MONRDY, 8, 1)
1708FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1709FIELD(V7M_FPCCR, UFRDY, 10, 1)
1710FIELD(V7M_FPCCR, RES0, 11, 15)
1711FIELD(V7M_FPCCR, TS, 26, 1)
1712FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1713FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1714FIELD(V7M_FPCCR, LSPENS, 29, 1)
1715FIELD(V7M_FPCCR, LSPEN, 30, 1)
1716FIELD(V7M_FPCCR, ASPEN, 31, 1)
1717/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1718#define R_V7M_FPCCR_BANKED_MASK                 \
1719    (R_V7M_FPCCR_LSPACT_MASK |                  \
1720     R_V7M_FPCCR_USER_MASK |                    \
1721     R_V7M_FPCCR_THREAD_MASK |                  \
1722     R_V7M_FPCCR_MMRDY_MASK |                   \
1723     R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1724     R_V7M_FPCCR_UFRDY_MASK |                   \
1725     R_V7M_FPCCR_ASPEN_MASK)
1726
1727/*
1728 * System register ID fields.
1729 */
1730FIELD(MIDR_EL1, REVISION, 0, 4)
1731FIELD(MIDR_EL1, PARTNUM, 4, 12)
1732FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1733FIELD(MIDR_EL1, VARIANT, 20, 4)
1734FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1735
1736FIELD(ID_ISAR0, SWAP, 0, 4)
1737FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1738FIELD(ID_ISAR0, BITFIELD, 8, 4)
1739FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1740FIELD(ID_ISAR0, COPROC, 16, 4)
1741FIELD(ID_ISAR0, DEBUG, 20, 4)
1742FIELD(ID_ISAR0, DIVIDE, 24, 4)
1743
1744FIELD(ID_ISAR1, ENDIAN, 0, 4)
1745FIELD(ID_ISAR1, EXCEPT, 4, 4)
1746FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1747FIELD(ID_ISAR1, EXTEND, 12, 4)
1748FIELD(ID_ISAR1, IFTHEN, 16, 4)
1749FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1750FIELD(ID_ISAR1, INTERWORK, 24, 4)
1751FIELD(ID_ISAR1, JAZELLE, 28, 4)
1752
1753FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1754FIELD(ID_ISAR2, MEMHINT, 4, 4)
1755FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1756FIELD(ID_ISAR2, MULT, 12, 4)
1757FIELD(ID_ISAR2, MULTS, 16, 4)
1758FIELD(ID_ISAR2, MULTU, 20, 4)
1759FIELD(ID_ISAR2, PSR_AR, 24, 4)
1760FIELD(ID_ISAR2, REVERSAL, 28, 4)
1761
1762FIELD(ID_ISAR3, SATURATE, 0, 4)
1763FIELD(ID_ISAR3, SIMD, 4, 4)
1764FIELD(ID_ISAR3, SVC, 8, 4)
1765FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1766FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1767FIELD(ID_ISAR3, T32COPY, 20, 4)
1768FIELD(ID_ISAR3, TRUENOP, 24, 4)
1769FIELD(ID_ISAR3, T32EE, 28, 4)
1770
1771FIELD(ID_ISAR4, UNPRIV, 0, 4)
1772FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1773FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1774FIELD(ID_ISAR4, SMC, 12, 4)
1775FIELD(ID_ISAR4, BARRIER, 16, 4)
1776FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1777FIELD(ID_ISAR4, PSR_M, 24, 4)
1778FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1779
1780FIELD(ID_ISAR5, SEVL, 0, 4)
1781FIELD(ID_ISAR5, AES, 4, 4)
1782FIELD(ID_ISAR5, SHA1, 8, 4)
1783FIELD(ID_ISAR5, SHA2, 12, 4)
1784FIELD(ID_ISAR5, CRC32, 16, 4)
1785FIELD(ID_ISAR5, RDM, 24, 4)
1786FIELD(ID_ISAR5, VCMA, 28, 4)
1787
1788FIELD(ID_ISAR6, JSCVT, 0, 4)
1789FIELD(ID_ISAR6, DP, 4, 4)
1790FIELD(ID_ISAR6, FHM, 8, 4)
1791FIELD(ID_ISAR6, SB, 12, 4)
1792FIELD(ID_ISAR6, SPECRES, 16, 4)
1793
1794FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1795FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1796FIELD(ID_MMFR3, BPMAINT, 8, 4)
1797FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1798FIELD(ID_MMFR3, PAN, 16, 4)
1799FIELD(ID_MMFR3, COHWALK, 20, 4)
1800FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1801FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1802
1803FIELD(ID_MMFR4, SPECSEI, 0, 4)
1804FIELD(ID_MMFR4, AC2, 4, 4)
1805FIELD(ID_MMFR4, XNX, 8, 4)
1806FIELD(ID_MMFR4, CNP, 12, 4)
1807FIELD(ID_MMFR4, HPDS, 16, 4)
1808FIELD(ID_MMFR4, LSM, 20, 4)
1809FIELD(ID_MMFR4, CCIDX, 24, 4)
1810FIELD(ID_MMFR4, EVT, 28, 4)
1811
1812FIELD(ID_AA64ISAR0, AES, 4, 4)
1813FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1814FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1815FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1816FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1817FIELD(ID_AA64ISAR0, RDM, 28, 4)
1818FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1819FIELD(ID_AA64ISAR0, SM3, 36, 4)
1820FIELD(ID_AA64ISAR0, SM4, 40, 4)
1821FIELD(ID_AA64ISAR0, DP, 44, 4)
1822FIELD(ID_AA64ISAR0, FHM, 48, 4)
1823FIELD(ID_AA64ISAR0, TS, 52, 4)
1824FIELD(ID_AA64ISAR0, TLB, 56, 4)
1825FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1826
1827FIELD(ID_AA64ISAR1, DPB, 0, 4)
1828FIELD(ID_AA64ISAR1, APA, 4, 4)
1829FIELD(ID_AA64ISAR1, API, 8, 4)
1830FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1831FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1832FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1833FIELD(ID_AA64ISAR1, GPA, 24, 4)
1834FIELD(ID_AA64ISAR1, GPI, 28, 4)
1835FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1836FIELD(ID_AA64ISAR1, SB, 36, 4)
1837FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1838
1839FIELD(ID_AA64PFR0, EL0, 0, 4)
1840FIELD(ID_AA64PFR0, EL1, 4, 4)
1841FIELD(ID_AA64PFR0, EL2, 8, 4)
1842FIELD(ID_AA64PFR0, EL3, 12, 4)
1843FIELD(ID_AA64PFR0, FP, 16, 4)
1844FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1845FIELD(ID_AA64PFR0, GIC, 24, 4)
1846FIELD(ID_AA64PFR0, RAS, 28, 4)
1847FIELD(ID_AA64PFR0, SVE, 32, 4)
1848
1849FIELD(ID_AA64PFR1, BT, 0, 4)
1850FIELD(ID_AA64PFR1, SBSS, 4, 4)
1851FIELD(ID_AA64PFR1, MTE, 8, 4)
1852FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1853
1854FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1855FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1856FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1857FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1858FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1859FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1860FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1861FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1862FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1863FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1864FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1865FIELD(ID_AA64MMFR0, EXS, 44, 4)
1866
1867FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1868FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1869FIELD(ID_AA64MMFR1, VH, 8, 4)
1870FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1871FIELD(ID_AA64MMFR1, LO, 16, 4)
1872FIELD(ID_AA64MMFR1, PAN, 20, 4)
1873FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1874FIELD(ID_AA64MMFR1, XNX, 28, 4)
1875
1876FIELD(ID_AA64MMFR2, CNP, 0, 4)
1877FIELD(ID_AA64MMFR2, UAO, 4, 4)
1878FIELD(ID_AA64MMFR2, LSM, 8, 4)
1879FIELD(ID_AA64MMFR2, IESB, 12, 4)
1880FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1881FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1882FIELD(ID_AA64MMFR2, NV, 24, 4)
1883FIELD(ID_AA64MMFR2, ST, 28, 4)
1884FIELD(ID_AA64MMFR2, AT, 32, 4)
1885FIELD(ID_AA64MMFR2, IDS, 36, 4)
1886FIELD(ID_AA64MMFR2, FWB, 40, 4)
1887FIELD(ID_AA64MMFR2, TTL, 48, 4)
1888FIELD(ID_AA64MMFR2, BBM, 52, 4)
1889FIELD(ID_AA64MMFR2, EVT, 56, 4)
1890FIELD(ID_AA64MMFR2, E0PD, 60, 4)
1891
1892FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
1893FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
1894FIELD(ID_AA64DFR0, PMUVER, 8, 4)
1895FIELD(ID_AA64DFR0, BRPS, 12, 4)
1896FIELD(ID_AA64DFR0, WRPS, 20, 4)
1897FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
1898FIELD(ID_AA64DFR0, PMSVER, 32, 4)
1899FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
1900FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
1901
1902FIELD(ID_DFR0, COPDBG, 0, 4)
1903FIELD(ID_DFR0, COPSDBG, 4, 4)
1904FIELD(ID_DFR0, MMAPDBG, 8, 4)
1905FIELD(ID_DFR0, COPTRC, 12, 4)
1906FIELD(ID_DFR0, MMAPTRC, 16, 4)
1907FIELD(ID_DFR0, MPROFDBG, 20, 4)
1908FIELD(ID_DFR0, PERFMON, 24, 4)
1909FIELD(ID_DFR0, TRACEFILT, 28, 4)
1910
1911FIELD(DBGDIDR, SE_IMP, 12, 1)
1912FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
1913FIELD(DBGDIDR, VERSION, 16, 4)
1914FIELD(DBGDIDR, CTX_CMPS, 20, 4)
1915FIELD(DBGDIDR, BRPS, 24, 4)
1916FIELD(DBGDIDR, WRPS, 28, 4)
1917
1918FIELD(MVFR0, SIMDREG, 0, 4)
1919FIELD(MVFR0, FPSP, 4, 4)
1920FIELD(MVFR0, FPDP, 8, 4)
1921FIELD(MVFR0, FPTRAP, 12, 4)
1922FIELD(MVFR0, FPDIVIDE, 16, 4)
1923FIELD(MVFR0, FPSQRT, 20, 4)
1924FIELD(MVFR0, FPSHVEC, 24, 4)
1925FIELD(MVFR0, FPROUND, 28, 4)
1926
1927FIELD(MVFR1, FPFTZ, 0, 4)
1928FIELD(MVFR1, FPDNAN, 4, 4)
1929FIELD(MVFR1, SIMDLS, 8, 4)
1930FIELD(MVFR1, SIMDINT, 12, 4)
1931FIELD(MVFR1, SIMDSP, 16, 4)
1932FIELD(MVFR1, SIMDHP, 20, 4)
1933FIELD(MVFR1, FPHP, 24, 4)
1934FIELD(MVFR1, SIMDFMAC, 28, 4)
1935
1936FIELD(MVFR2, SIMDMISC, 0, 4)
1937FIELD(MVFR2, FPMISC, 4, 4)
1938
1939QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1940
1941/* If adding a feature bit which corresponds to a Linux ELF
1942 * HWCAP bit, remember to update the feature-bit-to-hwcap
1943 * mapping in linux-user/elfload.c:get_elf_hwcap().
1944 */
1945enum arm_features {
1946    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1947    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1948    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1949    ARM_FEATURE_V6,
1950    ARM_FEATURE_V6K,
1951    ARM_FEATURE_V7,
1952    ARM_FEATURE_THUMB2,
1953    ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1954    ARM_FEATURE_NEON,
1955    ARM_FEATURE_M, /* Microcontroller profile.  */
1956    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1957    ARM_FEATURE_THUMB2EE,
1958    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1959    ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1960    ARM_FEATURE_V4T,
1961    ARM_FEATURE_V5,
1962    ARM_FEATURE_STRONGARM,
1963    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1964    ARM_FEATURE_GENERIC_TIMER,
1965    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1966    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1967    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1968    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1969    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1970    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1971    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1972    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1973    ARM_FEATURE_V8,
1974    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1975    ARM_FEATURE_CBAR, /* has cp15 CBAR */
1976    ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1977    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1978    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1979    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1980    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1981    ARM_FEATURE_PMU, /* has PMU support */
1982    ARM_FEATURE_VBAR, /* has cp15 VBAR */
1983    ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1984    ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1985};
1986
1987static inline int arm_feature(CPUARMState *env, int feature)
1988{
1989    return (env->features & (1ULL << feature)) != 0;
1990}
1991
1992void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1993
1994#if !defined(CONFIG_USER_ONLY)
1995/* Return true if exception levels below EL3 are in secure state,
1996 * or would be following an exception return to that level.
1997 * Unlike arm_is_secure() (which is always a question about the
1998 * _current_ state of the CPU) this doesn't care about the current
1999 * EL or mode.
2000 */
2001static inline bool arm_is_secure_below_el3(CPUARMState *env)
2002{
2003    if (arm_feature(env, ARM_FEATURE_EL3)) {
2004        return !(env->cp15.scr_el3 & SCR_NS);
2005    } else {
2006        /* If EL3 is not supported then the secure state is implementation
2007         * defined, in which case QEMU defaults to non-secure.
2008         */
2009        return false;
2010    }
2011}
2012
2013/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2014static inline bool arm_is_el3_or_mon(CPUARMState *env)
2015{
2016    if (arm_feature(env, ARM_FEATURE_EL3)) {
2017        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2018            /* CPU currently in AArch64 state and EL3 */
2019            return true;
2020        } else if (!is_a64(env) &&
2021                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2022            /* CPU currently in AArch32 state and monitor mode */
2023            return true;
2024        }
2025    }
2026    return false;
2027}
2028
2029/* Return true if the processor is in secure state */
2030static inline bool arm_is_secure(CPUARMState *env)
2031{
2032    if (arm_is_el3_or_mon(env)) {
2033        return true;
2034    }
2035    return arm_is_secure_below_el3(env);
2036}
2037
2038#else
2039static inline bool arm_is_secure_below_el3(CPUARMState *env)
2040{
2041    return false;
2042}
2043
2044static inline bool arm_is_secure(CPUARMState *env)
2045{
2046    return false;
2047}
2048#endif
2049
2050/**
2051 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2052 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2053 * "for all purposes other than a direct read or write access of HCR_EL2."
2054 * Not included here is HCR_RW.
2055 */
2056uint64_t arm_hcr_el2_eff(CPUARMState *env);
2057
2058/* Return true if the specified exception level is running in AArch64 state. */
2059static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2060{
2061    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2062     * and if we're not in EL0 then the state of EL0 isn't well defined.)
2063     */
2064    assert(el >= 1 && el <= 3);
2065    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2066
2067    /* The highest exception level is always at the maximum supported
2068     * register width, and then lower levels have a register width controlled
2069     * by bits in the SCR or HCR registers.
2070     */
2071    if (el == 3) {
2072        return aa64;
2073    }
2074
2075    if (arm_feature(env, ARM_FEATURE_EL3)) {
2076        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2077    }
2078
2079    if (el == 2) {
2080        return aa64;
2081    }
2082
2083    if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
2084        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2085    }
2086
2087    return aa64;
2088}
2089
2090/* Function for determing whether guest cp register reads and writes should
2091 * access the secure or non-secure bank of a cp register.  When EL3 is
2092 * operating in AArch32 state, the NS-bit determines whether the secure
2093 * instance of a cp register should be used. When EL3 is AArch64 (or if
2094 * it doesn't exist at all) then there is no register banking, and all
2095 * accesses are to the non-secure version.
2096 */
2097static inline bool access_secure_reg(CPUARMState *env)
2098{
2099    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2100                !arm_el_is_aa64(env, 3) &&
2101                !(env->cp15.scr_el3 & SCR_NS));
2102
2103    return ret;
2104}
2105
2106/* Macros for accessing a specified CP register bank */
2107#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2108    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2109
2110#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2111    do {                                                \
2112        if (_secure) {                                   \
2113            (_env)->cp15._regname##_s = (_val);            \
2114        } else {                                        \
2115            (_env)->cp15._regname##_ns = (_val);           \
2116        }                                               \
2117    } while (0)
2118
2119/* Macros for automatically accessing a specific CP register bank depending on
2120 * the current secure state of the system.  These macros are not intended for
2121 * supporting instruction translation reads/writes as these are dependent
2122 * solely on the SCR.NS bit and not the mode.
2123 */
2124#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2125    A32_BANKED_REG_GET((_env), _regname,                \
2126                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2127
2128#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2129    A32_BANKED_REG_SET((_env), _regname,                                    \
2130                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2131                       (_val))
2132
2133void arm_cpu_list(void);
2134uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2135                                 uint32_t cur_el, bool secure);
2136
2137/* Interface between CPU and Interrupt controller.  */
2138#ifndef CONFIG_USER_ONLY
2139bool armv7m_nvic_can_take_pending_exception(void *opaque);
2140#else
2141static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2142{
2143    return true;
2144}
2145#endif
2146/**
2147 * armv7m_nvic_set_pending: mark the specified exception as pending
2148 * @opaque: the NVIC
2149 * @irq: the exception number to mark pending
2150 * @secure: false for non-banked exceptions or for the nonsecure
2151 * version of a banked exception, true for the secure version of a banked
2152 * exception.
2153 *
2154 * Marks the specified exception as pending. Note that we will assert()
2155 * if @secure is true and @irq does not specify one of the fixed set
2156 * of architecturally banked exceptions.
2157 */
2158void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2159/**
2160 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2161 * @opaque: the NVIC
2162 * @irq: the exception number to mark pending
2163 * @secure: false for non-banked exceptions or for the nonsecure
2164 * version of a banked exception, true for the secure version of a banked
2165 * exception.
2166 *
2167 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2168 * exceptions (exceptions generated in the course of trying to take
2169 * a different exception).
2170 */
2171void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2172/**
2173 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2174 * @opaque: the NVIC
2175 * @irq: the exception number to mark pending
2176 * @secure: false for non-banked exceptions or for the nonsecure
2177 * version of a banked exception, true for the secure version of a banked
2178 * exception.
2179 *
2180 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2181 * generated in the course of lazy stacking of FP registers.
2182 */
2183void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2184/**
2185 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2186 *    exception, and whether it targets Secure state
2187 * @opaque: the NVIC
2188 * @pirq: set to pending exception number
2189 * @ptargets_secure: set to whether pending exception targets Secure
2190 *
2191 * This function writes the number of the highest priority pending
2192 * exception (the one which would be made active by
2193 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2194 * to true if the current highest priority pending exception should
2195 * be taken to Secure state, false for NS.
2196 */
2197void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2198                                      bool *ptargets_secure);
2199/**
2200 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2201 * @opaque: the NVIC
2202 *
2203 * Move the current highest priority pending exception from the pending
2204 * state to the active state, and update v7m.exception to indicate that
2205 * it is the exception currently being handled.
2206 */
2207void armv7m_nvic_acknowledge_irq(void *opaque);
2208/**
2209 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2210 * @opaque: the NVIC
2211 * @irq: the exception number to complete
2212 * @secure: true if this exception was secure
2213 *
2214 * Returns: -1 if the irq was not active
2215 *           1 if completing this irq brought us back to base (no active irqs)
2216 *           0 if there is still an irq active after this one was completed
2217 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2218 */
2219int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2220/**
2221 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2222 * @opaque: the NVIC
2223 * @irq: the exception number to mark pending
2224 * @secure: false for non-banked exceptions or for the nonsecure
2225 * version of a banked exception, true for the secure version of a banked
2226 * exception.
2227 *
2228 * Return whether an exception is "ready", i.e. whether the exception is
2229 * enabled and is configured at a priority which would allow it to
2230 * interrupt the current execution priority. This controls whether the
2231 * RDY bit for it in the FPCCR is set.
2232 */
2233bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2234/**
2235 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2236 * @opaque: the NVIC
2237 *
2238 * Returns: the raw execution priority as defined by the v8M architecture.
2239 * This is the execution priority minus the effects of AIRCR.PRIS,
2240 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2241 * (v8M ARM ARM I_PKLD.)
2242 */
2243int armv7m_nvic_raw_execution_priority(void *opaque);
2244/**
2245 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2246 * priority is negative for the specified security state.
2247 * @opaque: the NVIC
2248 * @secure: the security state to test
2249 * This corresponds to the pseudocode IsReqExecPriNeg().
2250 */
2251#ifndef CONFIG_USER_ONLY
2252bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2253#else
2254static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2255{
2256    return false;
2257}
2258#endif
2259
2260/* Interface for defining coprocessor registers.
2261 * Registers are defined in tables of arm_cp_reginfo structs
2262 * which are passed to define_arm_cp_regs().
2263 */
2264
2265/* When looking up a coprocessor register we look for it
2266 * via an integer which encodes all of:
2267 *  coprocessor number
2268 *  Crn, Crm, opc1, opc2 fields
2269 *  32 or 64 bit register (ie is it accessed via MRC/MCR
2270 *    or via MRRC/MCRR?)
2271 *  non-secure/secure bank (AArch32 only)
2272 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2273 * (In this case crn and opc2 should be zero.)
2274 * For AArch64, there is no 32/64 bit size distinction;
2275 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2276 * and 4 bit CRn and CRm. The encoding patterns are chosen
2277 * to be easy to convert to and from the KVM encodings, and also
2278 * so that the hashtable can contain both AArch32 and AArch64
2279 * registers (to allow for interprocessing where we might run
2280 * 32 bit code on a 64 bit core).
2281 */
2282/* This bit is private to our hashtable cpreg; in KVM register
2283 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2284 * in the upper bits of the 64 bit ID.
2285 */
2286#define CP_REG_AA64_SHIFT 28
2287#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2288
2289/* To enable banking of coprocessor registers depending on ns-bit we
2290 * add a bit to distinguish between secure and non-secure cpregs in the
2291 * hashtable.
2292 */
2293#define CP_REG_NS_SHIFT 29
2294#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2295
2296#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2297    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2298     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2299
2300#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2301    (CP_REG_AA64_MASK |                                 \
2302     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2303     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2304     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2305     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2306     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2307     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2308
2309/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2310 * version used as a key for the coprocessor register hashtable
2311 */
2312static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2313{
2314    uint32_t cpregid = kvmid;
2315    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2316        cpregid |= CP_REG_AA64_MASK;
2317    } else {
2318        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2319            cpregid |= (1 << 15);
2320        }
2321
2322        /* KVM is always non-secure so add the NS flag on AArch32 register
2323         * entries.
2324         */
2325         cpregid |= 1 << CP_REG_NS_SHIFT;
2326    }
2327    return cpregid;
2328}
2329
2330/* Convert a truncated 32 bit hashtable key into the full
2331 * 64 bit KVM register ID.
2332 */
2333static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2334{
2335    uint64_t kvmid;
2336
2337    if (cpregid & CP_REG_AA64_MASK) {
2338        kvmid = cpregid & ~CP_REG_AA64_MASK;
2339        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2340    } else {
2341        kvmid = cpregid & ~(1 << 15);
2342        if (cpregid & (1 << 15)) {
2343            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2344        } else {
2345            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2346        }
2347    }
2348    return kvmid;
2349}
2350
2351/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2352 * special-behaviour cp reg and bits [11..8] indicate what behaviour
2353 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2354 * TCG can assume the value to be constant (ie load at translate time)
2355 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2356 * indicates that the TB should not be ended after a write to this register
2357 * (the default is that the TB ends after cp writes). OVERRIDE permits
2358 * a register definition to override a previous definition for the
2359 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2360 * old must have the OVERRIDE bit set.
2361 * ALIAS indicates that this register is an alias view of some underlying
2362 * state which is also visible via another register, and that the other
2363 * register is handling migration and reset; registers marked ALIAS will not be
2364 * migrated but may have their state set by syncing of register state from KVM.
2365 * NO_RAW indicates that this register has no underlying state and does not
2366 * support raw access for state saving/loading; it will not be used for either
2367 * migration or KVM state synchronization. (Typically this is for "registers"
2368 * which are actually used as instructions for cache maintenance and so on.)
2369 * IO indicates that this register does I/O and therefore its accesses
2370 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2371 * registers which implement clocks or timers require this.
2372 * RAISES_EXC is for when the read or write hook might raise an exception;
2373 * the generated code will synchronize the CPU state before calling the hook
2374 * so that it is safe for the hook to call raise_exception().
2375 * NEWEL is for writes to registers that might change the exception
2376 * level - typically on older ARM chips. For those cases we need to
2377 * re-read the new el when recomputing the translation flags.
2378 */
2379#define ARM_CP_SPECIAL           0x0001
2380#define ARM_CP_CONST             0x0002
2381#define ARM_CP_64BIT             0x0004
2382#define ARM_CP_SUPPRESS_TB_END   0x0008
2383#define ARM_CP_OVERRIDE          0x0010
2384#define ARM_CP_ALIAS             0x0020
2385#define ARM_CP_IO                0x0040
2386#define ARM_CP_NO_RAW            0x0080
2387#define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2388#define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2389#define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2390#define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2391#define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2392#define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2393#define ARM_CP_FPU               0x1000
2394#define ARM_CP_SVE               0x2000
2395#define ARM_CP_NO_GDB            0x4000
2396#define ARM_CP_RAISES_EXC        0x8000
2397#define ARM_CP_NEWEL             0x10000
2398/* Used only as a terminator for ARMCPRegInfo lists */
2399#define ARM_CP_SENTINEL          0xfffff
2400/* Mask of only the flag bits in a type field */
2401#define ARM_CP_FLAG_MASK         0x1f0ff
2402
2403/* Valid values for ARMCPRegInfo state field, indicating which of
2404 * the AArch32 and AArch64 execution states this register is visible in.
2405 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2406 * If the reginfo is declared to be visible in both states then a second
2407 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2408 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2409 * Note that we rely on the values of these enums as we iterate through
2410 * the various states in some places.
2411 */
2412enum {
2413    ARM_CP_STATE_AA32 = 0,
2414    ARM_CP_STATE_AA64 = 1,
2415    ARM_CP_STATE_BOTH = 2,
2416};
2417
2418/* ARM CP register secure state flags.  These flags identify security state
2419 * attributes for a given CP register entry.
2420 * The existence of both or neither secure and non-secure flags indicates that
2421 * the register has both a secure and non-secure hash entry.  A single one of
2422 * these flags causes the register to only be hashed for the specified
2423 * security state.
2424 * Although definitions may have any combination of the S/NS bits, each
2425 * registered entry will only have one to identify whether the entry is secure
2426 * or non-secure.
2427 */
2428enum {
2429    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2430    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2431};
2432
2433/* Return true if cptype is a valid type field. This is used to try to
2434 * catch errors where the sentinel has been accidentally left off the end
2435 * of a list of registers.
2436 */
2437static inline bool cptype_valid(int cptype)
2438{
2439    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2440        || ((cptype & ARM_CP_SPECIAL) &&
2441            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2442}
2443
2444/* Access rights:
2445 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2446 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2447 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2448 * (ie any of the privileged modes in Secure state, or Monitor mode).
2449 * If a register is accessible in one privilege level it's always accessible
2450 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2451 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2452 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2453 * terminology a little and call this PL3.
2454 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2455 * with the ELx exception levels.
2456 *
2457 * If access permissions for a register are more complex than can be
2458 * described with these bits, then use a laxer set of restrictions, and
2459 * do the more restrictive/complex check inside a helper function.
2460 */
2461#define PL3_R 0x80
2462#define PL3_W 0x40
2463#define PL2_R (0x20 | PL3_R)
2464#define PL2_W (0x10 | PL3_W)
2465#define PL1_R (0x08 | PL2_R)
2466#define PL1_W (0x04 | PL2_W)
2467#define PL0_R (0x02 | PL1_R)
2468#define PL0_W (0x01 | PL1_W)
2469
2470/*
2471 * For user-mode some registers are accessible to EL0 via a kernel
2472 * trap-and-emulate ABI. In this case we define the read permissions
2473 * as actually being PL0_R. However some bits of any given register
2474 * may still be masked.
2475 */
2476#ifdef CONFIG_USER_ONLY
2477#define PL0U_R PL0_R
2478#else
2479#define PL0U_R PL1_R
2480#endif
2481
2482#define PL3_RW (PL3_R | PL3_W)
2483#define PL2_RW (PL2_R | PL2_W)
2484#define PL1_RW (PL1_R | PL1_W)
2485#define PL0_RW (PL0_R | PL0_W)
2486
2487/* Return the highest implemented Exception Level */
2488static inline int arm_highest_el(CPUARMState *env)
2489{
2490    if (arm_feature(env, ARM_FEATURE_EL3)) {
2491        return 3;
2492    }
2493    if (arm_feature(env, ARM_FEATURE_EL2)) {
2494        return 2;
2495    }
2496    return 1;
2497}
2498
2499/* Return true if a v7M CPU is in Handler mode */
2500static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2501{
2502    return env->v7m.exception != 0;
2503}
2504
2505/* Return the current Exception Level (as per ARMv8; note that this differs
2506 * from the ARMv7 Privilege Level).
2507 */
2508static inline int arm_current_el(CPUARMState *env)
2509{
2510    if (arm_feature(env, ARM_FEATURE_M)) {
2511        return arm_v7m_is_handler_mode(env) ||
2512            !(env->v7m.control[env->v7m.secure] & 1);
2513    }
2514
2515    if (is_a64(env)) {
2516        return extract32(env->pstate, 2, 2);
2517    }
2518
2519    switch (env->uncached_cpsr & 0x1f) {
2520    case ARM_CPU_MODE_USR:
2521        return 0;
2522    case ARM_CPU_MODE_HYP:
2523        return 2;
2524    case ARM_CPU_MODE_MON:
2525        return 3;
2526    default:
2527        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2528            /* If EL3 is 32-bit then all secure privileged modes run in
2529             * EL3
2530             */
2531            return 3;
2532        }
2533
2534        return 1;
2535    }
2536}
2537
2538typedef struct ARMCPRegInfo ARMCPRegInfo;
2539
2540typedef enum CPAccessResult {
2541    /* Access is permitted */
2542    CP_ACCESS_OK = 0,
2543    /* Access fails due to a configurable trap or enable which would
2544     * result in a categorized exception syndrome giving information about
2545     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2546     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2547     * PL1 if in EL0, otherwise to the current EL).
2548     */
2549    CP_ACCESS_TRAP = 1,
2550    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2551     * Note that this is not a catch-all case -- the set of cases which may
2552     * result in this failure is specifically defined by the architecture.
2553     */
2554    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2555    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2556    CP_ACCESS_TRAP_EL2 = 3,
2557    CP_ACCESS_TRAP_EL3 = 4,
2558    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2559    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2560    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2561    /* Access fails and results in an exception syndrome for an FP access,
2562     * trapped directly to EL2 or EL3
2563     */
2564    CP_ACCESS_TRAP_FP_EL2 = 7,
2565    CP_ACCESS_TRAP_FP_EL3 = 8,
2566} CPAccessResult;
2567
2568/* Access functions for coprocessor registers. These cannot fail and
2569 * may not raise exceptions.
2570 */
2571typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2572typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2573                       uint64_t value);
2574/* Access permission check functions for coprocessor registers. */
2575typedef CPAccessResult CPAccessFn(CPUARMState *env,
2576                                  const ARMCPRegInfo *opaque,
2577                                  bool isread);
2578/* Hook function for register reset */
2579typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2580
2581#define CP_ANY 0xff
2582
2583/* Definition of an ARM coprocessor register */
2584struct ARMCPRegInfo {
2585    /* Name of register (useful mainly for debugging, need not be unique) */
2586    const char *name;
2587    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2588     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2589     * 'wildcard' field -- any value of that field in the MRC/MCR insn
2590     * will be decoded to this register. The register read and write
2591     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2592     * used by the program, so it is possible to register a wildcard and
2593     * then behave differently on read/write if necessary.
2594     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2595     * must both be zero.
2596     * For AArch64-visible registers, opc0 is also used.
2597     * Since there are no "coprocessors" in AArch64, cp is purely used as a
2598     * way to distinguish (for KVM's benefit) guest-visible system registers
2599     * from demuxed ones provided to preserve the "no side effects on
2600     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2601     * visible (to match KVM's encoding); cp==0 will be converted to
2602     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2603     */
2604    uint8_t cp;
2605    uint8_t crn;
2606    uint8_t crm;
2607    uint8_t opc0;
2608    uint8_t opc1;
2609    uint8_t opc2;
2610    /* Execution state in which this register is visible: ARM_CP_STATE_* */
2611    int state;
2612    /* Register type: ARM_CP_* bits/values */
2613    int type;
2614    /* Access rights: PL*_[RW] */
2615    int access;
2616    /* Security state: ARM_CP_SECSTATE_* bits/values */
2617    int secure;
2618    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2619     * this register was defined: can be used to hand data through to the
2620     * register read/write functions, since they are passed the ARMCPRegInfo*.
2621     */
2622    void *opaque;
2623    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2624     * fieldoffset is non-zero, the reset value of the register.
2625     */
2626    uint64_t resetvalue;
2627    /* Offset of the field in CPUARMState for this register.
2628     *
2629     * This is not needed if either:
2630     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2631     *  2. both readfn and writefn are specified
2632     */
2633    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2634
2635    /* Offsets of the secure and non-secure fields in CPUARMState for the
2636     * register if it is banked.  These fields are only used during the static
2637     * registration of a register.  During hashing the bank associated
2638     * with a given security state is copied to fieldoffset which is used from
2639     * there on out.
2640     *
2641     * It is expected that register definitions use either fieldoffset or
2642     * bank_fieldoffsets in the definition but not both.  It is also expected
2643     * that both bank offsets are set when defining a banked register.  This
2644     * use indicates that a register is banked.
2645     */
2646    ptrdiff_t bank_fieldoffsets[2];
2647
2648    /* Function for making any access checks for this register in addition to
2649     * those specified by the 'access' permissions bits. If NULL, no extra
2650     * checks required. The access check is performed at runtime, not at
2651     * translate time.
2652     */
2653    CPAccessFn *accessfn;
2654    /* Function for handling reads of this register. If NULL, then reads
2655     * will be done by loading from the offset into CPUARMState specified
2656     * by fieldoffset.
2657     */
2658    CPReadFn *readfn;
2659    /* Function for handling writes of this register. If NULL, then writes
2660     * will be done by writing to the offset into CPUARMState specified
2661     * by fieldoffset.
2662     */
2663    CPWriteFn *writefn;
2664    /* Function for doing a "raw" read; used when we need to copy
2665     * coprocessor state to the kernel for KVM or out for
2666     * migration. This only needs to be provided if there is also a
2667     * readfn and it has side effects (for instance clear-on-read bits).
2668     */
2669    CPReadFn *raw_readfn;
2670    /* Function for doing a "raw" write; used when we need to copy KVM
2671     * kernel coprocessor state into userspace, or for inbound
2672     * migration. This only needs to be provided if there is also a
2673     * writefn and it masks out "unwritable" bits or has write-one-to-clear
2674     * or similar behaviour.
2675     */
2676    CPWriteFn *raw_writefn;
2677    /* Function for resetting the register. If NULL, then reset will be done
2678     * by writing resetvalue to the field specified in fieldoffset. If
2679     * fieldoffset is 0 then no reset will be done.
2680     */
2681    CPResetFn *resetfn;
2682
2683    /*
2684     * "Original" writefn and readfn.
2685     * For ARMv8.1-VHE register aliases, we overwrite the read/write
2686     * accessor functions of various EL1/EL0 to perform the runtime
2687     * check for which sysreg should actually be modified, and then
2688     * forwards the operation.  Before overwriting the accessors,
2689     * the original function is copied here, so that accesses that
2690     * really do go to the EL1/EL0 version proceed normally.
2691     * (The corresponding EL2 register is linked via opaque.)
2692     */
2693    CPReadFn *orig_readfn;
2694    CPWriteFn *orig_writefn;
2695};
2696
2697/* Macros which are lvalues for the field in CPUARMState for the
2698 * ARMCPRegInfo *ri.
2699 */
2700#define CPREG_FIELD32(env, ri) \
2701    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2702#define CPREG_FIELD64(env, ri) \
2703    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2704
2705#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2706
2707void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2708                                    const ARMCPRegInfo *regs, void *opaque);
2709void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2710                                       const ARMCPRegInfo *regs, void *opaque);
2711static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2712{
2713    define_arm_cp_regs_with_opaque(cpu, regs, 0);
2714}
2715static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2716{
2717    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2718}
2719const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2720
2721/*
2722 * Definition of an ARM co-processor register as viewed from
2723 * userspace. This is used for presenting sanitised versions of
2724 * registers to userspace when emulating the Linux AArch64 CPU
2725 * ID/feature ABI (advertised as HWCAP_CPUID).
2726 */
2727typedef struct ARMCPRegUserSpaceInfo {
2728    /* Name of register */
2729    const char *name;
2730
2731    /* Is the name actually a glob pattern */
2732    bool is_glob;
2733
2734    /* Only some bits are exported to user space */
2735    uint64_t exported_bits;
2736
2737    /* Fixed bits are applied after the mask */
2738    uint64_t fixed_bits;
2739} ARMCPRegUserSpaceInfo;
2740
2741#define REGUSERINFO_SENTINEL { .name = NULL }
2742
2743void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2744
2745/* CPWriteFn that can be used to implement writes-ignored behaviour */
2746void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2747                         uint64_t value);
2748/* CPReadFn that can be used for read-as-zero behaviour */
2749uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2750
2751/* CPResetFn that does nothing, for use if no reset is required even
2752 * if fieldoffset is non zero.
2753 */
2754void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2755
2756/* Return true if this reginfo struct's field in the cpu state struct
2757 * is 64 bits wide.
2758 */
2759static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2760{
2761    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2762}
2763
2764static inline bool cp_access_ok(int current_el,
2765                                const ARMCPRegInfo *ri, int isread)
2766{
2767    return (ri->access >> ((current_el * 2) + isread)) & 1;
2768}
2769
2770/* Raw read of a coprocessor register (as needed for migration, etc) */
2771uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2772
2773/**
2774 * write_list_to_cpustate
2775 * @cpu: ARMCPU
2776 *
2777 * For each register listed in the ARMCPU cpreg_indexes list, write
2778 * its value from the cpreg_values list into the ARMCPUState structure.
2779 * This updates TCG's working data structures from KVM data or
2780 * from incoming migration state.
2781 *
2782 * Returns: true if all register values were updated correctly,
2783 * false if some register was unknown or could not be written.
2784 * Note that we do not stop early on failure -- we will attempt
2785 * writing all registers in the list.
2786 */
2787bool write_list_to_cpustate(ARMCPU *cpu);
2788
2789/**
2790 * write_cpustate_to_list:
2791 * @cpu: ARMCPU
2792 * @kvm_sync: true if this is for syncing back to KVM
2793 *
2794 * For each register listed in the ARMCPU cpreg_indexes list, write
2795 * its value from the ARMCPUState structure into the cpreg_values list.
2796 * This is used to copy info from TCG's working data structures into
2797 * KVM or for outbound migration.
2798 *
2799 * @kvm_sync is true if we are doing this in order to sync the
2800 * register state back to KVM. In this case we will only update
2801 * values in the list if the previous list->cpustate sync actually
2802 * successfully wrote the CPU state. Otherwise we will keep the value
2803 * that is in the list.
2804 *
2805 * Returns: true if all register values were read correctly,
2806 * false if some register was unknown or could not be read.
2807 * Note that we do not stop early on failure -- we will attempt
2808 * reading all registers in the list.
2809 */
2810bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2811
2812#define ARM_CPUID_TI915T      0x54029152
2813#define ARM_CPUID_TI925T      0x54029252
2814
2815#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2816#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2817#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2818
2819#define cpu_signal_handler cpu_arm_signal_handler
2820#define cpu_list arm_cpu_list
2821
2822/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2823 *
2824 * If EL3 is 64-bit:
2825 *  + NonSecure EL1 & 0 stage 1
2826 *  + NonSecure EL1 & 0 stage 2
2827 *  + NonSecure EL2
2828 *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2829 *  + Secure EL1 & 0
2830 *  + Secure EL3
2831 * If EL3 is 32-bit:
2832 *  + NonSecure PL1 & 0 stage 1
2833 *  + NonSecure PL1 & 0 stage 2
2834 *  + NonSecure PL2
2835 *  + Secure PL0
2836 *  + Secure PL1
2837 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2838 *
2839 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2840 *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2841 *     because they may differ in access permissions even if the VA->PA map is
2842 *     the same
2843 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2844 *     translation, which means that we have one mmu_idx that deals with two
2845 *     concatenated translation regimes [this sort of combined s1+2 TLB is
2846 *     architecturally permitted]
2847 *  3. we don't need to allocate an mmu_idx to translations that we won't be
2848 *     handling via the TLB. The only way to do a stage 1 translation without
2849 *     the immediate stage 2 translation is via the ATS or AT system insns,
2850 *     which can be slow-pathed and always do a page table walk.
2851 *     The only use of stage 2 translations is either as part of an s1+2
2852 *     lookup or when loading the descriptors during a stage 1 page table walk,
2853 *     and in both those cases we don't use the TLB.
2854 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2855 *     translation regimes, because they map reasonably well to each other
2856 *     and they can't both be active at the same time.
2857 *  5. we want to be able to use the TLB for accesses done as part of a
2858 *     stage1 page table walk, rather than having to walk the stage2 page
2859 *     table over and over.
2860 *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2861 *     Never (PAN) bit within PSTATE.
2862 *
2863 * This gives us the following list of cases:
2864 *
2865 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2866 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2867 * NS EL1 EL1&0 stage 1+2 +PAN
2868 * NS EL0 EL2&0
2869 * NS EL2 EL2&0
2870 * NS EL2 EL2&0 +PAN
2871 * NS EL2 (aka NS PL2)
2872 * S EL0 EL1&0 (aka S PL0)
2873 * S EL1 EL1&0 (not used if EL3 is 32 bit)
2874 * S EL1 EL1&0 +PAN
2875 * S EL3 (aka S PL1)
2876 *
2877 * for a total of 11 different mmu_idx.
2878 *
2879 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2880 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2881 * NS EL2 if we ever model a Cortex-R52).
2882 *
2883 * M profile CPUs are rather different as they do not have a true MMU.
2884 * They have the following different MMU indexes:
2885 *  User
2886 *  Privileged
2887 *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2888 *  Privileged, execution priority negative (ditto)
2889 * If the CPU supports the v8M Security Extension then there are also:
2890 *  Secure User
2891 *  Secure Privileged
2892 *  Secure User, execution priority negative
2893 *  Secure Privileged, execution priority negative
2894 *
2895 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2896 * are not quite the same -- different CPU types (most notably M profile
2897 * vs A/R profile) would like to use MMU indexes with different semantics,
2898 * but since we don't ever need to use all of those in a single CPU we
2899 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2900 * modes + total number of M profile MMU modes". The lower bits of
2901 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2902 * the same for any particular CPU.
2903 * Variables of type ARMMUIdx are always full values, and the core
2904 * index values are in variables of type 'int'.
2905 *
2906 * Our enumeration includes at the end some entries which are not "true"
2907 * mmu_idx values in that they don't have corresponding TLBs and are only
2908 * valid for doing slow path page table walks.
2909 *
2910 * The constant names here are patterned after the general style of the names
2911 * of the AT/ATS operations.
2912 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2913 * For M profile we arrange them to have a bit for priv, a bit for negpri
2914 * and a bit for secure.
2915 */
2916#define ARM_MMU_IDX_A     0x10  /* A profile */
2917#define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2918#define ARM_MMU_IDX_M     0x40  /* M profile */
2919
2920/* Meanings of the bits for M profile mmu idx values */
2921#define ARM_MMU_IDX_M_PRIV   0x1
2922#define ARM_MMU_IDX_M_NEGPRI 0x2
2923#define ARM_MMU_IDX_M_S      0x4  /* Secure */
2924
2925#define ARM_MMU_IDX_TYPE_MASK \
2926    (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2927#define ARM_MMU_IDX_COREIDX_MASK 0xf
2928
2929typedef enum ARMMMUIdx {
2930    /*
2931     * A-profile.
2932     */
2933    ARMMMUIdx_E10_0      =  0 | ARM_MMU_IDX_A,
2934    ARMMMUIdx_E20_0      =  1 | ARM_MMU_IDX_A,
2935
2936    ARMMMUIdx_E10_1      =  2 | ARM_MMU_IDX_A,
2937    ARMMMUIdx_E10_1_PAN  =  3 | ARM_MMU_IDX_A,
2938
2939    ARMMMUIdx_E2         =  4 | ARM_MMU_IDX_A,
2940    ARMMMUIdx_E20_2      =  5 | ARM_MMU_IDX_A,
2941    ARMMMUIdx_E20_2_PAN  =  6 | ARM_MMU_IDX_A,
2942
2943    ARMMMUIdx_SE10_0     = 7 | ARM_MMU_IDX_A,
2944    ARMMMUIdx_SE10_1     = 8 | ARM_MMU_IDX_A,
2945    ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
2946    ARMMMUIdx_SE3        = 10 | ARM_MMU_IDX_A,
2947
2948    /*
2949     * These are not allocated TLBs and are used only for AT system
2950     * instructions or for the first stage of an S12 page table walk.
2951     */
2952    ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2953    ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2954    ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2955    /*
2956     * Not allocated a TLB: used only for second stage of an S12 page
2957     * table walk, or for descriptor loads during first stage of an S1
2958     * page table walk. Note that if we ever want to have a TLB for this
2959     * then various TLB flush insns which currently are no-ops or flush
2960     * only stage 1 MMU indexes will need to change to flush stage 2.
2961     */
2962    ARMMMUIdx_Stage2     = 3 | ARM_MMU_IDX_NOTLB,
2963
2964    /*
2965     * M-profile.
2966     */
2967    ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2968    ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2969    ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2970    ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2971    ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2972    ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2973    ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2974    ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2975} ARMMMUIdx;
2976
2977/*
2978 * Bit macros for the core-mmu-index values for each index,
2979 * for use when calling tlb_flush_by_mmuidx() and friends.
2980 */
2981#define TO_CORE_BIT(NAME) \
2982    ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2983
2984typedef enum ARMMMUIdxBit {
2985    TO_CORE_BIT(E10_0),
2986    TO_CORE_BIT(E20_0),
2987    TO_CORE_BIT(E10_1),
2988    TO_CORE_BIT(E10_1_PAN),
2989    TO_CORE_BIT(E2),
2990    TO_CORE_BIT(E20_2),
2991    TO_CORE_BIT(E20_2_PAN),
2992    TO_CORE_BIT(SE10_0),
2993    TO_CORE_BIT(SE10_1),
2994    TO_CORE_BIT(SE10_1_PAN),
2995    TO_CORE_BIT(SE3),
2996
2997    TO_CORE_BIT(MUser),
2998    TO_CORE_BIT(MPriv),
2999    TO_CORE_BIT(MUserNegPri),
3000    TO_CORE_BIT(MPrivNegPri),
3001    TO_CORE_BIT(MSUser),
3002    TO_CORE_BIT(MSPriv),
3003    TO_CORE_BIT(MSUserNegPri),
3004    TO_CORE_BIT(MSPrivNegPri),
3005} ARMMMUIdxBit;
3006
3007#undef TO_CORE_BIT
3008
3009#define MMU_USER_IDX 0
3010
3011/* Indexes used when registering address spaces with cpu_address_space_init */
3012typedef enum ARMASIdx {
3013    ARMASIdx_NS = 0,
3014    ARMASIdx_S = 1,
3015} ARMASIdx;
3016
3017/* Return the Exception Level targeted by debug exceptions. */
3018static inline int arm_debug_target_el(CPUARMState *env)
3019{
3020    bool secure = arm_is_secure(env);
3021    bool route_to_el2 = false;
3022
3023    if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
3024        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3025                       env->cp15.mdcr_el2 & MDCR_TDE;
3026    }
3027
3028    if (route_to_el2) {
3029        return 2;
3030    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3031               !arm_el_is_aa64(env, 3) && secure) {
3032        return 3;
3033    } else {
3034        return 1;
3035    }
3036}
3037
3038static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3039{
3040    /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3041     * CSSELR is RAZ/WI.
3042     */
3043    return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3044}
3045
3046/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3047static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3048{
3049    int cur_el = arm_current_el(env);
3050    int debug_el;
3051
3052    if (cur_el == 3) {
3053        return false;
3054    }
3055
3056    /* MDCR_EL3.SDD disables debug events from Secure state */
3057    if (arm_is_secure_below_el3(env)
3058        && extract32(env->cp15.mdcr_el3, 16, 1)) {
3059        return false;
3060    }
3061
3062    /*
3063     * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3064     * while not masking the (D)ebug bit in DAIF.
3065     */
3066    debug_el = arm_debug_target_el(env);
3067
3068    if (cur_el == debug_el) {
3069        return extract32(env->cp15.mdscr_el1, 13, 1)
3070            && !(env->daif & PSTATE_D);
3071    }
3072
3073    /* Otherwise the debug target needs to be a higher EL */
3074    return debug_el > cur_el;
3075}
3076
3077static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3078{
3079    int el = arm_current_el(env);
3080
3081    if (el == 0 && arm_el_is_aa64(env, 1)) {
3082        return aa64_generate_debug_exceptions(env);
3083    }
3084
3085    if (arm_is_secure(env)) {
3086        int spd;
3087
3088        if (el == 0 && (env->cp15.sder & 1)) {
3089            /* SDER.SUIDEN means debug exceptions from Secure EL0
3090             * are always enabled. Otherwise they are controlled by
3091             * SDCR.SPD like those from other Secure ELs.
3092             */
3093            return true;
3094        }
3095
3096        spd = extract32(env->cp15.mdcr_el3, 14, 2);
3097        switch (spd) {
3098        case 1:
3099            /* SPD == 0b01 is reserved, but behaves as 0b00. */
3100        case 0:
3101            /* For 0b00 we return true if external secure invasive debug
3102             * is enabled. On real hardware this is controlled by external
3103             * signals to the core. QEMU always permits debug, and behaves
3104             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3105             */
3106            return true;
3107        case 2:
3108            return false;
3109        case 3:
3110            return true;
3111        }
3112    }
3113
3114    return el != 2;
3115}
3116
3117/* Return true if debugging exceptions are currently enabled.
3118 * This corresponds to what in ARM ARM pseudocode would be
3119 *    if UsingAArch32() then
3120 *        return AArch32.GenerateDebugExceptions()
3121 *    else
3122 *        return AArch64.GenerateDebugExceptions()
3123 * We choose to push the if() down into this function for clarity,
3124 * since the pseudocode has it at all callsites except for the one in
3125 * CheckSoftwareStep(), where it is elided because both branches would
3126 * always return the same value.
3127 */
3128static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3129{
3130    if (env->aarch64) {
3131        return aa64_generate_debug_exceptions(env);
3132    } else {
3133        return aa32_generate_debug_exceptions(env);
3134    }
3135}
3136
3137/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3138 * implicitly means this always returns false in pre-v8 CPUs.)
3139 */
3140static inline bool arm_singlestep_active(CPUARMState *env)
3141{
3142    return extract32(env->cp15.mdscr_el1, 0, 1)
3143        && arm_el_is_aa64(env, arm_debug_target_el(env))
3144        && arm_generate_debug_exceptions(env);
3145}
3146
3147static inline bool arm_sctlr_b(CPUARMState *env)
3148{
3149    return
3150        /* We need not implement SCTLR.ITD in user-mode emulation, so
3151         * let linux-user ignore the fact that it conflicts with SCTLR_B.
3152         * This lets people run BE32 binaries with "-cpu any".
3153         */
3154#ifndef CONFIG_USER_ONLY
3155        !arm_feature(env, ARM_FEATURE_V7) &&
3156#endif
3157        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3158}
3159
3160uint64_t arm_sctlr(CPUARMState *env, int el);
3161
3162static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3163                                                  bool sctlr_b)
3164{
3165#ifdef CONFIG_USER_ONLY
3166    /*
3167     * In system mode, BE32 is modelled in line with the
3168     * architecture (as word-invariant big-endianness), where loads
3169     * and stores are done little endian but from addresses which
3170     * are adjusted by XORing with the appropriate constant. So the
3171     * endianness to use for the raw data access is not affected by
3172     * SCTLR.B.
3173     * In user mode, however, we model BE32 as byte-invariant
3174     * big-endianness (because user-only code cannot tell the
3175     * difference), and so we need to use a data access endianness
3176     * that depends on SCTLR.B.
3177     */
3178    if (sctlr_b) {
3179        return true;
3180    }
3181#endif
3182    /* In 32bit endianness is determined by looking at CPSR's E bit */
3183    return env->uncached_cpsr & CPSR_E;
3184}
3185
3186static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3187{
3188    return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3189}
3190
3191/* Return true if the processor is in big-endian mode. */
3192static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3193{
3194    if (!is_a64(env)) {
3195        return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3196    } else {
3197        int cur_el = arm_current_el(env);
3198        uint64_t sctlr = arm_sctlr(env, cur_el);
3199        return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3200    }
3201}
3202
3203typedef CPUARMState CPUArchState;
3204typedef ARMCPU ArchCPU;
3205
3206#include "exec/cpu-all.h"
3207
3208/*
3209 * Bit usage in the TB flags field: bit 31 indicates whether we are
3210 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3211 * We put flags which are shared between 32 and 64 bit mode at the top
3212 * of the word, and flags which apply to only one mode at the bottom.
3213 *
3214 *  31          20    18    14          9              0
3215 * +--------------+-----+-----+----------+--------------+
3216 * |              |     |   TBFLAG_A32   |              |
3217 * |              |     +-----+----------+  TBFLAG_AM32 |
3218 * |  TBFLAG_ANY  |           |TBFLAG_M32|              |
3219 * |              |         +-+----------+--------------|
3220 * |              |         |         TBFLAG_A64        |
3221 * +--------------+---------+---------------------------+
3222 *  31          20        15                           0
3223 *
3224 * Unless otherwise noted, these bits are cached in env->hflags.
3225 */
3226FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3227FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3228FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1)     /* Not cached. */
3229FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3230FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
3231/* Target EL if we take a floating-point-disabled exception */
3232FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
3233/* For A-profile only, target EL for debug exceptions.  */
3234FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
3235
3236/*
3237 * Bit usage when in AArch32 state, both A- and M-profile.
3238 */
3239FIELD(TBFLAG_AM32, CONDEXEC, 0, 8)      /* Not cached. */
3240FIELD(TBFLAG_AM32, THUMB, 8, 1)         /* Not cached. */
3241
3242/*
3243 * Bit usage when in AArch32 state, for A-profile only.
3244 */
3245FIELD(TBFLAG_A32, VECLEN, 9, 3)         /* Not cached. */
3246FIELD(TBFLAG_A32, VECSTRIDE, 12, 2)     /* Not cached. */
3247/*
3248 * We store the bottom two bits of the CPAR as TB flags and handle
3249 * checks on the other bits at runtime. This shares the same bits as
3250 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3251 * Not cached, because VECLEN+VECSTRIDE are not cached.
3252 */
3253FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3254FIELD(TBFLAG_A32, VFPEN, 14, 1)         /* Partially cached, minus FPEXC. */
3255FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3256FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
3257/*
3258 * Indicates whether cp register reads and writes by guest code should access
3259 * the secure or nonsecure bank of banked registers; note that this is not
3260 * the same thing as the current security state of the processor!
3261 */
3262FIELD(TBFLAG_A32, NS, 17, 1)
3263
3264/*
3265 * Bit usage when in AArch32 state, for M-profile only.
3266 */
3267/* Handler (ie not Thread) mode */
3268FIELD(TBFLAG_M32, HANDLER, 9, 1)
3269/* Whether we should generate stack-limit checks */
3270FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3271/* Set if FPCCR.LSPACT is set */
3272FIELD(TBFLAG_M32, LSPACT, 11, 1)                 /* Not cached. */
3273/* Set if we must create a new FP context */
3274FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1)     /* Not cached. */
3275/* Set if FPCCR.S does not match current security state */
3276FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1)          /* Not cached. */
3277
3278/*
3279 * Bit usage when in AArch64 state
3280 */
3281FIELD(TBFLAG_A64, TBII, 0, 2)
3282FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3283FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3284FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3285FIELD(TBFLAG_A64, BT, 9, 1)
3286FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3287FIELD(TBFLAG_A64, TBID, 12, 2)
3288FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3289
3290/**
3291 * cpu_mmu_index:
3292 * @env: The cpu environment
3293 * @ifetch: True for code access, false for data access.
3294 *
3295 * Return the core mmu index for the current translation regime.
3296 * This function is used by generic TCG code paths.
3297 */
3298static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3299{
3300    return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3301}
3302
3303static inline bool bswap_code(bool sctlr_b)
3304{
3305#ifdef CONFIG_USER_ONLY
3306    /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3307     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3308     * would also end up as a mixed-endian mode with BE code, LE data.
3309     */
3310    return
3311#ifdef TARGET_WORDS_BIGENDIAN
3312        1 ^
3313#endif
3314        sctlr_b;
3315#else
3316    /* All code access in ARM is little endian, and there are no loaders
3317     * doing swaps that need to be reversed
3318     */
3319    return 0;
3320#endif
3321}
3322
3323#ifdef CONFIG_USER_ONLY
3324static inline bool arm_cpu_bswap_data(CPUARMState *env)
3325{
3326    return
3327#ifdef TARGET_WORDS_BIGENDIAN
3328       1 ^
3329#endif
3330       arm_cpu_data_is_big_endian(env);
3331}
3332#endif
3333
3334void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3335                          target_ulong *cs_base, uint32_t *flags);
3336
3337enum {
3338    QEMU_PSCI_CONDUIT_DISABLED = 0,
3339    QEMU_PSCI_CONDUIT_SMC = 1,
3340    QEMU_PSCI_CONDUIT_HVC = 2,
3341};
3342
3343#ifndef CONFIG_USER_ONLY
3344/* Return the address space index to use for a memory access */
3345static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3346{
3347    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3348}
3349
3350/* Return the AddressSpace to use for a memory access
3351 * (which depends on whether the access is S or NS, and whether
3352 * the board gave us a separate AddressSpace for S accesses).
3353 */
3354static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3355{
3356    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3357}
3358#endif
3359
3360/**
3361 * arm_register_pre_el_change_hook:
3362 * Register a hook function which will be called immediately before this
3363 * CPU changes exception level or mode. The hook function will be
3364 * passed a pointer to the ARMCPU and the opaque data pointer passed
3365 * to this function when the hook was registered.
3366 *
3367 * Note that if a pre-change hook is called, any registered post-change hooks
3368 * are guaranteed to subsequently be called.
3369 */
3370void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3371                                 void *opaque);
3372/**
3373 * arm_register_el_change_hook:
3374 * Register a hook function which will be called immediately after this
3375 * CPU changes exception level or mode. The hook function will be
3376 * passed a pointer to the ARMCPU and the opaque data pointer passed
3377 * to this function when the hook was registered.
3378 *
3379 * Note that any registered hooks registered here are guaranteed to be called
3380 * if pre-change hooks have been.
3381 */
3382void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3383        *opaque);
3384
3385/**
3386 * arm_rebuild_hflags:
3387 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3388 */
3389void arm_rebuild_hflags(CPUARMState *env);
3390
3391/**
3392 * aa32_vfp_dreg:
3393 * Return a pointer to the Dn register within env in 32-bit mode.
3394 */
3395static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3396{
3397    return &env->vfp.zregs[regno >> 1].d[regno & 1];
3398}
3399
3400/**
3401 * aa32_vfp_qreg:
3402 * Return a pointer to the Qn register within env in 32-bit mode.
3403 */
3404static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3405{
3406    return &env->vfp.zregs[regno].d[0];
3407}
3408
3409/**
3410 * aa64_vfp_qreg:
3411 * Return a pointer to the Qn register within env in 64-bit mode.
3412 */
3413static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3414{
3415    return &env->vfp.zregs[regno].d[0];
3416}
3417
3418/* Shared between translate-sve.c and sve_helper.c.  */
3419extern const uint64_t pred_esz_masks[4];
3420
3421/*
3422 * Naming convention for isar_feature functions:
3423 * Functions which test 32-bit ID registers should have _aa32_ in
3424 * their name. Functions which test 64-bit ID registers should have
3425 * _aa64_ in their name. These must only be used in code where we
3426 * know for certain that the CPU has AArch32 or AArch64 respectively
3427 * or where the correct answer for a CPU which doesn't implement that
3428 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3429 * system registers that are specific to that CPU state, for "should
3430 * we let this system register bit be set" tests where the 32-bit
3431 * flavour of the register doesn't have the bit, and so on).
3432 * Functions which simply ask "does this feature exist at all" have
3433 * _any_ in their name, and always return the logical OR of the _aa64_
3434 * and the _aa32_ function.
3435 */
3436
3437/*
3438 * 32-bit feature tests via id registers.
3439 */
3440static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3441{
3442    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3443}
3444
3445static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3446{
3447    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3448}
3449
3450static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3451{
3452    return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3453}
3454
3455static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3456{
3457    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3458}
3459
3460static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3461{
3462    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3463}
3464
3465static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3466{
3467    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3468}
3469
3470static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3471{
3472    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3473}
3474
3475static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3476{
3477    return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3478}
3479
3480static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3481{
3482    return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3483}
3484
3485static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3486{
3487    return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3488}
3489
3490static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3491{
3492    return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3493}
3494
3495static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3496{
3497    return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3498}
3499
3500static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3501{
3502    return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3503}
3504
3505static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3506{
3507    return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3508}
3509
3510static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3511{
3512    return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3513}
3514
3515static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3516{
3517    /*
3518     * This is a placeholder for use by VCMA until the rest of
3519     * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3520     * At which point we can properly set and check MVFR1.FPHP.
3521     */
3522    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3523}
3524
3525static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3526{
3527    /*
3528     * Return true if either VFP or SIMD is implemented.
3529     * In this case, a minimum of VFP w/ D0-D15.
3530     */
3531    return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3532}
3533
3534static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3535{
3536    /* Return true if D16-D31 are implemented */
3537    return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3538}
3539
3540static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3541{
3542    return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3543}
3544
3545static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3546{
3547    /* Return true if CPU supports single precision floating point, VFPv2 */
3548    return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3549}
3550
3551static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3552{
3553    /* Return true if CPU supports single precision floating point, VFPv3 */
3554    return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3555}
3556
3557static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3558{
3559    /* Return true if CPU supports double precision floating point, VFPv2 */
3560    return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3561}
3562
3563static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3564{
3565    /* Return true if CPU supports double precision floating point, VFPv3 */
3566    return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3567}
3568
3569static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3570{
3571    return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3572}
3573
3574/*
3575 * We always set the FP and SIMD FP16 fields to indicate identical
3576 * levels of support (assuming SIMD is implemented at all), so
3577 * we only need one set of accessors.
3578 */
3579static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3580{
3581    return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3582}
3583
3584static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3585{
3586    return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3587}
3588
3589/*
3590 * Note that this ID register field covers both VFP and Neon FMAC,
3591 * so should usually be tested in combination with some other
3592 * check that confirms the presence of whichever of VFP or Neon is
3593 * relevant, to avoid accidentally enabling a Neon feature on
3594 * a VFP-no-Neon core or vice-versa.
3595 */
3596static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3597{
3598    return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3599}
3600
3601static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3602{
3603    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3604}
3605
3606static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3607{
3608    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3609}
3610
3611static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3612{
3613    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3614}
3615
3616static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3617{
3618    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3619}
3620
3621static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3622{
3623    return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3624}
3625
3626static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3627{
3628    return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3629}
3630
3631static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3632{
3633    /* 0xf means "non-standard IMPDEF PMU" */
3634    return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3635        FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3636}
3637
3638static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3639{
3640    /* 0xf means "non-standard IMPDEF PMU" */
3641    return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3642        FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3643}
3644
3645static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3646{
3647    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3648}
3649
3650static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3651{
3652    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3653}
3654
3655static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3656{
3657    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3658}
3659
3660static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3661{
3662    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3663}
3664
3665/*
3666 * 64-bit feature tests via id registers.
3667 */
3668static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3669{
3670    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3671}
3672
3673static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3674{
3675    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3676}
3677
3678static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3679{
3680    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3681}
3682
3683static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3684{
3685    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3686}
3687
3688static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3689{
3690    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3691}
3692
3693static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3694{
3695    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3696}
3697
3698static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3699{
3700    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3701}
3702
3703static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3704{
3705    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3706}
3707
3708static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3709{
3710    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3711}
3712
3713static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3714{
3715    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3716}
3717
3718static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3719{
3720    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3721}
3722
3723static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3724{
3725    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3726}
3727
3728static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3729{
3730    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3731}
3732
3733static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3734{
3735    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3736}
3737
3738static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3739{
3740    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3741}
3742
3743static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3744{
3745    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3746}
3747
3748static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3749{
3750    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3751}
3752
3753static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3754{
3755    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3756}
3757
3758static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3759{
3760    /*
3761     * Note that while QEMU will only implement the architected algorithm
3762     * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3763     * defined algorithms, and thus API+GPI, and this predicate controls
3764     * migration of the 128-bit keys.
3765     */
3766    return (id->id_aa64isar1 &
3767            (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3768             FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3769             FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3770             FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3771}
3772
3773static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3774{
3775    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3776}
3777
3778static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3779{
3780    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3781}
3782
3783static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3784{
3785    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3786}
3787
3788static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3789{
3790    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3791}
3792
3793static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3794{
3795    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3796}
3797
3798static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3799{
3800    /* We always set the AdvSIMD and FP fields identically.  */
3801    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3802}
3803
3804static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3805{
3806    /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3807    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3808}
3809
3810static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3811{
3812    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3813}
3814
3815static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3816{
3817    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3818}
3819
3820static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3821{
3822    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3823}
3824
3825static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3826{
3827    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3828}
3829
3830static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3831{
3832    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3833}
3834
3835static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3836{
3837    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3838}
3839
3840static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3841{
3842    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3843}
3844
3845static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3846{
3847    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3848}
3849
3850static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3851{
3852    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3853        FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3854}
3855
3856static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3857{
3858    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3859        FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3860}
3861
3862static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3863{
3864    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3865}
3866
3867static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3868{
3869    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3870}
3871
3872static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3873{
3874    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3875}
3876
3877static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
3878{
3879    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
3880}
3881
3882/*
3883 * Feature tests for "does this exist in either 32-bit or 64-bit?"
3884 */
3885static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
3886{
3887    return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
3888}
3889
3890static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
3891{
3892    return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
3893}
3894
3895static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
3896{
3897    return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
3898}
3899
3900static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
3901{
3902    return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
3903}
3904
3905static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
3906{
3907    return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
3908}
3909
3910static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
3911{
3912    return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
3913}
3914
3915/*
3916 * Forward to the above feature tests given an ARMCPU pointer.
3917 */
3918#define cpu_isar_feature(name, cpu) \
3919    ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3920
3921#endif
3922