qemu/hw/intc/armv7m_nvic.c
<<
>>
Prefs
   1/*
   2 * ARM Nested Vectored Interrupt Controller
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 *
   9 * The ARMv7M System controller is fairly tightly tied in with the
  10 * NVIC.  Much of that is also implemented here.
  11 */
  12
  13#include "qemu/osdep.h"
  14#include "qapi/error.h"
  15#include "cpu.h"
  16#include "hw/sysbus.h"
  17#include "migration/vmstate.h"
  18#include "qemu/timer.h"
  19#include "hw/intc/armv7m_nvic.h"
  20#include "hw/irq.h"
  21#include "hw/qdev-properties.h"
  22#include "sysemu/runstate.h"
  23#include "target/arm/cpu.h"
  24#include "exec/exec-all.h"
  25#include "exec/memop.h"
  26#include "qemu/log.h"
  27#include "qemu/module.h"
  28#include "trace.h"
  29
  30/* IRQ number counting:
  31 *
  32 * the num-irq property counts the number of external IRQ lines
  33 *
  34 * NVICState::num_irq counts the total number of exceptions
  35 * (external IRQs, the 15 internal exceptions including reset,
  36 * and one for the unused exception number 0).
  37 *
  38 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
  39 *
  40 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
  41 *
  42 * Iterating through all exceptions should typically be done with
  43 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
  44 *
  45 * The external qemu_irq lines are the NVIC's external IRQ lines,
  46 * so line 0 is exception 16.
  47 *
  48 * In the terminology of the architecture manual, "interrupts" are
  49 * a subcategory of exception referring to the external interrupts
  50 * (which are exception numbers NVIC_FIRST_IRQ and upward).
  51 * For historical reasons QEMU tends to use "interrupt" and
  52 * "exception" more or less interchangeably.
  53 */
  54#define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
  55#define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
  56
  57/* Effective running priority of the CPU when no exception is active
  58 * (higher than the highest possible priority value)
  59 */
  60#define NVIC_NOEXC_PRIO 0x100
  61/* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
  62#define NVIC_NS_PRIO_LIMIT 0x80
  63
  64static const uint8_t nvic_id[] = {
  65    0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
  66};
  67
  68static void signal_sysresetreq(NVICState *s)
  69{
  70    if (qemu_irq_is_connected(s->sysresetreq)) {
  71        qemu_irq_pulse(s->sysresetreq);
  72    } else {
  73        /*
  74         * Default behaviour if the SoC doesn't need to wire up
  75         * SYSRESETREQ (eg to a system reset controller of some kind):
  76         * perform a system reset via the usual QEMU API.
  77         */
  78        qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
  79    }
  80}
  81
  82static int nvic_pending_prio(NVICState *s)
  83{
  84    /* return the group priority of the current pending interrupt,
  85     * or NVIC_NOEXC_PRIO if no interrupt is pending
  86     */
  87    return s->vectpending_prio;
  88}
  89
  90/* Return the value of the ISCR RETTOBASE bit:
  91 * 1 if there is exactly one active exception
  92 * 0 if there is more than one active exception
  93 * UNKNOWN if there are no active exceptions (we choose 1,
  94 * which matches the choice Cortex-M3 is documented as making).
  95 *
  96 * NB: some versions of the documentation talk about this
  97 * counting "active exceptions other than the one shown by IPSR";
  98 * this is only different in the obscure corner case where guest
  99 * code has manually deactivated an exception and is about
 100 * to fail an exception-return integrity check. The definition
 101 * above is the one from the v8M ARM ARM and is also in line
 102 * with the behaviour documented for the Cortex-M3.
 103 */
 104static bool nvic_rettobase(NVICState *s)
 105{
 106    int irq, nhand = 0;
 107    bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
 108
 109    for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
 110        if (s->vectors[irq].active ||
 111            (check_sec && irq < NVIC_INTERNAL_VECTORS &&
 112             s->sec_vectors[irq].active)) {
 113            nhand++;
 114            if (nhand == 2) {
 115                return 0;
 116            }
 117        }
 118    }
 119
 120    return 1;
 121}
 122
 123/* Return the value of the ISCR ISRPENDING bit:
 124 * 1 if an external interrupt is pending
 125 * 0 if no external interrupt is pending
 126 */
 127static bool nvic_isrpending(NVICState *s)
 128{
 129    int irq;
 130
 131    /* We can shortcut if the highest priority pending interrupt
 132     * happens to be external or if there is nothing pending.
 133     */
 134    if (s->vectpending > NVIC_FIRST_IRQ) {
 135        return true;
 136    }
 137    if (s->vectpending == 0) {
 138        return false;
 139    }
 140
 141    for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
 142        if (s->vectors[irq].pending) {
 143            return true;
 144        }
 145    }
 146    return false;
 147}
 148
 149static bool exc_is_banked(int exc)
 150{
 151    /* Return true if this is one of the limited set of exceptions which
 152     * are banked (and thus have state in sec_vectors[])
 153     */
 154    return exc == ARMV7M_EXCP_HARD ||
 155        exc == ARMV7M_EXCP_MEM ||
 156        exc == ARMV7M_EXCP_USAGE ||
 157        exc == ARMV7M_EXCP_SVC ||
 158        exc == ARMV7M_EXCP_PENDSV ||
 159        exc == ARMV7M_EXCP_SYSTICK;
 160}
 161
 162/* Return a mask word which clears the subpriority bits from
 163 * a priority value for an M-profile exception, leaving only
 164 * the group priority.
 165 */
 166static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
 167{
 168    return ~0U << (s->prigroup[secure] + 1);
 169}
 170
 171static bool exc_targets_secure(NVICState *s, int exc)
 172{
 173    /* Return true if this non-banked exception targets Secure state. */
 174    if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
 175        return false;
 176    }
 177
 178    if (exc >= NVIC_FIRST_IRQ) {
 179        return !s->itns[exc];
 180    }
 181
 182    /* Function shouldn't be called for banked exceptions. */
 183    assert(!exc_is_banked(exc));
 184
 185    switch (exc) {
 186    case ARMV7M_EXCP_NMI:
 187    case ARMV7M_EXCP_BUS:
 188        return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
 189    case ARMV7M_EXCP_SECURE:
 190        return true;
 191    case ARMV7M_EXCP_DEBUG:
 192        /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
 193        return false;
 194    default:
 195        /* reset, and reserved (unused) low exception numbers.
 196         * We'll get called by code that loops through all the exception
 197         * numbers, but it doesn't matter what we return here as these
 198         * non-existent exceptions will never be pended or active.
 199         */
 200        return true;
 201    }
 202}
 203
 204static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
 205{
 206    /* Return the group priority for this exception, given its raw
 207     * (group-and-subgroup) priority value and whether it is targeting
 208     * secure state or not.
 209     */
 210    if (rawprio < 0) {
 211        return rawprio;
 212    }
 213    rawprio &= nvic_gprio_mask(s, targets_secure);
 214    /* AIRCR.PRIS causes us to squash all NS priorities into the
 215     * lower half of the total range
 216     */
 217    if (!targets_secure &&
 218        (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
 219        rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
 220    }
 221    return rawprio;
 222}
 223
 224/* Recompute vectpending and exception_prio for a CPU which implements
 225 * the Security extension
 226 */
 227static void nvic_recompute_state_secure(NVICState *s)
 228{
 229    int i, bank;
 230    int pend_prio = NVIC_NOEXC_PRIO;
 231    int active_prio = NVIC_NOEXC_PRIO;
 232    int pend_irq = 0;
 233    bool pending_is_s_banked = false;
 234    int pend_subprio = 0;
 235
 236    /* R_CQRV: precedence is by:
 237     *  - lowest group priority; if both the same then
 238     *  - lowest subpriority; if both the same then
 239     *  - lowest exception number; if both the same (ie banked) then
 240     *  - secure exception takes precedence
 241     * Compare pseudocode RawExecutionPriority.
 242     * Annoyingly, now we have two prigroup values (for S and NS)
 243     * we can't do the loop comparison on raw priority values.
 244     */
 245    for (i = 1; i < s->num_irq; i++) {
 246        for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
 247            VecInfo *vec;
 248            int prio, subprio;
 249            bool targets_secure;
 250
 251            if (bank == M_REG_S) {
 252                if (!exc_is_banked(i)) {
 253                    continue;
 254                }
 255                vec = &s->sec_vectors[i];
 256                targets_secure = true;
 257            } else {
 258                vec = &s->vectors[i];
 259                targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
 260            }
 261
 262            prio = exc_group_prio(s, vec->prio, targets_secure);
 263            subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
 264            if (vec->enabled && vec->pending &&
 265                ((prio < pend_prio) ||
 266                 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
 267                pend_prio = prio;
 268                pend_subprio = subprio;
 269                pend_irq = i;
 270                pending_is_s_banked = (bank == M_REG_S);
 271            }
 272            if (vec->active && prio < active_prio) {
 273                active_prio = prio;
 274            }
 275        }
 276    }
 277
 278    s->vectpending_is_s_banked = pending_is_s_banked;
 279    s->vectpending = pend_irq;
 280    s->vectpending_prio = pend_prio;
 281    s->exception_prio = active_prio;
 282
 283    trace_nvic_recompute_state_secure(s->vectpending,
 284                                      s->vectpending_is_s_banked,
 285                                      s->vectpending_prio,
 286                                      s->exception_prio);
 287}
 288
 289/* Recompute vectpending and exception_prio */
 290static void nvic_recompute_state(NVICState *s)
 291{
 292    int i;
 293    int pend_prio = NVIC_NOEXC_PRIO;
 294    int active_prio = NVIC_NOEXC_PRIO;
 295    int pend_irq = 0;
 296
 297    /* In theory we could write one function that handled both
 298     * the "security extension present" and "not present"; however
 299     * the security related changes significantly complicate the
 300     * recomputation just by themselves and mixing both cases together
 301     * would be even worse, so we retain a separate non-secure-only
 302     * version for CPUs which don't implement the security extension.
 303     */
 304    if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
 305        nvic_recompute_state_secure(s);
 306        return;
 307    }
 308
 309    for (i = 1; i < s->num_irq; i++) {
 310        VecInfo *vec = &s->vectors[i];
 311
 312        if (vec->enabled && vec->pending && vec->prio < pend_prio) {
 313            pend_prio = vec->prio;
 314            pend_irq = i;
 315        }
 316        if (vec->active && vec->prio < active_prio) {
 317            active_prio = vec->prio;
 318        }
 319    }
 320
 321    if (active_prio > 0) {
 322        active_prio &= nvic_gprio_mask(s, false);
 323    }
 324
 325    if (pend_prio > 0) {
 326        pend_prio &= nvic_gprio_mask(s, false);
 327    }
 328
 329    s->vectpending = pend_irq;
 330    s->vectpending_prio = pend_prio;
 331    s->exception_prio = active_prio;
 332
 333    trace_nvic_recompute_state(s->vectpending,
 334                               s->vectpending_prio,
 335                               s->exception_prio);
 336}
 337
 338/* Return the current execution priority of the CPU
 339 * (equivalent to the pseudocode ExecutionPriority function).
 340 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
 341 */
 342static inline int nvic_exec_prio(NVICState *s)
 343{
 344    CPUARMState *env = &s->cpu->env;
 345    int running = NVIC_NOEXC_PRIO;
 346
 347    if (env->v7m.basepri[M_REG_NS] > 0) {
 348        running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
 349    }
 350
 351    if (env->v7m.basepri[M_REG_S] > 0) {
 352        int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
 353        if (running > basepri) {
 354            running = basepri;
 355        }
 356    }
 357
 358    if (env->v7m.primask[M_REG_NS]) {
 359        if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
 360            if (running > NVIC_NS_PRIO_LIMIT) {
 361                running = NVIC_NS_PRIO_LIMIT;
 362            }
 363        } else {
 364            running = 0;
 365        }
 366    }
 367
 368    if (env->v7m.primask[M_REG_S]) {
 369        running = 0;
 370    }
 371
 372    if (env->v7m.faultmask[M_REG_NS]) {
 373        if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
 374            running = -1;
 375        } else {
 376            if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
 377                if (running > NVIC_NS_PRIO_LIMIT) {
 378                    running = NVIC_NS_PRIO_LIMIT;
 379                }
 380            } else {
 381                running = 0;
 382            }
 383        }
 384    }
 385
 386    if (env->v7m.faultmask[M_REG_S]) {
 387        running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
 388    }
 389
 390    /* consider priority of active handler */
 391    return MIN(running, s->exception_prio);
 392}
 393
 394bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
 395{
 396    /* Return true if the requested execution priority is negative
 397     * for the specified security state, ie that security state
 398     * has an active NMI or HardFault or has set its FAULTMASK.
 399     * Note that this is not the same as whether the execution
 400     * priority is actually negative (for instance AIRCR.PRIS may
 401     * mean we don't allow FAULTMASK_NS to actually make the execution
 402     * priority negative). Compare pseudocode IsReqExcPriNeg().
 403     */
 404    NVICState *s = opaque;
 405
 406    if (s->cpu->env.v7m.faultmask[secure]) {
 407        return true;
 408    }
 409
 410    if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
 411        s->vectors[ARMV7M_EXCP_HARD].active) {
 412        return true;
 413    }
 414
 415    if (s->vectors[ARMV7M_EXCP_NMI].active &&
 416        exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
 417        return true;
 418    }
 419
 420    return false;
 421}
 422
 423bool armv7m_nvic_can_take_pending_exception(void *opaque)
 424{
 425    NVICState *s = opaque;
 426
 427    return nvic_exec_prio(s) > nvic_pending_prio(s);
 428}
 429
 430int armv7m_nvic_raw_execution_priority(void *opaque)
 431{
 432    NVICState *s = opaque;
 433
 434    return s->exception_prio;
 435}
 436
 437/* caller must call nvic_irq_update() after this.
 438 * secure indicates the bank to use for banked exceptions (we assert if
 439 * we are passed secure=true for a non-banked exception).
 440 */
 441static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
 442{
 443    assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
 444    assert(irq < s->num_irq);
 445
 446    prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
 447
 448    if (secure) {
 449        assert(exc_is_banked(irq));
 450        s->sec_vectors[irq].prio = prio;
 451    } else {
 452        s->vectors[irq].prio = prio;
 453    }
 454
 455    trace_nvic_set_prio(irq, secure, prio);
 456}
 457
 458/* Return the current raw priority register value.
 459 * secure indicates the bank to use for banked exceptions (we assert if
 460 * we are passed secure=true for a non-banked exception).
 461 */
 462static int get_prio(NVICState *s, unsigned irq, bool secure)
 463{
 464    assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
 465    assert(irq < s->num_irq);
 466
 467    if (secure) {
 468        assert(exc_is_banked(irq));
 469        return s->sec_vectors[irq].prio;
 470    } else {
 471        return s->vectors[irq].prio;
 472    }
 473}
 474
 475/* Recompute state and assert irq line accordingly.
 476 * Must be called after changes to:
 477 *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
 478 *  prigroup
 479 */
 480static void nvic_irq_update(NVICState *s)
 481{
 482    int lvl;
 483    int pend_prio;
 484
 485    nvic_recompute_state(s);
 486    pend_prio = nvic_pending_prio(s);
 487
 488    /* Raise NVIC output if this IRQ would be taken, except that we
 489     * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
 490     * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
 491     * to those CPU registers don't cause us to recalculate the NVIC
 492     * pending info.
 493     */
 494    lvl = (pend_prio < s->exception_prio);
 495    trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
 496    qemu_set_irq(s->excpout, lvl);
 497}
 498
 499/**
 500 * armv7m_nvic_clear_pending: mark the specified exception as not pending
 501 * @opaque: the NVIC
 502 * @irq: the exception number to mark as not pending
 503 * @secure: false for non-banked exceptions or for the nonsecure
 504 * version of a banked exception, true for the secure version of a banked
 505 * exception.
 506 *
 507 * Marks the specified exception as not pending. Note that we will assert()
 508 * if @secure is true and @irq does not specify one of the fixed set
 509 * of architecturally banked exceptions.
 510 */
 511static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
 512{
 513    NVICState *s = (NVICState *)opaque;
 514    VecInfo *vec;
 515
 516    assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
 517
 518    if (secure) {
 519        assert(exc_is_banked(irq));
 520        vec = &s->sec_vectors[irq];
 521    } else {
 522        vec = &s->vectors[irq];
 523    }
 524    trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
 525    if (vec->pending) {
 526        vec->pending = 0;
 527        nvic_irq_update(s);
 528    }
 529}
 530
 531static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
 532                                       bool derived)
 533{
 534    /* Pend an exception, including possibly escalating it to HardFault.
 535     *
 536     * This function handles both "normal" pending of interrupts and
 537     * exceptions, and also derived exceptions (ones which occur as
 538     * a result of trying to take some other exception).
 539     *
 540     * If derived == true, the caller guarantees that we are part way through
 541     * trying to take an exception (but have not yet called
 542     * armv7m_nvic_acknowledge_irq() to make it active), and so:
 543     *  - s->vectpending is the "original exception" we were trying to take
 544     *  - irq is the "derived exception"
 545     *  - nvic_exec_prio(s) gives the priority before exception entry
 546     * Here we handle the prioritization logic which the pseudocode puts
 547     * in the DerivedLateArrival() function.
 548     */
 549
 550    NVICState *s = (NVICState *)opaque;
 551    bool banked = exc_is_banked(irq);
 552    VecInfo *vec;
 553    bool targets_secure;
 554
 555    assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
 556    assert(!secure || banked);
 557
 558    vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
 559
 560    targets_secure = banked ? secure : exc_targets_secure(s, irq);
 561
 562    trace_nvic_set_pending(irq, secure, targets_secure,
 563                           derived, vec->enabled, vec->prio);
 564
 565    if (derived) {
 566        /* Derived exceptions are always synchronous. */
 567        assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
 568
 569        if (irq == ARMV7M_EXCP_DEBUG &&
 570            exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
 571            /* DebugMonitorFault, but its priority is lower than the
 572             * preempted exception priority: just ignore it.
 573             */
 574            return;
 575        }
 576
 577        if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
 578            /* If this is a terminal exception (one which means we cannot
 579             * take the original exception, like a failure to read its
 580             * vector table entry), then we must take the derived exception.
 581             * If the derived exception can't take priority over the
 582             * original exception, then we go into Lockup.
 583             *
 584             * For QEMU, we rely on the fact that a derived exception is
 585             * terminal if and only if it's reported to us as HardFault,
 586             * which saves having to have an extra argument is_terminal
 587             * that we'd only use in one place.
 588             */
 589            cpu_abort(&s->cpu->parent_obj,
 590                      "Lockup: can't take terminal derived exception "
 591                      "(original exception priority %d)\n",
 592                      s->vectpending_prio);
 593        }
 594        /* We now continue with the same code as for a normal pending
 595         * exception, which will cause us to pend the derived exception.
 596         * We'll then take either the original or the derived exception
 597         * based on which is higher priority by the usual mechanism
 598         * for selecting the highest priority pending interrupt.
 599         */
 600    }
 601
 602    if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
 603        /* If a synchronous exception is pending then it may be
 604         * escalated to HardFault if:
 605         *  * it is equal or lower priority to current execution
 606         *  * it is disabled
 607         * (ie we need to take it immediately but we can't do so).
 608         * Asynchronous exceptions (and interrupts) simply remain pending.
 609         *
 610         * For QEMU, we don't have any imprecise (asynchronous) faults,
 611         * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
 612         * synchronous.
 613         * Debug exceptions are awkward because only Debug exceptions
 614         * resulting from the BKPT instruction should be escalated,
 615         * but we don't currently implement any Debug exceptions other
 616         * than those that result from BKPT, so we treat all debug exceptions
 617         * as needing escalation.
 618         *
 619         * This all means we can identify whether to escalate based only on
 620         * the exception number and don't (yet) need the caller to explicitly
 621         * tell us whether this exception is synchronous or not.
 622         */
 623        int running = nvic_exec_prio(s);
 624        bool escalate = false;
 625
 626        if (exc_group_prio(s, vec->prio, secure) >= running) {
 627            trace_nvic_escalate_prio(irq, vec->prio, running);
 628            escalate = true;
 629        } else if (!vec->enabled) {
 630            trace_nvic_escalate_disabled(irq);
 631            escalate = true;
 632        }
 633
 634        if (escalate) {
 635
 636            /* We need to escalate this exception to a synchronous HardFault.
 637             * If BFHFNMINS is set then we escalate to the banked HF for
 638             * the target security state of the original exception; otherwise
 639             * we take a Secure HardFault.
 640             */
 641            irq = ARMV7M_EXCP_HARD;
 642            if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
 643                (targets_secure ||
 644                 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
 645                vec = &s->sec_vectors[irq];
 646            } else {
 647                vec = &s->vectors[irq];
 648            }
 649            if (running <= vec->prio) {
 650                /* We want to escalate to HardFault but we can't take the
 651                 * synchronous HardFault at this point either. This is a
 652                 * Lockup condition due to a guest bug. We don't model
 653                 * Lockup, so report via cpu_abort() instead.
 654                 */
 655                cpu_abort(&s->cpu->parent_obj,
 656                          "Lockup: can't escalate %d to HardFault "
 657                          "(current priority %d)\n", irq, running);
 658            }
 659
 660            /* HF may be banked but there is only one shared HFSR */
 661            s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
 662        }
 663    }
 664
 665    if (!vec->pending) {
 666        vec->pending = 1;
 667        nvic_irq_update(s);
 668    }
 669}
 670
 671void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
 672{
 673    do_armv7m_nvic_set_pending(opaque, irq, secure, false);
 674}
 675
 676void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
 677{
 678    do_armv7m_nvic_set_pending(opaque, irq, secure, true);
 679}
 680
 681void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
 682{
 683    /*
 684     * Pend an exception during lazy FP stacking. This differs
 685     * from the usual exception pending because the logic for
 686     * whether we should escalate depends on the saved context
 687     * in the FPCCR register, not on the current state of the CPU/NVIC.
 688     */
 689    NVICState *s = (NVICState *)opaque;
 690    bool banked = exc_is_banked(irq);
 691    VecInfo *vec;
 692    bool targets_secure;
 693    bool escalate = false;
 694    /*
 695     * We will only look at bits in fpccr if this is a banked exception
 696     * (in which case 'secure' tells us whether it is the S or NS version).
 697     * All the bits for the non-banked exceptions are in fpccr_s.
 698     */
 699    uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
 700    uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
 701
 702    assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
 703    assert(!secure || banked);
 704
 705    vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
 706
 707    targets_secure = banked ? secure : exc_targets_secure(s, irq);
 708
 709    switch (irq) {
 710    case ARMV7M_EXCP_DEBUG:
 711        if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
 712            /* Ignore DebugMonitor exception */
 713            return;
 714        }
 715        break;
 716    case ARMV7M_EXCP_MEM:
 717        escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
 718        break;
 719    case ARMV7M_EXCP_USAGE:
 720        escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
 721        break;
 722    case ARMV7M_EXCP_BUS:
 723        escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
 724        break;
 725    case ARMV7M_EXCP_SECURE:
 726        escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
 727        break;
 728    default:
 729        g_assert_not_reached();
 730    }
 731
 732    if (escalate) {
 733        /*
 734         * Escalate to HardFault: faults that initially targeted Secure
 735         * continue to do so, even if HF normally targets NonSecure.
 736         */
 737        irq = ARMV7M_EXCP_HARD;
 738        if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
 739            (targets_secure ||
 740             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
 741            vec = &s->sec_vectors[irq];
 742        } else {
 743            vec = &s->vectors[irq];
 744        }
 745    }
 746
 747    if (!vec->enabled ||
 748        nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
 749        if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
 750            /*
 751             * We want to escalate to HardFault but the context the
 752             * FP state belongs to prevents the exception pre-empting.
 753             */
 754            cpu_abort(&s->cpu->parent_obj,
 755                      "Lockup: can't escalate to HardFault during "
 756                      "lazy FP register stacking\n");
 757        }
 758    }
 759
 760    if (escalate) {
 761        s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
 762    }
 763    if (!vec->pending) {
 764        vec->pending = 1;
 765        /*
 766         * We do not call nvic_irq_update(), because we know our caller
 767         * is going to handle causing us to take the exception by
 768         * raising EXCP_LAZYFP, so raising the IRQ line would be
 769         * pointless extra work. We just need to recompute the
 770         * priorities so that armv7m_nvic_can_take_pending_exception()
 771         * returns the right answer.
 772         */
 773        nvic_recompute_state(s);
 774    }
 775}
 776
 777/* Make pending IRQ active.  */
 778void armv7m_nvic_acknowledge_irq(void *opaque)
 779{
 780    NVICState *s = (NVICState *)opaque;
 781    CPUARMState *env = &s->cpu->env;
 782    const int pending = s->vectpending;
 783    const int running = nvic_exec_prio(s);
 784    VecInfo *vec;
 785
 786    assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
 787
 788    if (s->vectpending_is_s_banked) {
 789        vec = &s->sec_vectors[pending];
 790    } else {
 791        vec = &s->vectors[pending];
 792    }
 793
 794    assert(vec->enabled);
 795    assert(vec->pending);
 796
 797    assert(s->vectpending_prio < running);
 798
 799    trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
 800
 801    vec->active = 1;
 802    vec->pending = 0;
 803
 804    write_v7m_exception(env, s->vectpending);
 805
 806    nvic_irq_update(s);
 807}
 808
 809void armv7m_nvic_get_pending_irq_info(void *opaque,
 810                                      int *pirq, bool *ptargets_secure)
 811{
 812    NVICState *s = (NVICState *)opaque;
 813    const int pending = s->vectpending;
 814    bool targets_secure;
 815
 816    assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
 817
 818    if (s->vectpending_is_s_banked) {
 819        targets_secure = true;
 820    } else {
 821        targets_secure = !exc_is_banked(pending) &&
 822            exc_targets_secure(s, pending);
 823    }
 824
 825    trace_nvic_get_pending_irq_info(pending, targets_secure);
 826
 827    *ptargets_secure = targets_secure;
 828    *pirq = pending;
 829}
 830
 831int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
 832{
 833    NVICState *s = (NVICState *)opaque;
 834    VecInfo *vec = NULL;
 835    int ret;
 836
 837    assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
 838
 839    /*
 840     * For negative priorities, v8M will forcibly deactivate the appropriate
 841     * NMI or HardFault regardless of what interrupt we're being asked to
 842     * deactivate (compare the DeActivate() pseudocode). This is a guard
 843     * against software returning from NMI or HardFault with a corrupted
 844     * IPSR and leaving the CPU in a negative-priority state.
 845     * v7M does not do this, but simply deactivates the requested interrupt.
 846     */
 847    if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
 848        switch (armv7m_nvic_raw_execution_priority(s)) {
 849        case -1:
 850            if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
 851                vec = &s->vectors[ARMV7M_EXCP_HARD];
 852            } else {
 853                vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
 854            }
 855            break;
 856        case -2:
 857            vec = &s->vectors[ARMV7M_EXCP_NMI];
 858            break;
 859        case -3:
 860            vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
 861            break;
 862        default:
 863            break;
 864        }
 865    }
 866
 867    if (!vec) {
 868        if (secure && exc_is_banked(irq)) {
 869            vec = &s->sec_vectors[irq];
 870        } else {
 871            vec = &s->vectors[irq];
 872        }
 873    }
 874
 875    trace_nvic_complete_irq(irq, secure);
 876
 877    if (!vec->active) {
 878        /* Tell the caller this was an illegal exception return */
 879        return -1;
 880    }
 881
 882    /*
 883     * If this is a configurable exception and it is currently
 884     * targeting the opposite security state from the one we're trying
 885     * to complete it for, this counts as an illegal exception return.
 886     * We still need to deactivate whatever vector the logic above has
 887     * selected, though, as it might not be the same as the one for the
 888     * requested exception number.
 889     */
 890    if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
 891        ret = -1;
 892    } else {
 893        ret = nvic_rettobase(s);
 894    }
 895
 896    vec->active = 0;
 897    if (vec->level) {
 898        /* Re-pend the exception if it's still held high; only
 899         * happens for extenal IRQs
 900         */
 901        assert(irq >= NVIC_FIRST_IRQ);
 902        vec->pending = 1;
 903    }
 904
 905    nvic_irq_update(s);
 906
 907    return ret;
 908}
 909
 910bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
 911{
 912    /*
 913     * Return whether an exception is "ready", i.e. it is enabled and is
 914     * configured at a priority which would allow it to interrupt the
 915     * current execution priority.
 916     *
 917     * irq and secure have the same semantics as for armv7m_nvic_set_pending():
 918     * for non-banked exceptions secure is always false; for banked exceptions
 919     * it indicates which of the exceptions is required.
 920     */
 921    NVICState *s = (NVICState *)opaque;
 922    bool banked = exc_is_banked(irq);
 923    VecInfo *vec;
 924    int running = nvic_exec_prio(s);
 925
 926    assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
 927    assert(!secure || banked);
 928
 929    /*
 930     * HardFault is an odd special case: we always check against -1,
 931     * even if we're secure and HardFault has priority -3; we never
 932     * need to check for enabled state.
 933     */
 934    if (irq == ARMV7M_EXCP_HARD) {
 935        return running > -1;
 936    }
 937
 938    vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
 939
 940    return vec->enabled &&
 941        exc_group_prio(s, vec->prio, secure) < running;
 942}
 943
 944/* callback when external interrupt line is changed */
 945static void set_irq_level(void *opaque, int n, int level)
 946{
 947    NVICState *s = opaque;
 948    VecInfo *vec;
 949
 950    n += NVIC_FIRST_IRQ;
 951
 952    assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
 953
 954    trace_nvic_set_irq_level(n, level);
 955
 956    /* The pending status of an external interrupt is
 957     * latched on rising edge and exception handler return.
 958     *
 959     * Pulsing the IRQ will always run the handler
 960     * once, and the handler will re-run until the
 961     * level is low when the handler completes.
 962     */
 963    vec = &s->vectors[n];
 964    if (level != vec->level) {
 965        vec->level = level;
 966        if (level) {
 967            armv7m_nvic_set_pending(s, n, false);
 968        }
 969    }
 970}
 971
 972/* callback when external NMI line is changed */
 973static void nvic_nmi_trigger(void *opaque, int n, int level)
 974{
 975    NVICState *s = opaque;
 976
 977    trace_nvic_set_nmi_level(level);
 978
 979    /*
 980     * The architecture doesn't specify whether NMI should share
 981     * the normal-interrupt behaviour of being resampled on
 982     * exception handler return. We choose not to, so just
 983     * set NMI pending here and don't track the current level.
 984     */
 985    if (level) {
 986        armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
 987    }
 988}
 989
 990static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
 991{
 992    ARMCPU *cpu = s->cpu;
 993    uint32_t val;
 994
 995    switch (offset) {
 996    case 4: /* Interrupt Control Type.  */
 997        if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 998            goto bad_offset;
 999        }
1000        return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
1001    case 0xc: /* CPPWR */
1002        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1003            goto bad_offset;
1004        }
1005        /* We make the IMPDEF choice that nothing can ever go into a
1006         * non-retentive power state, which allows us to RAZ/WI this.
1007         */
1008        return 0;
1009    case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1010    {
1011        int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1012        int i;
1013
1014        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1015            goto bad_offset;
1016        }
1017        if (!attrs.secure) {
1018            return 0;
1019        }
1020        val = 0;
1021        for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1022            if (s->itns[startvec + i]) {
1023                val |= (1 << i);
1024            }
1025        }
1026        return val;
1027    }
1028    case 0xd00: /* CPUID Base.  */
1029        return cpu->midr;
1030    case 0xd04: /* Interrupt Control State (ICSR) */
1031        /* VECTACTIVE */
1032        val = cpu->env.v7m.exception;
1033        /* VECTPENDING */
1034        val |= (s->vectpending & 0xff) << 12;
1035        /* ISRPENDING - set if any external IRQ is pending */
1036        if (nvic_isrpending(s)) {
1037            val |= (1 << 22);
1038        }
1039        /* RETTOBASE - set if only one handler is active */
1040        if (nvic_rettobase(s)) {
1041            val |= (1 << 11);
1042        }
1043        if (attrs.secure) {
1044            /* PENDSTSET */
1045            if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1046                val |= (1 << 26);
1047            }
1048            /* PENDSVSET */
1049            if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1050                val |= (1 << 28);
1051            }
1052        } else {
1053            /* PENDSTSET */
1054            if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1055                val |= (1 << 26);
1056            }
1057            /* PENDSVSET */
1058            if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1059                val |= (1 << 28);
1060            }
1061        }
1062        /* NMIPENDSET */
1063        if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1064            && s->vectors[ARMV7M_EXCP_NMI].pending) {
1065            val |= (1 << 31);
1066        }
1067        /* ISRPREEMPT: RES0 when halting debug not implemented */
1068        /* STTNS: RES0 for the Main Extension */
1069        return val;
1070    case 0xd08: /* Vector Table Offset.  */
1071        return cpu->env.v7m.vecbase[attrs.secure];
1072    case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1073        val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1074        if (attrs.secure) {
1075            /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1076            val |= cpu->env.v7m.aircr;
1077        } else {
1078            if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1079                /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1080                 * security isn't supported then BFHFNMINS is RAO (and
1081                 * the bit in env.v7m.aircr is always set).
1082                 */
1083                val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1084            }
1085        }
1086        return val;
1087    case 0xd10: /* System Control.  */
1088        if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1089            goto bad_offset;
1090        }
1091        return cpu->env.v7m.scr[attrs.secure];
1092    case 0xd14: /* Configuration Control.  */
1093        /* The BFHFNMIGN bit is the only non-banked bit; we
1094         * keep it in the non-secure copy of the register.
1095         */
1096        val = cpu->env.v7m.ccr[attrs.secure];
1097        val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1098        return val;
1099    case 0xd24: /* System Handler Control and State (SHCSR) */
1100        if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1101            goto bad_offset;
1102        }
1103        val = 0;
1104        if (attrs.secure) {
1105            if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1106                val |= (1 << 0);
1107            }
1108            if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1109                val |= (1 << 2);
1110            }
1111            if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1112                val |= (1 << 3);
1113            }
1114            if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1115                val |= (1 << 7);
1116            }
1117            if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1118                val |= (1 << 10);
1119            }
1120            if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1121                val |= (1 << 11);
1122            }
1123            if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1124                val |= (1 << 12);
1125            }
1126            if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1127                val |= (1 << 13);
1128            }
1129            if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1130                val |= (1 << 15);
1131            }
1132            if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1133                val |= (1 << 16);
1134            }
1135            if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1136                val |= (1 << 18);
1137            }
1138            if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1139                val |= (1 << 21);
1140            }
1141            /* SecureFault is not banked but is always RAZ/WI to NS */
1142            if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1143                val |= (1 << 4);
1144            }
1145            if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1146                val |= (1 << 19);
1147            }
1148            if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1149                val |= (1 << 20);
1150            }
1151        } else {
1152            if (s->vectors[ARMV7M_EXCP_MEM].active) {
1153                val |= (1 << 0);
1154            }
1155            if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1156                /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1157                if (s->vectors[ARMV7M_EXCP_HARD].active) {
1158                    val |= (1 << 2);
1159                }
1160                if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1161                    val |= (1 << 21);
1162                }
1163            }
1164            if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1165                val |= (1 << 3);
1166            }
1167            if (s->vectors[ARMV7M_EXCP_SVC].active) {
1168                val |= (1 << 7);
1169            }
1170            if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1171                val |= (1 << 10);
1172            }
1173            if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1174                val |= (1 << 11);
1175            }
1176            if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1177                val |= (1 << 12);
1178            }
1179            if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1180                val |= (1 << 13);
1181            }
1182            if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1183                val |= (1 << 15);
1184            }
1185            if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1186                val |= (1 << 16);
1187            }
1188            if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1189                val |= (1 << 18);
1190            }
1191        }
1192        if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1193            if (s->vectors[ARMV7M_EXCP_BUS].active) {
1194                val |= (1 << 1);
1195            }
1196            if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1197                val |= (1 << 14);
1198            }
1199            if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1200                val |= (1 << 17);
1201            }
1202            if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1203                s->vectors[ARMV7M_EXCP_NMI].active) {
1204                /* NMIACT is not present in v7M */
1205                val |= (1 << 5);
1206            }
1207        }
1208
1209        /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1210        if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1211            val |= (1 << 8);
1212        }
1213        return val;
1214    case 0xd2c: /* Hard Fault Status.  */
1215        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1216            goto bad_offset;
1217        }
1218        return cpu->env.v7m.hfsr;
1219    case 0xd30: /* Debug Fault Status.  */
1220        return cpu->env.v7m.dfsr;
1221    case 0xd34: /* MMFAR MemManage Fault Address */
1222        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1223            goto bad_offset;
1224        }
1225        return cpu->env.v7m.mmfar[attrs.secure];
1226    case 0xd38: /* Bus Fault Address.  */
1227        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1228            goto bad_offset;
1229        }
1230        if (!attrs.secure &&
1231            !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1232            return 0;
1233        }
1234        return cpu->env.v7m.bfar;
1235    case 0xd3c: /* Aux Fault Status.  */
1236        /* TODO: Implement fault status registers.  */
1237        qemu_log_mask(LOG_UNIMP,
1238                      "Aux Fault status registers unimplemented\n");
1239        return 0;
1240    case 0xd40: /* PFR0.  */
1241        return cpu->id_pfr0;
1242    case 0xd44: /* PFR1.  */
1243        return cpu->id_pfr1;
1244    case 0xd48: /* DFR0.  */
1245        return cpu->isar.id_dfr0;
1246    case 0xd4c: /* AFR0.  */
1247        return cpu->id_afr0;
1248    case 0xd50: /* MMFR0.  */
1249        return cpu->isar.id_mmfr0;
1250    case 0xd54: /* MMFR1.  */
1251        return cpu->isar.id_mmfr1;
1252    case 0xd58: /* MMFR2.  */
1253        return cpu->isar.id_mmfr2;
1254    case 0xd5c: /* MMFR3.  */
1255        return cpu->isar.id_mmfr3;
1256    case 0xd60: /* ISAR0.  */
1257        return cpu->isar.id_isar0;
1258    case 0xd64: /* ISAR1.  */
1259        return cpu->isar.id_isar1;
1260    case 0xd68: /* ISAR2.  */
1261        return cpu->isar.id_isar2;
1262    case 0xd6c: /* ISAR3.  */
1263        return cpu->isar.id_isar3;
1264    case 0xd70: /* ISAR4.  */
1265        return cpu->isar.id_isar4;
1266    case 0xd74: /* ISAR5.  */
1267        return cpu->isar.id_isar5;
1268    case 0xd78: /* CLIDR */
1269        return cpu->clidr;
1270    case 0xd7c: /* CTR */
1271        return cpu->ctr;
1272    case 0xd80: /* CSSIDR */
1273    {
1274        int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1275        return cpu->ccsidr[idx];
1276    }
1277    case 0xd84: /* CSSELR */
1278        return cpu->env.v7m.csselr[attrs.secure];
1279    case 0xd88: /* CPACR */
1280        if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1281            return 0;
1282        }
1283        return cpu->env.v7m.cpacr[attrs.secure];
1284    case 0xd8c: /* NSACR */
1285        if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1286            return 0;
1287        }
1288        return cpu->env.v7m.nsacr;
1289    /* TODO: Implement debug registers.  */
1290    case 0xd90: /* MPU_TYPE */
1291        /* Unified MPU; if the MPU is not present this value is zero */
1292        return cpu->pmsav7_dregion << 8;
1293        break;
1294    case 0xd94: /* MPU_CTRL */
1295        return cpu->env.v7m.mpu_ctrl[attrs.secure];
1296    case 0xd98: /* MPU_RNR */
1297        return cpu->env.pmsav7.rnr[attrs.secure];
1298    case 0xd9c: /* MPU_RBAR */
1299    case 0xda4: /* MPU_RBAR_A1 */
1300    case 0xdac: /* MPU_RBAR_A2 */
1301    case 0xdb4: /* MPU_RBAR_A3 */
1302    {
1303        int region = cpu->env.pmsav7.rnr[attrs.secure];
1304
1305        if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1306            /* PMSAv8M handling of the aliases is different from v7M:
1307             * aliases A1, A2, A3 override the low two bits of the region
1308             * number in MPU_RNR, and there is no 'region' field in the
1309             * RBAR register.
1310             */
1311            int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1312            if (aliasno) {
1313                region = deposit32(region, 0, 2, aliasno);
1314            }
1315            if (region >= cpu->pmsav7_dregion) {
1316                return 0;
1317            }
1318            return cpu->env.pmsav8.rbar[attrs.secure][region];
1319        }
1320
1321        if (region >= cpu->pmsav7_dregion) {
1322            return 0;
1323        }
1324        return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1325    }
1326    case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1327    case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1328    case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1329    case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1330    {
1331        int region = cpu->env.pmsav7.rnr[attrs.secure];
1332
1333        if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1334            /* PMSAv8M handling of the aliases is different from v7M:
1335             * aliases A1, A2, A3 override the low two bits of the region
1336             * number in MPU_RNR.
1337             */
1338            int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1339            if (aliasno) {
1340                region = deposit32(region, 0, 2, aliasno);
1341            }
1342            if (region >= cpu->pmsav7_dregion) {
1343                return 0;
1344            }
1345            return cpu->env.pmsav8.rlar[attrs.secure][region];
1346        }
1347
1348        if (region >= cpu->pmsav7_dregion) {
1349            return 0;
1350        }
1351        return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1352            (cpu->env.pmsav7.drsr[region] & 0xffff);
1353    }
1354    case 0xdc0: /* MPU_MAIR0 */
1355        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1356            goto bad_offset;
1357        }
1358        return cpu->env.pmsav8.mair0[attrs.secure];
1359    case 0xdc4: /* MPU_MAIR1 */
1360        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1361            goto bad_offset;
1362        }
1363        return cpu->env.pmsav8.mair1[attrs.secure];
1364    case 0xdd0: /* SAU_CTRL */
1365        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1366            goto bad_offset;
1367        }
1368        if (!attrs.secure) {
1369            return 0;
1370        }
1371        return cpu->env.sau.ctrl;
1372    case 0xdd4: /* SAU_TYPE */
1373        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1374            goto bad_offset;
1375        }
1376        if (!attrs.secure) {
1377            return 0;
1378        }
1379        return cpu->sau_sregion;
1380    case 0xdd8: /* SAU_RNR */
1381        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1382            goto bad_offset;
1383        }
1384        if (!attrs.secure) {
1385            return 0;
1386        }
1387        return cpu->env.sau.rnr;
1388    case 0xddc: /* SAU_RBAR */
1389    {
1390        int region = cpu->env.sau.rnr;
1391
1392        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1393            goto bad_offset;
1394        }
1395        if (!attrs.secure) {
1396            return 0;
1397        }
1398        if (region >= cpu->sau_sregion) {
1399            return 0;
1400        }
1401        return cpu->env.sau.rbar[region];
1402    }
1403    case 0xde0: /* SAU_RLAR */
1404    {
1405        int region = cpu->env.sau.rnr;
1406
1407        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1408            goto bad_offset;
1409        }
1410        if (!attrs.secure) {
1411            return 0;
1412        }
1413        if (region >= cpu->sau_sregion) {
1414            return 0;
1415        }
1416        return cpu->env.sau.rlar[region];
1417    }
1418    case 0xde4: /* SFSR */
1419        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1420            goto bad_offset;
1421        }
1422        if (!attrs.secure) {
1423            return 0;
1424        }
1425        return cpu->env.v7m.sfsr;
1426    case 0xde8: /* SFAR */
1427        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1428            goto bad_offset;
1429        }
1430        if (!attrs.secure) {
1431            return 0;
1432        }
1433        return cpu->env.v7m.sfar;
1434    case 0xf34: /* FPCCR */
1435        if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1436            return 0;
1437        }
1438        if (attrs.secure) {
1439            return cpu->env.v7m.fpccr[M_REG_S];
1440        } else {
1441            /*
1442             * NS can read LSPEN, CLRONRET and MONRDY. It can read
1443             * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1444             * other non-banked bits RAZ.
1445             * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1446             */
1447            uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1448            uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1449                R_V7M_FPCCR_CLRONRET_MASK |
1450                R_V7M_FPCCR_MONRDY_MASK;
1451
1452            if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1453                mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1454            }
1455
1456            value &= mask;
1457
1458            value |= cpu->env.v7m.fpccr[M_REG_NS];
1459            return value;
1460        }
1461    case 0xf38: /* FPCAR */
1462        if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1463            return 0;
1464        }
1465        return cpu->env.v7m.fpcar[attrs.secure];
1466    case 0xf3c: /* FPDSCR */
1467        if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1468            return 0;
1469        }
1470        return cpu->env.v7m.fpdscr[attrs.secure];
1471    case 0xf40: /* MVFR0 */
1472        return cpu->isar.mvfr0;
1473    case 0xf44: /* MVFR1 */
1474        return cpu->isar.mvfr1;
1475    case 0xf48: /* MVFR2 */
1476        return cpu->isar.mvfr2;
1477    default:
1478    bad_offset:
1479        qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1480        return 0;
1481    }
1482}
1483
1484static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1485                        MemTxAttrs attrs)
1486{
1487    ARMCPU *cpu = s->cpu;
1488
1489    switch (offset) {
1490    case 0xc: /* CPPWR */
1491        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1492            goto bad_offset;
1493        }
1494        /* Make the IMPDEF choice to RAZ/WI this. */
1495        break;
1496    case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1497    {
1498        int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1499        int i;
1500
1501        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1502            goto bad_offset;
1503        }
1504        if (!attrs.secure) {
1505            break;
1506        }
1507        for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1508            s->itns[startvec + i] = (value >> i) & 1;
1509        }
1510        nvic_irq_update(s);
1511        break;
1512    }
1513    case 0xd04: /* Interrupt Control State (ICSR) */
1514        if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1515            if (value & (1 << 31)) {
1516                armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1517            } else if (value & (1 << 30) &&
1518                       arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1519                /* PENDNMICLR didn't exist in v7M */
1520                armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1521            }
1522        }
1523        if (value & (1 << 28)) {
1524            armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1525        } else if (value & (1 << 27)) {
1526            armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1527        }
1528        if (value & (1 << 26)) {
1529            armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1530        } else if (value & (1 << 25)) {
1531            armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1532        }
1533        break;
1534    case 0xd08: /* Vector Table Offset.  */
1535        cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1536        break;
1537    case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1538        if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1539            if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1540                if (attrs.secure ||
1541                    !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1542                    signal_sysresetreq(s);
1543                }
1544            }
1545            if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1546                qemu_log_mask(LOG_GUEST_ERROR,
1547                              "Setting VECTCLRACTIVE when not in DEBUG mode "
1548                              "is UNPREDICTABLE\n");
1549            }
1550            if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1551                /* NB: this bit is RES0 in v8M */
1552                qemu_log_mask(LOG_GUEST_ERROR,
1553                              "Setting VECTRESET when not in DEBUG mode "
1554                              "is UNPREDICTABLE\n");
1555            }
1556            if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1557                s->prigroup[attrs.secure] =
1558                    extract32(value,
1559                              R_V7M_AIRCR_PRIGROUP_SHIFT,
1560                              R_V7M_AIRCR_PRIGROUP_LENGTH);
1561            }
1562            if (attrs.secure) {
1563                /* These bits are only writable by secure */
1564                cpu->env.v7m.aircr = value &
1565                    (R_V7M_AIRCR_SYSRESETREQS_MASK |
1566                     R_V7M_AIRCR_BFHFNMINS_MASK |
1567                     R_V7M_AIRCR_PRIS_MASK);
1568                /* BFHFNMINS changes the priority of Secure HardFault, and
1569                 * allows a pending Non-secure HardFault to preempt (which
1570                 * we implement by marking it enabled).
1571                 */
1572                if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1573                    s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1574                    s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1575                } else {
1576                    s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1577                    s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1578                }
1579            }
1580            nvic_irq_update(s);
1581        }
1582        break;
1583    case 0xd10: /* System Control.  */
1584        if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1585            goto bad_offset;
1586        }
1587        /* We don't implement deep-sleep so these bits are RAZ/WI.
1588         * The other bits in the register are banked.
1589         * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1590         * is architecturally permitted.
1591         */
1592        value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1593        cpu->env.v7m.scr[attrs.secure] = value;
1594        break;
1595    case 0xd14: /* Configuration Control.  */
1596        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1597            goto bad_offset;
1598        }
1599
1600        /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1601        value &= (R_V7M_CCR_STKALIGN_MASK |
1602                  R_V7M_CCR_BFHFNMIGN_MASK |
1603                  R_V7M_CCR_DIV_0_TRP_MASK |
1604                  R_V7M_CCR_UNALIGN_TRP_MASK |
1605                  R_V7M_CCR_USERSETMPEND_MASK |
1606                  R_V7M_CCR_NONBASETHRDENA_MASK);
1607
1608        if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1609            /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1610            value |= R_V7M_CCR_NONBASETHRDENA_MASK
1611                | R_V7M_CCR_STKALIGN_MASK;
1612        }
1613        if (attrs.secure) {
1614            /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1615            cpu->env.v7m.ccr[M_REG_NS] =
1616                (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1617                | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1618            value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1619        }
1620
1621        cpu->env.v7m.ccr[attrs.secure] = value;
1622        break;
1623    case 0xd24: /* System Handler Control and State (SHCSR) */
1624        if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1625            goto bad_offset;
1626        }
1627        if (attrs.secure) {
1628            s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1629            /* Secure HardFault active bit cannot be written */
1630            s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1631            s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1632            s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1633                (value & (1 << 10)) != 0;
1634            s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1635                (value & (1 << 11)) != 0;
1636            s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1637                (value & (1 << 12)) != 0;
1638            s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1639            s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1640            s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1641            s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1642            s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1643                (value & (1 << 18)) != 0;
1644            s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1645            /* SecureFault not banked, but RAZ/WI to NS */
1646            s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1647            s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1648            s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1649        } else {
1650            s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1651            if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1652                /* HARDFAULTPENDED is not present in v7M */
1653                s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1654            }
1655            s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1656            s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1657            s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1658            s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1659            s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1660            s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1661            s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1662            s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1663            s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1664        }
1665        if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1666            s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1667            s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1668            s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1669        }
1670        /* NMIACT can only be written if the write is of a zero, with
1671         * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1672         */
1673        if (!attrs.secure && cpu->env.v7m.secure &&
1674            (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1675            (value & (1 << 5)) == 0) {
1676            s->vectors[ARMV7M_EXCP_NMI].active = 0;
1677        }
1678        /* HARDFAULTACT can only be written if the write is of a zero
1679         * to the non-secure HardFault state by the CPU in secure state.
1680         * The only case where we can be targeting the non-secure HF state
1681         * when in secure state is if this is a write via the NS alias
1682         * and BFHFNMINS is 1.
1683         */
1684        if (!attrs.secure && cpu->env.v7m.secure &&
1685            (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1686            (value & (1 << 2)) == 0) {
1687            s->vectors[ARMV7M_EXCP_HARD].active = 0;
1688        }
1689
1690        /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1691        s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1692        nvic_irq_update(s);
1693        break;
1694    case 0xd2c: /* Hard Fault Status.  */
1695        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1696            goto bad_offset;
1697        }
1698        cpu->env.v7m.hfsr &= ~value; /* W1C */
1699        break;
1700    case 0xd30: /* Debug Fault Status.  */
1701        cpu->env.v7m.dfsr &= ~value; /* W1C */
1702        break;
1703    case 0xd34: /* Mem Manage Address.  */
1704        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1705            goto bad_offset;
1706        }
1707        cpu->env.v7m.mmfar[attrs.secure] = value;
1708        return;
1709    case 0xd38: /* Bus Fault Address.  */
1710        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1711            goto bad_offset;
1712        }
1713        if (!attrs.secure &&
1714            !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1715            return;
1716        }
1717        cpu->env.v7m.bfar = value;
1718        return;
1719    case 0xd3c: /* Aux Fault Status.  */
1720        qemu_log_mask(LOG_UNIMP,
1721                      "NVIC: Aux fault status registers unimplemented\n");
1722        break;
1723    case 0xd84: /* CSSELR */
1724        if (!arm_v7m_csselr_razwi(cpu)) {
1725            cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1726        }
1727        break;
1728    case 0xd88: /* CPACR */
1729        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1730            /* We implement only the Floating Point extension's CP10/CP11 */
1731            cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1732        }
1733        break;
1734    case 0xd8c: /* NSACR */
1735        if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
1736            /* We implement only the Floating Point extension's CP10/CP11 */
1737            cpu->env.v7m.nsacr = value & (3 << 10);
1738        }
1739        break;
1740    case 0xd90: /* MPU_TYPE */
1741        return; /* RO */
1742    case 0xd94: /* MPU_CTRL */
1743        if ((value &
1744             (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1745            == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1746            qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1747                          "UNPREDICTABLE\n");
1748        }
1749        cpu->env.v7m.mpu_ctrl[attrs.secure]
1750            = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1751                       R_V7M_MPU_CTRL_HFNMIENA_MASK |
1752                       R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1753        tlb_flush(CPU(cpu));
1754        break;
1755    case 0xd98: /* MPU_RNR */
1756        if (value >= cpu->pmsav7_dregion) {
1757            qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1758                          PRIu32 "/%" PRIu32 "\n",
1759                          value, cpu->pmsav7_dregion);
1760        } else {
1761            cpu->env.pmsav7.rnr[attrs.secure] = value;
1762        }
1763        break;
1764    case 0xd9c: /* MPU_RBAR */
1765    case 0xda4: /* MPU_RBAR_A1 */
1766    case 0xdac: /* MPU_RBAR_A2 */
1767    case 0xdb4: /* MPU_RBAR_A3 */
1768    {
1769        int region;
1770
1771        if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1772            /* PMSAv8M handling of the aliases is different from v7M:
1773             * aliases A1, A2, A3 override the low two bits of the region
1774             * number in MPU_RNR, and there is no 'region' field in the
1775             * RBAR register.
1776             */
1777            int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1778
1779            region = cpu->env.pmsav7.rnr[attrs.secure];
1780            if (aliasno) {
1781                region = deposit32(region, 0, 2, aliasno);
1782            }
1783            if (region >= cpu->pmsav7_dregion) {
1784                return;
1785            }
1786            cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1787            tlb_flush(CPU(cpu));
1788            return;
1789        }
1790
1791        if (value & (1 << 4)) {
1792            /* VALID bit means use the region number specified in this
1793             * value and also update MPU_RNR.REGION with that value.
1794             */
1795            region = extract32(value, 0, 4);
1796            if (region >= cpu->pmsav7_dregion) {
1797                qemu_log_mask(LOG_GUEST_ERROR,
1798                              "MPU region out of range %u/%" PRIu32 "\n",
1799                              region, cpu->pmsav7_dregion);
1800                return;
1801            }
1802            cpu->env.pmsav7.rnr[attrs.secure] = region;
1803        } else {
1804            region = cpu->env.pmsav7.rnr[attrs.secure];
1805        }
1806
1807        if (region >= cpu->pmsav7_dregion) {
1808            return;
1809        }
1810
1811        cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1812        tlb_flush(CPU(cpu));
1813        break;
1814    }
1815    case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1816    case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1817    case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1818    case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1819    {
1820        int region = cpu->env.pmsav7.rnr[attrs.secure];
1821
1822        if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1823            /* PMSAv8M handling of the aliases is different from v7M:
1824             * aliases A1, A2, A3 override the low two bits of the region
1825             * number in MPU_RNR.
1826             */
1827            int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1828
1829            region = cpu->env.pmsav7.rnr[attrs.secure];
1830            if (aliasno) {
1831                region = deposit32(region, 0, 2, aliasno);
1832            }
1833            if (region >= cpu->pmsav7_dregion) {
1834                return;
1835            }
1836            cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1837            tlb_flush(CPU(cpu));
1838            return;
1839        }
1840
1841        if (region >= cpu->pmsav7_dregion) {
1842            return;
1843        }
1844
1845        cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1846        cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1847        tlb_flush(CPU(cpu));
1848        break;
1849    }
1850    case 0xdc0: /* MPU_MAIR0 */
1851        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1852            goto bad_offset;
1853        }
1854        if (cpu->pmsav7_dregion) {
1855            /* Register is RES0 if no MPU regions are implemented */
1856            cpu->env.pmsav8.mair0[attrs.secure] = value;
1857        }
1858        /* We don't need to do anything else because memory attributes
1859         * only affect cacheability, and we don't implement caching.
1860         */
1861        break;
1862    case 0xdc4: /* MPU_MAIR1 */
1863        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1864            goto bad_offset;
1865        }
1866        if (cpu->pmsav7_dregion) {
1867            /* Register is RES0 if no MPU regions are implemented */
1868            cpu->env.pmsav8.mair1[attrs.secure] = value;
1869        }
1870        /* We don't need to do anything else because memory attributes
1871         * only affect cacheability, and we don't implement caching.
1872         */
1873        break;
1874    case 0xdd0: /* SAU_CTRL */
1875        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1876            goto bad_offset;
1877        }
1878        if (!attrs.secure) {
1879            return;
1880        }
1881        cpu->env.sau.ctrl = value & 3;
1882        break;
1883    case 0xdd4: /* SAU_TYPE */
1884        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1885            goto bad_offset;
1886        }
1887        break;
1888    case 0xdd8: /* SAU_RNR */
1889        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1890            goto bad_offset;
1891        }
1892        if (!attrs.secure) {
1893            return;
1894        }
1895        if (value >= cpu->sau_sregion) {
1896            qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1897                          PRIu32 "/%" PRIu32 "\n",
1898                          value, cpu->sau_sregion);
1899        } else {
1900            cpu->env.sau.rnr = value;
1901        }
1902        break;
1903    case 0xddc: /* SAU_RBAR */
1904    {
1905        int region = cpu->env.sau.rnr;
1906
1907        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1908            goto bad_offset;
1909        }
1910        if (!attrs.secure) {
1911            return;
1912        }
1913        if (region >= cpu->sau_sregion) {
1914            return;
1915        }
1916        cpu->env.sau.rbar[region] = value & ~0x1f;
1917        tlb_flush(CPU(cpu));
1918        break;
1919    }
1920    case 0xde0: /* SAU_RLAR */
1921    {
1922        int region = cpu->env.sau.rnr;
1923
1924        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1925            goto bad_offset;
1926        }
1927        if (!attrs.secure) {
1928            return;
1929        }
1930        if (region >= cpu->sau_sregion) {
1931            return;
1932        }
1933        cpu->env.sau.rlar[region] = value & ~0x1c;
1934        tlb_flush(CPU(cpu));
1935        break;
1936    }
1937    case 0xde4: /* SFSR */
1938        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1939            goto bad_offset;
1940        }
1941        if (!attrs.secure) {
1942            return;
1943        }
1944        cpu->env.v7m.sfsr &= ~value; /* W1C */
1945        break;
1946    case 0xde8: /* SFAR */
1947        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1948            goto bad_offset;
1949        }
1950        if (!attrs.secure) {
1951            return;
1952        }
1953        cpu->env.v7m.sfsr = value;
1954        break;
1955    case 0xf00: /* Software Triggered Interrupt Register */
1956    {
1957        int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1958
1959        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1960            goto bad_offset;
1961        }
1962
1963        if (excnum < s->num_irq) {
1964            armv7m_nvic_set_pending(s, excnum, false);
1965        }
1966        break;
1967    }
1968    case 0xf34: /* FPCCR */
1969        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1970            /* Not all bits here are banked. */
1971            uint32_t fpccr_s;
1972
1973            if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1974                /* Don't allow setting of bits not present in v7M */
1975                value &= (R_V7M_FPCCR_LSPACT_MASK |
1976                          R_V7M_FPCCR_USER_MASK |
1977                          R_V7M_FPCCR_THREAD_MASK |
1978                          R_V7M_FPCCR_HFRDY_MASK |
1979                          R_V7M_FPCCR_MMRDY_MASK |
1980                          R_V7M_FPCCR_BFRDY_MASK |
1981                          R_V7M_FPCCR_MONRDY_MASK |
1982                          R_V7M_FPCCR_LSPEN_MASK |
1983                          R_V7M_FPCCR_ASPEN_MASK);
1984            }
1985            value &= ~R_V7M_FPCCR_RES0_MASK;
1986
1987            if (!attrs.secure) {
1988                /* Some non-banked bits are configurably writable by NS */
1989                fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
1990                if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
1991                    uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
1992                    fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
1993                }
1994                if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
1995                    uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
1996                    fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
1997                }
1998                if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1999                    uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
2000                    uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
2001                    fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
2002                    fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
2003                }
2004                /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
2005                {
2006                    uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
2007                    fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
2008                }
2009
2010                /*
2011                 * All other non-banked bits are RAZ/WI from NS; write
2012                 * just the banked bits to fpccr[M_REG_NS].
2013                 */
2014                value &= R_V7M_FPCCR_BANKED_MASK;
2015                cpu->env.v7m.fpccr[M_REG_NS] = value;
2016            } else {
2017                fpccr_s = value;
2018            }
2019            cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2020        }
2021        break;
2022    case 0xf38: /* FPCAR */
2023        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2024            value &= ~7;
2025            cpu->env.v7m.fpcar[attrs.secure] = value;
2026        }
2027        break;
2028    case 0xf3c: /* FPDSCR */
2029        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2030            value &= 0x07c00000;
2031            cpu->env.v7m.fpdscr[attrs.secure] = value;
2032        }
2033        break;
2034    case 0xf50: /* ICIALLU */
2035    case 0xf58: /* ICIMVAU */
2036    case 0xf5c: /* DCIMVAC */
2037    case 0xf60: /* DCISW */
2038    case 0xf64: /* DCCMVAU */
2039    case 0xf68: /* DCCMVAC */
2040    case 0xf6c: /* DCCSW */
2041    case 0xf70: /* DCCIMVAC */
2042    case 0xf74: /* DCCISW */
2043    case 0xf78: /* BPIALL */
2044        /* Cache and branch predictor maintenance: for QEMU these always NOP */
2045        break;
2046    default:
2047    bad_offset:
2048        qemu_log_mask(LOG_GUEST_ERROR,
2049                      "NVIC: Bad write offset 0x%x\n", offset);
2050    }
2051}
2052
2053static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2054{
2055    /* Return true if unprivileged access to this register is permitted. */
2056    switch (offset) {
2057    case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2058        /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2059         * controls access even though the CPU is in Secure state (I_QDKX).
2060         */
2061        return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2062    default:
2063        /* All other user accesses cause a BusFault unconditionally */
2064        return false;
2065    }
2066}
2067
2068static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2069{
2070    /* Behaviour for the SHPR register field for this exception:
2071     * return M_REG_NS to use the nonsecure vector (including for
2072     * non-banked exceptions), M_REG_S for the secure version of
2073     * a banked exception, and -1 if this field should RAZ/WI.
2074     */
2075    switch (exc) {
2076    case ARMV7M_EXCP_MEM:
2077    case ARMV7M_EXCP_USAGE:
2078    case ARMV7M_EXCP_SVC:
2079    case ARMV7M_EXCP_PENDSV:
2080    case ARMV7M_EXCP_SYSTICK:
2081        /* Banked exceptions */
2082        return attrs.secure;
2083    case ARMV7M_EXCP_BUS:
2084        /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2085        if (!attrs.secure &&
2086            !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2087            return -1;
2088        }
2089        return M_REG_NS;
2090    case ARMV7M_EXCP_SECURE:
2091        /* Not banked, RAZ/WI from nonsecure */
2092        if (!attrs.secure) {
2093            return -1;
2094        }
2095        return M_REG_NS;
2096    case ARMV7M_EXCP_DEBUG:
2097        /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2098        return M_REG_NS;
2099    case 8 ... 10:
2100    case 13:
2101        /* RES0 */
2102        return -1;
2103    default:
2104        /* Not reachable due to decode of SHPR register addresses */
2105        g_assert_not_reached();
2106    }
2107}
2108
2109static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2110                                    uint64_t *data, unsigned size,
2111                                    MemTxAttrs attrs)
2112{
2113    NVICState *s = (NVICState *)opaque;
2114    uint32_t offset = addr;
2115    unsigned i, startvec, end;
2116    uint32_t val;
2117
2118    if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2119        /* Generate BusFault for unprivileged accesses */
2120        return MEMTX_ERROR;
2121    }
2122
2123    switch (offset) {
2124    /* reads of set and clear both return the status */
2125    case 0x100 ... 0x13f: /* NVIC Set enable */
2126        offset += 0x80;
2127        /* fall through */
2128    case 0x180 ... 0x1bf: /* NVIC Clear enable */
2129        val = 0;
2130        startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2131
2132        for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2133            if (s->vectors[startvec + i].enabled &&
2134                (attrs.secure || s->itns[startvec + i])) {
2135                val |= (1 << i);
2136            }
2137        }
2138        break;
2139    case 0x200 ... 0x23f: /* NVIC Set pend */
2140        offset += 0x80;
2141        /* fall through */
2142    case 0x280 ... 0x2bf: /* NVIC Clear pend */
2143        val = 0;
2144        startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2145        for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2146            if (s->vectors[startvec + i].pending &&
2147                (attrs.secure || s->itns[startvec + i])) {
2148                val |= (1 << i);
2149            }
2150        }
2151        break;
2152    case 0x300 ... 0x33f: /* NVIC Active */
2153        val = 0;
2154
2155        if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2156            break;
2157        }
2158
2159        startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2160
2161        for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2162            if (s->vectors[startvec + i].active &&
2163                (attrs.secure || s->itns[startvec + i])) {
2164                val |= (1 << i);
2165            }
2166        }
2167        break;
2168    case 0x400 ... 0x5ef: /* NVIC Priority */
2169        val = 0;
2170        startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2171
2172        for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2173            if (attrs.secure || s->itns[startvec + i]) {
2174                val |= s->vectors[startvec + i].prio << (8 * i);
2175            }
2176        }
2177        break;
2178    case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2179        if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2180            val = 0;
2181            break;
2182        }
2183        /* fall through */
2184    case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2185        val = 0;
2186        for (i = 0; i < size; i++) {
2187            unsigned hdlidx = (offset - 0xd14) + i;
2188            int sbank = shpr_bank(s, hdlidx, attrs);
2189
2190            if (sbank < 0) {
2191                continue;
2192            }
2193            val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2194        }
2195        break;
2196    case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2197        if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2198            val = 0;
2199            break;
2200        };
2201        /*
2202         * The BFSR bits [15:8] are shared between security states
2203         * and we store them in the NS copy. They are RAZ/WI for
2204         * NS code if AIRCR.BFHFNMINS is 0.
2205         */
2206        val = s->cpu->env.v7m.cfsr[attrs.secure];
2207        if (!attrs.secure &&
2208            !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2209            val &= ~R_V7M_CFSR_BFSR_MASK;
2210        } else {
2211            val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2212        }
2213        val = extract32(val, (offset - 0xd28) * 8, size * 8);
2214        break;
2215    case 0xfe0 ... 0xfff: /* ID.  */
2216        if (offset & 3) {
2217            val = 0;
2218        } else {
2219            val = nvic_id[(offset - 0xfe0) >> 2];
2220        }
2221        break;
2222    default:
2223        if (size == 4) {
2224            val = nvic_readl(s, offset, attrs);
2225        } else {
2226            qemu_log_mask(LOG_GUEST_ERROR,
2227                          "NVIC: Bad read of size %d at offset 0x%x\n",
2228                          size, offset);
2229            val = 0;
2230        }
2231    }
2232
2233    trace_nvic_sysreg_read(addr, val, size);
2234    *data = val;
2235    return MEMTX_OK;
2236}
2237
2238static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2239                                     uint64_t value, unsigned size,
2240                                     MemTxAttrs attrs)
2241{
2242    NVICState *s = (NVICState *)opaque;
2243    uint32_t offset = addr;
2244    unsigned i, startvec, end;
2245    unsigned setval = 0;
2246
2247    trace_nvic_sysreg_write(addr, value, size);
2248
2249    if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2250        /* Generate BusFault for unprivileged accesses */
2251        return MEMTX_ERROR;
2252    }
2253
2254    switch (offset) {
2255    case 0x100 ... 0x13f: /* NVIC Set enable */
2256        offset += 0x80;
2257        setval = 1;
2258        /* fall through */
2259    case 0x180 ... 0x1bf: /* NVIC Clear enable */
2260        startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2261
2262        for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2263            if (value & (1 << i) &&
2264                (attrs.secure || s->itns[startvec + i])) {
2265                s->vectors[startvec + i].enabled = setval;
2266            }
2267        }
2268        nvic_irq_update(s);
2269        goto exit_ok;
2270    case 0x200 ... 0x23f: /* NVIC Set pend */
2271        /* the special logic in armv7m_nvic_set_pending()
2272         * is not needed since IRQs are never escalated
2273         */
2274        offset += 0x80;
2275        setval = 1;
2276        /* fall through */
2277    case 0x280 ... 0x2bf: /* NVIC Clear pend */
2278        startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2279
2280        for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2281            if (value & (1 << i) &&
2282                (attrs.secure || s->itns[startvec + i])) {
2283                s->vectors[startvec + i].pending = setval;
2284            }
2285        }
2286        nvic_irq_update(s);
2287        goto exit_ok;
2288    case 0x300 ... 0x33f: /* NVIC Active */
2289        goto exit_ok; /* R/O */
2290    case 0x400 ... 0x5ef: /* NVIC Priority */
2291        startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2292
2293        for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2294            if (attrs.secure || s->itns[startvec + i]) {
2295                set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2296            }
2297        }
2298        nvic_irq_update(s);
2299        goto exit_ok;
2300    case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2301        if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2302            goto exit_ok;
2303        }
2304        /* fall through */
2305    case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2306        for (i = 0; i < size; i++) {
2307            unsigned hdlidx = (offset - 0xd14) + i;
2308            int newprio = extract32(value, i * 8, 8);
2309            int sbank = shpr_bank(s, hdlidx, attrs);
2310
2311            if (sbank < 0) {
2312                continue;
2313            }
2314            set_prio(s, hdlidx, sbank, newprio);
2315        }
2316        nvic_irq_update(s);
2317        goto exit_ok;
2318    case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2319        if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2320            goto exit_ok;
2321        }
2322        /* All bits are W1C, so construct 32 bit value with 0s in
2323         * the parts not written by the access size
2324         */
2325        value <<= ((offset - 0xd28) * 8);
2326
2327        if (!attrs.secure &&
2328            !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2329            /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2330            value &= ~R_V7M_CFSR_BFSR_MASK;
2331        }
2332
2333        s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2334        if (attrs.secure) {
2335            /* The BFSR bits [15:8] are shared between security states
2336             * and we store them in the NS copy.
2337             */
2338            s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2339        }
2340        goto exit_ok;
2341    }
2342    if (size == 4) {
2343        nvic_writel(s, offset, value, attrs);
2344        goto exit_ok;
2345    }
2346    qemu_log_mask(LOG_GUEST_ERROR,
2347                  "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2348    /* This is UNPREDICTABLE; treat as RAZ/WI */
2349
2350 exit_ok:
2351    /* Ensure any changes made are reflected in the cached hflags.  */
2352    arm_rebuild_hflags(&s->cpu->env);
2353    return MEMTX_OK;
2354}
2355
2356static const MemoryRegionOps nvic_sysreg_ops = {
2357    .read_with_attrs = nvic_sysreg_read,
2358    .write_with_attrs = nvic_sysreg_write,
2359    .endianness = DEVICE_NATIVE_ENDIAN,
2360};
2361
2362static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2363                                        uint64_t value, unsigned size,
2364                                        MemTxAttrs attrs)
2365{
2366    MemoryRegion *mr = opaque;
2367
2368    if (attrs.secure) {
2369        /* S accesses to the alias act like NS accesses to the real region */
2370        attrs.secure = 0;
2371        return memory_region_dispatch_write(mr, addr, value,
2372                                            size_memop(size) | MO_TE, attrs);
2373    } else {
2374        /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2375        if (attrs.user) {
2376            return MEMTX_ERROR;
2377        }
2378        return MEMTX_OK;
2379    }
2380}
2381
2382static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2383                                       uint64_t *data, unsigned size,
2384                                       MemTxAttrs attrs)
2385{
2386    MemoryRegion *mr = opaque;
2387
2388    if (attrs.secure) {
2389        /* S accesses to the alias act like NS accesses to the real region */
2390        attrs.secure = 0;
2391        return memory_region_dispatch_read(mr, addr, data,
2392                                           size_memop(size) | MO_TE, attrs);
2393    } else {
2394        /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2395        if (attrs.user) {
2396            return MEMTX_ERROR;
2397        }
2398        *data = 0;
2399        return MEMTX_OK;
2400    }
2401}
2402
2403static const MemoryRegionOps nvic_sysreg_ns_ops = {
2404    .read_with_attrs = nvic_sysreg_ns_read,
2405    .write_with_attrs = nvic_sysreg_ns_write,
2406    .endianness = DEVICE_NATIVE_ENDIAN,
2407};
2408
2409static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2410                                      uint64_t value, unsigned size,
2411                                      MemTxAttrs attrs)
2412{
2413    NVICState *s = opaque;
2414    MemoryRegion *mr;
2415
2416    /* Direct the access to the correct systick */
2417    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2418    return memory_region_dispatch_write(mr, addr, value,
2419                                        size_memop(size) | MO_TE, attrs);
2420}
2421
2422static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2423                                     uint64_t *data, unsigned size,
2424                                     MemTxAttrs attrs)
2425{
2426    NVICState *s = opaque;
2427    MemoryRegion *mr;
2428
2429    /* Direct the access to the correct systick */
2430    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2431    return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
2432                                       attrs);
2433}
2434
2435static const MemoryRegionOps nvic_systick_ops = {
2436    .read_with_attrs = nvic_systick_read,
2437    .write_with_attrs = nvic_systick_write,
2438    .endianness = DEVICE_NATIVE_ENDIAN,
2439};
2440
2441static int nvic_post_load(void *opaque, int version_id)
2442{
2443    NVICState *s = opaque;
2444    unsigned i;
2445    int resetprio;
2446
2447    /* Check for out of range priority settings */
2448    resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2449
2450    if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2451        s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2452        s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2453        return 1;
2454    }
2455    for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2456        if (s->vectors[i].prio & ~0xff) {
2457            return 1;
2458        }
2459    }
2460
2461    nvic_recompute_state(s);
2462
2463    return 0;
2464}
2465
2466static const VMStateDescription vmstate_VecInfo = {
2467    .name = "armv7m_nvic_info",
2468    .version_id = 1,
2469    .minimum_version_id = 1,
2470    .fields = (VMStateField[]) {
2471        VMSTATE_INT16(prio, VecInfo),
2472        VMSTATE_UINT8(enabled, VecInfo),
2473        VMSTATE_UINT8(pending, VecInfo),
2474        VMSTATE_UINT8(active, VecInfo),
2475        VMSTATE_UINT8(level, VecInfo),
2476        VMSTATE_END_OF_LIST()
2477    }
2478};
2479
2480static bool nvic_security_needed(void *opaque)
2481{
2482    NVICState *s = opaque;
2483
2484    return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2485}
2486
2487static int nvic_security_post_load(void *opaque, int version_id)
2488{
2489    NVICState *s = opaque;
2490    int i;
2491
2492    /* Check for out of range priority settings */
2493    if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2494        && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2495        /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2496         * if the CPU state has been migrated yet; a mismatch won't
2497         * cause the emulation to blow up, though.
2498         */
2499        return 1;
2500    }
2501    for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2502        if (s->sec_vectors[i].prio & ~0xff) {
2503            return 1;
2504        }
2505    }
2506    return 0;
2507}
2508
2509static const VMStateDescription vmstate_nvic_security = {
2510    .name = "armv7m_nvic/m-security",
2511    .version_id = 1,
2512    .minimum_version_id = 1,
2513    .needed = nvic_security_needed,
2514    .post_load = &nvic_security_post_load,
2515    .fields = (VMStateField[]) {
2516        VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2517                             vmstate_VecInfo, VecInfo),
2518        VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2519        VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2520        VMSTATE_END_OF_LIST()
2521    }
2522};
2523
2524static const VMStateDescription vmstate_nvic = {
2525    .name = "armv7m_nvic",
2526    .version_id = 4,
2527    .minimum_version_id = 4,
2528    .post_load = &nvic_post_load,
2529    .fields = (VMStateField[]) {
2530        VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2531                             vmstate_VecInfo, VecInfo),
2532        VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2533        VMSTATE_END_OF_LIST()
2534    },
2535    .subsections = (const VMStateDescription*[]) {
2536        &vmstate_nvic_security,
2537        NULL
2538    }
2539};
2540
2541static Property props_nvic[] = {
2542    /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2543    DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2544    DEFINE_PROP_END_OF_LIST()
2545};
2546
2547static void armv7m_nvic_reset(DeviceState *dev)
2548{
2549    int resetprio;
2550    NVICState *s = NVIC(dev);
2551
2552    memset(s->vectors, 0, sizeof(s->vectors));
2553    memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2554    s->prigroup[M_REG_NS] = 0;
2555    s->prigroup[M_REG_S] = 0;
2556
2557    s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2558    /* MEM, BUS, and USAGE are enabled through
2559     * the System Handler Control register
2560     */
2561    s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2562    s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2563    s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2564
2565    /* DebugMonitor is enabled via DEMCR.MON_EN */
2566    s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2567
2568    resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2569    s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2570    s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2571    s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2572
2573    if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2574        s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2575        s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2576        s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2577        s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2578
2579        /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2580        s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2581        /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2582        s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2583    } else {
2584        s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2585    }
2586
2587    /* Strictly speaking the reset handler should be enabled.
2588     * However, we don't simulate soft resets through the NVIC,
2589     * and the reset vector should never be pended.
2590     * So we leave it disabled to catch logic errors.
2591     */
2592
2593    s->exception_prio = NVIC_NOEXC_PRIO;
2594    s->vectpending = 0;
2595    s->vectpending_is_s_banked = false;
2596    s->vectpending_prio = NVIC_NOEXC_PRIO;
2597
2598    if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2599        memset(s->itns, 0, sizeof(s->itns));
2600    } else {
2601        /* This state is constant and not guest accessible in a non-security
2602         * NVIC; we set the bits to true to avoid having to do a feature
2603         * bit check in the NVIC enable/pend/etc register accessors.
2604         */
2605        int i;
2606
2607        for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2608            s->itns[i] = true;
2609        }
2610    }
2611
2612    /*
2613     * We updated state that affects the CPU's MMUidx and thus its hflags;
2614     * and we can't guarantee that we run before the CPU reset function.
2615     */
2616    arm_rebuild_hflags(&s->cpu->env);
2617}
2618
2619static void nvic_systick_trigger(void *opaque, int n, int level)
2620{
2621    NVICState *s = opaque;
2622
2623    if (level) {
2624        /* SysTick just asked us to pend its exception.
2625         * (This is different from an external interrupt line's
2626         * behaviour.)
2627         * n == 0 : NonSecure systick
2628         * n == 1 : Secure systick
2629         */
2630        armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2631    }
2632}
2633
2634static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2635{
2636    NVICState *s = NVIC(dev);
2637    int regionlen;
2638
2639    /* The armv7m container object will have set our CPU pointer */
2640    if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2641        error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2642        return;
2643    }
2644
2645    if (s->num_irq > NVIC_MAX_IRQ) {
2646        error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2647        return;
2648    }
2649
2650    qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2651
2652    /* include space for internal exception vectors */
2653    s->num_irq += NVIC_FIRST_IRQ;
2654
2655    s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2656
2657    if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
2658        return;
2659    }
2660    sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2661                       qdev_get_gpio_in_named(dev, "systick-trigger",
2662                                              M_REG_NS));
2663
2664    if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2665        /* We couldn't init the secure systick device in instance_init
2666         * as we didn't know then if the CPU had the security extensions;
2667         * so we have to do it here.
2668         */
2669        object_initialize_child(OBJECT(dev), "systick-reg-s",
2670                                &s->systick[M_REG_S], TYPE_SYSTICK);
2671
2672        if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
2673            return;
2674        }
2675        sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2676                           qdev_get_gpio_in_named(dev, "systick-trigger",
2677                                                  M_REG_S));
2678    }
2679
2680    /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2681     * and looks like this:
2682     *  0x004 - ICTR
2683     *  0x010 - 0xff - systick
2684     *  0x100..0x7ec - NVIC
2685     *  0x7f0..0xcff - Reserved
2686     *  0xd00..0xd3c - SCS registers
2687     *  0xd40..0xeff - Reserved or Not implemented
2688     *  0xf00 - STIR
2689     *
2690     * Some registers within this space are banked between security states.
2691     * In v8M there is a second range 0xe002e000..0xe002efff which is the
2692     * NonSecure alias SCS; secure accesses to this behave like NS accesses
2693     * to the main SCS range, and non-secure accesses (including when
2694     * the security extension is not implemented) are RAZ/WI.
2695     * Note that both the main SCS range and the alias range are defined
2696     * to be exempt from memory attribution (R_BLJT) and so the memory
2697     * transaction attribute always matches the current CPU security
2698     * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2699     * wrappers we change attrs.secure to indicate the NS access; so
2700     * generally code determining which banked register to use should
2701     * use attrs.secure; code determining actual behaviour of the system
2702     * should use env->v7m.secure.
2703     */
2704    regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2705    memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2706    /* The system register region goes at the bottom of the priority
2707     * stack as it covers the whole page.
2708     */
2709    memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2710                          "nvic_sysregs", 0x1000);
2711    memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2712
2713    memory_region_init_io(&s->systickmem, OBJECT(s),
2714                          &nvic_systick_ops, s,
2715                          "nvic_systick", 0xe0);
2716
2717    memory_region_add_subregion_overlap(&s->container, 0x10,
2718                                        &s->systickmem, 1);
2719
2720    if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2721        memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2722                              &nvic_sysreg_ns_ops, &s->sysregmem,
2723                              "nvic_sysregs_ns", 0x1000);
2724        memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2725        memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2726                              &nvic_sysreg_ns_ops, &s->systickmem,
2727                              "nvic_systick_ns", 0xe0);
2728        memory_region_add_subregion_overlap(&s->container, 0x20010,
2729                                            &s->systick_ns_mem, 1);
2730    }
2731
2732    sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2733}
2734
2735static void armv7m_nvic_instance_init(Object *obj)
2736{
2737    /* We have a different default value for the num-irq property
2738     * than our superclass. This function runs after qdev init
2739     * has set the defaults from the Property array and before
2740     * any user-specified property setting, so just modify the
2741     * value in the GICState struct.
2742     */
2743    DeviceState *dev = DEVICE(obj);
2744    NVICState *nvic = NVIC(obj);
2745    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2746
2747    object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2748                            TYPE_SYSTICK);
2749    /* We can't initialize the secure systick here, as we don't know
2750     * yet if we need it.
2751     */
2752
2753    sysbus_init_irq(sbd, &nvic->excpout);
2754    qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2755    qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2756                            M_REG_NUM_BANKS);
2757    qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2758}
2759
2760static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2761{
2762    DeviceClass *dc = DEVICE_CLASS(klass);
2763
2764    dc->vmsd  = &vmstate_nvic;
2765    device_class_set_props(dc, props_nvic);
2766    dc->reset = armv7m_nvic_reset;
2767    dc->realize = armv7m_nvic_realize;
2768}
2769
2770static const TypeInfo armv7m_nvic_info = {
2771    .name          = TYPE_NVIC,
2772    .parent        = TYPE_SYS_BUS_DEVICE,
2773    .instance_init = armv7m_nvic_instance_init,
2774    .instance_size = sizeof(NVICState),
2775    .class_init    = armv7m_nvic_class_init,
2776    .class_size    = sizeof(SysBusDeviceClass),
2777};
2778
2779static void armv7m_nvic_register_types(void)
2780{
2781    type_register_static(&armv7m_nvic_info);
2782}
2783
2784type_init(armv7m_nvic_register_types)
2785