qemu/util/coroutine-sigaltstack.c
<<
>>
Prefs
   1/*
   2 * sigaltstack coroutine initialization code
   3 *
   4 * Copyright (C) 2006  Anthony Liguori <anthony@codemonkey.ws>
   5 * Copyright (C) 2011  Kevin Wolf <kwolf@redhat.com>
   6 * Copyright (C) 2012  Alex Barcelo <abarcelo@ac.upc.edu>
   7** This file is partly based on pth_mctx.c, from the GNU Portable Threads
   8**  Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com>
   9 *
  10 * This library is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU Lesser General Public
  12 * License as published by the Free Software Foundation; either
  13 * version 2.1 of the License, or (at your option) any later version.
  14 *
  15 * This library is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * Lesser General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU Lesser General Public
  21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24/* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
  25#ifdef _FORTIFY_SOURCE
  26#undef _FORTIFY_SOURCE
  27#endif
  28#include "qemu/osdep.h"
  29#include <pthread.h>
  30#include "qemu-common.h"
  31#include "qemu/coroutine_int.h"
  32
  33#ifdef CONFIG_SAFESTACK
  34#error "SafeStack is not compatible with code run in alternate signal stacks"
  35#endif
  36
  37typedef struct {
  38    Coroutine base;
  39    void *stack;
  40    size_t stack_size;
  41    sigjmp_buf env;
  42} CoroutineSigAltStack;
  43
  44/**
  45 * Per-thread coroutine bookkeeping
  46 */
  47typedef struct {
  48    /** Currently executing coroutine */
  49    Coroutine *current;
  50
  51    /** The default coroutine */
  52    CoroutineSigAltStack leader;
  53
  54    /** Information for the signal handler (trampoline) */
  55    sigjmp_buf tr_reenter;
  56    volatile sig_atomic_t tr_called;
  57    void *tr_handler;
  58} CoroutineThreadState;
  59
  60static pthread_key_t thread_state_key;
  61
  62static CoroutineThreadState *coroutine_get_thread_state(void)
  63{
  64    CoroutineThreadState *s = pthread_getspecific(thread_state_key);
  65
  66    if (!s) {
  67        s = g_malloc0(sizeof(*s));
  68        s->current = &s->leader.base;
  69        pthread_setspecific(thread_state_key, s);
  70    }
  71    return s;
  72}
  73
  74static void qemu_coroutine_thread_cleanup(void *opaque)
  75{
  76    CoroutineThreadState *s = opaque;
  77
  78    g_free(s);
  79}
  80
  81static void __attribute__((constructor)) coroutine_init(void)
  82{
  83    int ret;
  84
  85    ret = pthread_key_create(&thread_state_key, qemu_coroutine_thread_cleanup);
  86    if (ret != 0) {
  87        fprintf(stderr, "unable to create leader key: %s\n", strerror(errno));
  88        abort();
  89    }
  90}
  91
  92/* "boot" function
  93 * This is what starts the coroutine, is called from the trampoline
  94 * (from the signal handler when it is not signal handling, read ahead
  95 * for more information).
  96 */
  97static void coroutine_bootstrap(CoroutineSigAltStack *self, Coroutine *co)
  98{
  99    /* Initialize longjmp environment and switch back the caller */
 100    if (!sigsetjmp(self->env, 0)) {
 101        siglongjmp(*(sigjmp_buf *)co->entry_arg, 1);
 102    }
 103
 104    while (true) {
 105        co->entry(co->entry_arg);
 106        qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE);
 107    }
 108}
 109
 110/*
 111 * This is used as the signal handler. This is called with the brand new stack
 112 * (thanks to sigaltstack). We have to return, given that this is a signal
 113 * handler and the sigmask and some other things are changed.
 114 */
 115static void coroutine_trampoline(int signal)
 116{
 117    CoroutineSigAltStack *self;
 118    Coroutine *co;
 119    CoroutineThreadState *coTS;
 120
 121    /* Get the thread specific information */
 122    coTS = coroutine_get_thread_state();
 123    self = coTS->tr_handler;
 124    coTS->tr_called = 1;
 125    co = &self->base;
 126
 127    /*
 128     * Here we have to do a bit of a ping pong between the caller, given that
 129     * this is a signal handler and we have to do a return "soon". Then the
 130     * caller can reestablish everything and do a siglongjmp here again.
 131     */
 132    if (!sigsetjmp(coTS->tr_reenter, 0)) {
 133        return;
 134    }
 135
 136    /*
 137     * Ok, the caller has siglongjmp'ed back to us, so now prepare
 138     * us for the real machine state switching. We have to jump
 139     * into another function here to get a new stack context for
 140     * the auto variables (which have to be auto-variables
 141     * because the start of the thread happens later). Else with
 142     * PIC (i.e. Position Independent Code which is used when PTH
 143     * is built as a shared library) most platforms would
 144     * horrible core dump as experience showed.
 145     */
 146    coroutine_bootstrap(self, co);
 147}
 148
 149Coroutine *qemu_coroutine_new(void)
 150{
 151    CoroutineSigAltStack *co;
 152    CoroutineThreadState *coTS;
 153    struct sigaction sa;
 154    struct sigaction osa;
 155    stack_t ss;
 156    stack_t oss;
 157    sigset_t sigs;
 158    sigset_t osigs;
 159    sigjmp_buf old_env;
 160
 161    /* The way to manipulate stack is with the sigaltstack function. We
 162     * prepare a stack, with it delivering a signal to ourselves and then
 163     * put sigsetjmp/siglongjmp where needed.
 164     * This has been done keeping coroutine-ucontext as a model and with the
 165     * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
 166     * of the coroutines and see pth_mctx.c (from the pth project) for the
 167     * sigaltstack way of manipulating stacks.
 168     */
 169
 170    co = g_malloc0(sizeof(*co));
 171    co->stack_size = COROUTINE_STACK_SIZE;
 172    co->stack = qemu_alloc_stack(&co->stack_size);
 173    co->base.entry_arg = &old_env; /* stash away our jmp_buf */
 174
 175    coTS = coroutine_get_thread_state();
 176    coTS->tr_handler = co;
 177
 178    /*
 179     * Preserve the SIGUSR2 signal state, block SIGUSR2,
 180     * and establish our signal handler. The signal will
 181     * later transfer control onto the signal stack.
 182     */
 183    sigemptyset(&sigs);
 184    sigaddset(&sigs, SIGUSR2);
 185    pthread_sigmask(SIG_BLOCK, &sigs, &osigs);
 186    sa.sa_handler = coroutine_trampoline;
 187    sigfillset(&sa.sa_mask);
 188    sa.sa_flags = SA_ONSTACK;
 189    if (sigaction(SIGUSR2, &sa, &osa) != 0) {
 190        abort();
 191    }
 192
 193    /*
 194     * Set the new stack.
 195     */
 196    ss.ss_sp = co->stack;
 197    ss.ss_size = co->stack_size;
 198    ss.ss_flags = 0;
 199    if (sigaltstack(&ss, &oss) < 0) {
 200        abort();
 201    }
 202
 203    /*
 204     * Now transfer control onto the signal stack and set it up.
 205     * It will return immediately via "return" after the sigsetjmp()
 206     * was performed. Be careful here with race conditions.  The
 207     * signal can be delivered the first time sigsuspend() is
 208     * called.
 209     */
 210    coTS->tr_called = 0;
 211    pthread_kill(pthread_self(), SIGUSR2);
 212    sigfillset(&sigs);
 213    sigdelset(&sigs, SIGUSR2);
 214    while (!coTS->tr_called) {
 215        sigsuspend(&sigs);
 216    }
 217
 218    /*
 219     * Inform the system that we are back off the signal stack by
 220     * removing the alternative signal stack. Be careful here: It
 221     * first has to be disabled, before it can be removed.
 222     */
 223    sigaltstack(NULL, &ss);
 224    ss.ss_flags = SS_DISABLE;
 225    if (sigaltstack(&ss, NULL) < 0) {
 226        abort();
 227    }
 228    sigaltstack(NULL, &ss);
 229    if (!(oss.ss_flags & SS_DISABLE)) {
 230        sigaltstack(&oss, NULL);
 231    }
 232
 233    /*
 234     * Restore the old SIGUSR2 signal handler and mask
 235     */
 236    sigaction(SIGUSR2, &osa, NULL);
 237    pthread_sigmask(SIG_SETMASK, &osigs, NULL);
 238
 239    /*
 240     * Now enter the trampoline again, but this time not as a signal
 241     * handler. Instead we jump into it directly. The functionally
 242     * redundant ping-pong pointer arithmetic is necessary to avoid
 243     * type-conversion warnings related to the `volatile' qualifier and
 244     * the fact that `jmp_buf' usually is an array type.
 245     */
 246    if (!sigsetjmp(old_env, 0)) {
 247        siglongjmp(coTS->tr_reenter, 1);
 248    }
 249
 250    /*
 251     * Ok, we returned again, so now we're finished
 252     */
 253
 254    return &co->base;
 255}
 256
 257void qemu_coroutine_delete(Coroutine *co_)
 258{
 259    CoroutineSigAltStack *co = DO_UPCAST(CoroutineSigAltStack, base, co_);
 260
 261    qemu_free_stack(co->stack, co->stack_size);
 262    g_free(co);
 263}
 264
 265CoroutineAction qemu_coroutine_switch(Coroutine *from_, Coroutine *to_,
 266                                      CoroutineAction action)
 267{
 268    CoroutineSigAltStack *from = DO_UPCAST(CoroutineSigAltStack, base, from_);
 269    CoroutineSigAltStack *to = DO_UPCAST(CoroutineSigAltStack, base, to_);
 270    CoroutineThreadState *s = coroutine_get_thread_state();
 271    int ret;
 272
 273    s->current = to_;
 274
 275    ret = sigsetjmp(from->env, 0);
 276    if (ret == 0) {
 277        siglongjmp(to->env, action);
 278    }
 279    return ret;
 280}
 281
 282Coroutine *qemu_coroutine_self(void)
 283{
 284    CoroutineThreadState *s = coroutine_get_thread_state();
 285
 286    return s->current;
 287}
 288
 289bool qemu_in_coroutine(void)
 290{
 291    CoroutineThreadState *s = pthread_getspecific(thread_state_key);
 292
 293    return s && s->current->caller;
 294}
 295
 296