qemu/hw/intc/arm_gicv3_redist.c
<<
>>
Prefs
   1/*
   2 * ARM GICv3 emulation: Redistributor
   3 *
   4 * Copyright (c) 2015 Huawei.
   5 * Copyright (c) 2016 Linaro Limited.
   6 * Written by Shlomo Pongratz, Peter Maydell
   7 *
   8 * This code is licensed under the GPL, version 2 or (at your option)
   9 * any later version.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "qemu/log.h"
  14#include "trace.h"
  15#include "gicv3_internal.h"
  16
  17static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
  18{
  19    /* Return a 32-bit mask which should be applied for this set of 32
  20     * interrupts; each bit is 1 if access is permitted by the
  21     * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
  22     * not affect config register accesses, unlike GICD_NSACR.)
  23     */
  24    if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
  25        /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
  26        return cs->gicr_igroupr0;
  27    }
  28    return 0xFFFFFFFFU;
  29}
  30
  31static int gicr_ns_access(GICv3CPUState *cs, int irq)
  32{
  33    /* Return the 2 bit NSACR.NS_access field for this SGI */
  34    assert(irq < 16);
  35    return extract32(cs->gicr_nsacr, irq * 2, 2);
  36}
  37
  38static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
  39                                      uint32_t *reg, uint32_t val)
  40{
  41    /* Helper routine to implement writing to a "set-bitmap" register */
  42    val &= mask_group(cs, attrs);
  43    *reg |= val;
  44    gicv3_redist_update(cs);
  45}
  46
  47static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
  48                                        uint32_t *reg, uint32_t val)
  49{
  50    /* Helper routine to implement writing to a "clear-bitmap" register */
  51    val &= mask_group(cs, attrs);
  52    *reg &= ~val;
  53    gicv3_redist_update(cs);
  54}
  55
  56static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
  57                                     uint32_t reg)
  58{
  59    reg &= mask_group(cs, attrs);
  60    return reg;
  61}
  62
  63static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
  64                                    int irq)
  65{
  66    /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
  67     * honouring security state (these are RAZ/WI for Group 0 or Secure
  68     * Group 1 interrupts).
  69     */
  70    uint32_t prio;
  71
  72    prio = cs->gicr_ipriorityr[irq];
  73
  74    if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
  75        if (!(cs->gicr_igroupr0 & (1U << irq))) {
  76            /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
  77            return 0;
  78        }
  79        /* NS view of the interrupt priority */
  80        prio = (prio << 1) & 0xff;
  81    }
  82    return prio;
  83}
  84
  85static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
  86                                  uint8_t value)
  87{
  88    /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
  89     * honouring security state (these are RAZ/WI for Group 0 or Secure
  90     * Group 1 interrupts).
  91     */
  92    if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
  93        if (!(cs->gicr_igroupr0 & (1U << irq))) {
  94            /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
  95            return;
  96        }
  97        /* NS view of the interrupt priority */
  98        value = 0x80 | (value >> 1);
  99    }
 100    cs->gicr_ipriorityr[irq] = value;
 101}
 102
 103static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
 104                              uint64_t *data, MemTxAttrs attrs)
 105{
 106    switch (offset) {
 107    case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
 108        *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
 109        return MEMTX_OK;
 110    default:
 111        return MEMTX_ERROR;
 112    }
 113}
 114
 115static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
 116                               uint64_t value, MemTxAttrs attrs)
 117{
 118    switch (offset) {
 119    case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
 120        gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
 121        gicv3_redist_update(cs);
 122        return MEMTX_OK;
 123    default:
 124        return MEMTX_ERROR;
 125    }
 126}
 127
 128static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
 129                              uint64_t *data, MemTxAttrs attrs)
 130{
 131    switch (offset) {
 132    case GICR_CTLR:
 133        *data = cs->gicr_ctlr;
 134        return MEMTX_OK;
 135    case GICR_IIDR:
 136        *data = gicv3_iidr();
 137        return MEMTX_OK;
 138    case GICR_TYPER:
 139        *data = extract64(cs->gicr_typer, 0, 32);
 140        return MEMTX_OK;
 141    case GICR_TYPER + 4:
 142        *data = extract64(cs->gicr_typer, 32, 32);
 143        return MEMTX_OK;
 144    case GICR_STATUSR:
 145        /* RAZ/WI for us (this is an optional register and our implementation
 146         * does not track RO/WO/reserved violations to report them to the guest)
 147         */
 148        *data = 0;
 149        return MEMTX_OK;
 150    case GICR_WAKER:
 151        *data = cs->gicr_waker;
 152        return MEMTX_OK;
 153    case GICR_PROPBASER:
 154        *data = extract64(cs->gicr_propbaser, 0, 32);
 155        return MEMTX_OK;
 156    case GICR_PROPBASER + 4:
 157        *data = extract64(cs->gicr_propbaser, 32, 32);
 158        return MEMTX_OK;
 159    case GICR_PENDBASER:
 160        *data = extract64(cs->gicr_pendbaser, 0, 32);
 161        return MEMTX_OK;
 162    case GICR_PENDBASER + 4:
 163        *data = extract64(cs->gicr_pendbaser, 32, 32);
 164        return MEMTX_OK;
 165    case GICR_IGROUPR0:
 166        if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
 167            *data = 0;
 168            return MEMTX_OK;
 169        }
 170        *data = cs->gicr_igroupr0;
 171        return MEMTX_OK;
 172    case GICR_ISENABLER0:
 173    case GICR_ICENABLER0:
 174        *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
 175        return MEMTX_OK;
 176    case GICR_ISPENDR0:
 177    case GICR_ICPENDR0:
 178    {
 179        /* The pending register reads as the logical OR of the pending
 180         * latch and the input line level for level-triggered interrupts.
 181         */
 182        uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
 183        *data = gicr_read_bitmap_reg(cs, attrs, val);
 184        return MEMTX_OK;
 185    }
 186    case GICR_ISACTIVER0:
 187    case GICR_ICACTIVER0:
 188        *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
 189        return MEMTX_OK;
 190    case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
 191    {
 192        int i, irq = offset - GICR_IPRIORITYR;
 193        uint32_t value = 0;
 194
 195        for (i = irq + 3; i >= irq; i--) {
 196            value <<= 8;
 197            value |= gicr_read_ipriorityr(cs, attrs, i);
 198        }
 199        *data = value;
 200        return MEMTX_OK;
 201    }
 202    case GICR_ICFGR0:
 203    case GICR_ICFGR1:
 204    {
 205        /* Our edge_trigger bitmap is one bit per irq; take the correct
 206         * half of it, and spread it out into the odd bits.
 207         */
 208        uint32_t value;
 209
 210        value = cs->edge_trigger & mask_group(cs, attrs);
 211        value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
 212        value = half_shuffle32(value) << 1;
 213        *data = value;
 214        return MEMTX_OK;
 215    }
 216    case GICR_IGRPMODR0:
 217        if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 218            /* RAZ/WI if security disabled, or if
 219             * security enabled and this is an NS access
 220             */
 221            *data = 0;
 222            return MEMTX_OK;
 223        }
 224        *data = cs->gicr_igrpmodr0;
 225        return MEMTX_OK;
 226    case GICR_NSACR:
 227        if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 228            /* RAZ/WI if security disabled, or if
 229             * security enabled and this is an NS access
 230             */
 231            *data = 0;
 232            return MEMTX_OK;
 233        }
 234        *data = cs->gicr_nsacr;
 235        return MEMTX_OK;
 236    case GICR_IDREGS ... GICR_IDREGS + 0x2f:
 237        *data = gicv3_idreg(offset - GICR_IDREGS);
 238        return MEMTX_OK;
 239    default:
 240        return MEMTX_ERROR;
 241    }
 242}
 243
 244static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
 245                               uint64_t value, MemTxAttrs attrs)
 246{
 247    switch (offset) {
 248    case GICR_CTLR:
 249        /* For our implementation, GICR_TYPER.DPGS is 0 and so all
 250         * the DPG bits are RAZ/WI. We don't do anything asynchronously,
 251         * so UWP and RWP are RAZ/WI. And GICR_TYPER.LPIS is 0 (we don't
 252         * implement LPIs) so Enable_LPIs is RES0. So there are no writable
 253         * bits for us.
 254         */
 255        return MEMTX_OK;
 256    case GICR_STATUSR:
 257        /* RAZ/WI for our implementation */
 258        return MEMTX_OK;
 259    case GICR_WAKER:
 260        /* Only the ProcessorSleep bit is writeable. When the guest sets
 261         * it it requests that we transition the channel between the
 262         * redistributor and the cpu interface to quiescent, and that
 263         * we set the ChildrenAsleep bit once the inteface has reached the
 264         * quiescent state.
 265         * Setting the ProcessorSleep to 0 reverses the quiescing, and
 266         * ChildrenAsleep is cleared once the transition is complete.
 267         * Since our interface is not asynchronous, we complete these
 268         * transitions instantaneously, so we set ChildrenAsleep to the
 269         * same value as ProcessorSleep here.
 270         */
 271        value &= GICR_WAKER_ProcessorSleep;
 272        if (value & GICR_WAKER_ProcessorSleep) {
 273            value |= GICR_WAKER_ChildrenAsleep;
 274        }
 275        cs->gicr_waker = value;
 276        return MEMTX_OK;
 277    case GICR_PROPBASER:
 278        cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
 279        return MEMTX_OK;
 280    case GICR_PROPBASER + 4:
 281        cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
 282        return MEMTX_OK;
 283    case GICR_PENDBASER:
 284        cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
 285        return MEMTX_OK;
 286    case GICR_PENDBASER + 4:
 287        cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
 288        return MEMTX_OK;
 289    case GICR_IGROUPR0:
 290        if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
 291            return MEMTX_OK;
 292        }
 293        cs->gicr_igroupr0 = value;
 294        gicv3_redist_update(cs);
 295        return MEMTX_OK;
 296    case GICR_ISENABLER0:
 297        gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
 298        return MEMTX_OK;
 299    case GICR_ICENABLER0:
 300        gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
 301        return MEMTX_OK;
 302    case GICR_ISPENDR0:
 303        gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
 304        return MEMTX_OK;
 305    case GICR_ICPENDR0:
 306        gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
 307        return MEMTX_OK;
 308    case GICR_ISACTIVER0:
 309        gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
 310        return MEMTX_OK;
 311    case GICR_ICACTIVER0:
 312        gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
 313        return MEMTX_OK;
 314    case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
 315    {
 316        int i, irq = offset - GICR_IPRIORITYR;
 317
 318        for (i = irq; i < irq + 4; i++, value >>= 8) {
 319            gicr_write_ipriorityr(cs, attrs, i, value);
 320        }
 321        gicv3_redist_update(cs);
 322        return MEMTX_OK;
 323    }
 324    case GICR_ICFGR0:
 325        /* Register is all RAZ/WI or RAO/WI bits */
 326        return MEMTX_OK;
 327    case GICR_ICFGR1:
 328    {
 329        uint32_t mask;
 330
 331        /* Since our edge_trigger bitmap is one bit per irq, our input
 332         * 32-bits will compress down into 16 bits which we need
 333         * to write into the bitmap.
 334         */
 335        value = half_unshuffle32(value >> 1) << 16;
 336        mask = mask_group(cs, attrs) & 0xffff0000U;
 337
 338        cs->edge_trigger &= ~mask;
 339        cs->edge_trigger |= (value & mask);
 340
 341        gicv3_redist_update(cs);
 342        return MEMTX_OK;
 343    }
 344    case GICR_IGRPMODR0:
 345        if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 346            /* RAZ/WI if security disabled, or if
 347             * security enabled and this is an NS access
 348             */
 349            return MEMTX_OK;
 350        }
 351        cs->gicr_igrpmodr0 = value;
 352        gicv3_redist_update(cs);
 353        return MEMTX_OK;
 354    case GICR_NSACR:
 355        if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 356            /* RAZ/WI if security disabled, or if
 357             * security enabled and this is an NS access
 358             */
 359            return MEMTX_OK;
 360        }
 361        cs->gicr_nsacr = value;
 362        /* no update required as this only affects access permission checks */
 363        return MEMTX_OK;
 364    case GICR_IIDR:
 365    case GICR_TYPER:
 366    case GICR_IDREGS ... GICR_IDREGS + 0x2f:
 367        /* RO registers, ignore the write */
 368        qemu_log_mask(LOG_GUEST_ERROR,
 369                      "%s: invalid guest write to RO register at offset "
 370                      TARGET_FMT_plx "\n", __func__, offset);
 371        return MEMTX_OK;
 372    default:
 373        return MEMTX_ERROR;
 374    }
 375}
 376
 377static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
 378                               uint64_t *data, MemTxAttrs attrs)
 379{
 380    switch (offset) {
 381    case GICR_TYPER:
 382        *data = cs->gicr_typer;
 383        return MEMTX_OK;
 384    case GICR_PROPBASER:
 385        *data = cs->gicr_propbaser;
 386        return MEMTX_OK;
 387    case GICR_PENDBASER:
 388        *data = cs->gicr_pendbaser;
 389        return MEMTX_OK;
 390    default:
 391        return MEMTX_ERROR;
 392    }
 393}
 394
 395static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
 396                                uint64_t value, MemTxAttrs attrs)
 397{
 398    switch (offset) {
 399    case GICR_PROPBASER:
 400        cs->gicr_propbaser = value;
 401        return MEMTX_OK;
 402    case GICR_PENDBASER:
 403        cs->gicr_pendbaser = value;
 404        return MEMTX_OK;
 405    case GICR_TYPER:
 406        /* RO register, ignore the write */
 407        qemu_log_mask(LOG_GUEST_ERROR,
 408                      "%s: invalid guest write to RO register at offset "
 409                      TARGET_FMT_plx "\n", __func__, offset);
 410        return MEMTX_OK;
 411    default:
 412        return MEMTX_ERROR;
 413    }
 414}
 415
 416MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
 417                              unsigned size, MemTxAttrs attrs)
 418{
 419    GICv3State *s = opaque;
 420    GICv3CPUState *cs;
 421    MemTxResult r;
 422    int cpuidx;
 423
 424    assert((offset & (size - 1)) == 0);
 425
 426    /* This region covers all the redistributor pages; there are
 427     * (for GICv3) two 64K pages per CPU. At the moment they are
 428     * all contiguous (ie in this one region), though we might later
 429     * want to allow splitting of redistributor pages into several
 430     * blocks so we can support more CPUs.
 431     */
 432    cpuidx = offset / 0x20000;
 433    offset %= 0x20000;
 434    assert(cpuidx < s->num_cpu);
 435
 436    cs = &s->cpu[cpuidx];
 437
 438    switch (size) {
 439    case 1:
 440        r = gicr_readb(cs, offset, data, attrs);
 441        break;
 442    case 4:
 443        r = gicr_readl(cs, offset, data, attrs);
 444        break;
 445    case 8:
 446        r = gicr_readll(cs, offset, data, attrs);
 447        break;
 448    default:
 449        r = MEMTX_ERROR;
 450        break;
 451    }
 452
 453    if (r == MEMTX_ERROR) {
 454        qemu_log_mask(LOG_GUEST_ERROR,
 455                      "%s: invalid guest read at offset " TARGET_FMT_plx
 456                      "size %u\n", __func__, offset, size);
 457        trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
 458                                   size, attrs.secure);
 459        /* The spec requires that reserved registers are RAZ/WI;
 460         * so use MEMTX_ERROR returns from leaf functions as a way to
 461         * trigger the guest-error logging but don't return it to
 462         * the caller, or we'll cause a spurious guest data abort.
 463         */
 464        r = MEMTX_OK;
 465        *data = 0;
 466    } else {
 467        trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
 468                                size, attrs.secure);
 469    }
 470    return r;
 471}
 472
 473MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
 474                               unsigned size, MemTxAttrs attrs)
 475{
 476    GICv3State *s = opaque;
 477    GICv3CPUState *cs;
 478    MemTxResult r;
 479    int cpuidx;
 480
 481    assert((offset & (size - 1)) == 0);
 482
 483    /* This region covers all the redistributor pages; there are
 484     * (for GICv3) two 64K pages per CPU. At the moment they are
 485     * all contiguous (ie in this one region), though we might later
 486     * want to allow splitting of redistributor pages into several
 487     * blocks so we can support more CPUs.
 488     */
 489    cpuidx = offset / 0x20000;
 490    offset %= 0x20000;
 491    assert(cpuidx < s->num_cpu);
 492
 493    cs = &s->cpu[cpuidx];
 494
 495    switch (size) {
 496    case 1:
 497        r = gicr_writeb(cs, offset, data, attrs);
 498        break;
 499    case 4:
 500        r = gicr_writel(cs, offset, data, attrs);
 501        break;
 502    case 8:
 503        r = gicr_writell(cs, offset, data, attrs);
 504        break;
 505    default:
 506        r = MEMTX_ERROR;
 507        break;
 508    }
 509
 510    if (r == MEMTX_ERROR) {
 511        qemu_log_mask(LOG_GUEST_ERROR,
 512                      "%s: invalid guest write at offset " TARGET_FMT_plx
 513                      "size %u\n", __func__, offset, size);
 514        trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
 515                                    size, attrs.secure);
 516        /* The spec requires that reserved registers are RAZ/WI;
 517         * so use MEMTX_ERROR returns from leaf functions as a way to
 518         * trigger the guest-error logging but don't return it to
 519         * the caller, or we'll cause a spurious guest data abort.
 520         */
 521        r = MEMTX_OK;
 522    } else {
 523        trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
 524                                 size, attrs.secure);
 525    }
 526    return r;
 527}
 528
 529void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
 530{
 531    /* Update redistributor state for a change in an external PPI input line */
 532    if (level == extract32(cs->level, irq, 1)) {
 533        return;
 534    }
 535
 536    trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
 537
 538    cs->level = deposit32(cs->level, irq, 1, level);
 539
 540    if (level) {
 541        /* 0->1 edges latch the pending bit for edge-triggered interrupts */
 542        if (extract32(cs->edge_trigger, irq, 1)) {
 543            cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
 544        }
 545    }
 546
 547    gicv3_redist_update(cs);
 548}
 549
 550void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
 551{
 552    /* Update redistributor state for a generated SGI */
 553    int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
 554
 555    /* If we are asked for a Secure Group 1 SGI and it's actually
 556     * configured as Secure Group 0 this is OK (subject to the usual
 557     * NSACR checks).
 558     */
 559    if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
 560        grp = GICV3_G0;
 561    }
 562
 563    if (grp != irqgrp) {
 564        return;
 565    }
 566
 567    if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
 568        /* If security is enabled we must test the NSACR bits */
 569        int nsaccess = gicr_ns_access(cs, irq);
 570
 571        if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
 572            (irqgrp == GICV3_G1 && nsaccess < 2)) {
 573            return;
 574        }
 575    }
 576
 577    /* OK, we can accept the SGI */
 578    trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
 579    cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
 580    gicv3_redist_update(cs);
 581}
 582