qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include "exec/cpu-common.h"
  20#include "exec/hwaddr.h"
  21#include "exec/memattrs.h"
  22#include "exec/memop.h"
  23#include "exec/ramlist.h"
  24#include "qemu/bswap.h"
  25#include "qemu/queue.h"
  26#include "qemu/int128.h"
  27#include "qemu/notify.h"
  28#include "qom/object.h"
  29#include "qemu/rcu.h"
  30
  31extern const char *machine_path;
  32#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  33
  34#define MAX_PHYS_ADDR_SPACE_BITS 62
  35#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  36
  37#define TYPE_MEMORY_REGION "qemu:memory-region"
  38#define MEMORY_REGION(obj) \
  39        OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
  40
  41#define TYPE_MEMORY_TRANSACTION_ATTR "qemu:memory-transaction-attr"
  42#define MEMORY_TRANSACTION_ATTR(obj) \
  43        OBJECT_CHECK(MemTxAttrs, (obj), TYPE_MEMORY_TRANSACTION_ATTR)
  44
  45#define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
  46#define IOMMU_MEMORY_REGION(obj) \
  47        OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
  48#define IOMMU_MEMORY_REGION_CLASS(klass) \
  49        OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
  50                         TYPE_IOMMU_MEMORY_REGION)
  51#define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
  52        OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
  53                         TYPE_IOMMU_MEMORY_REGION)
  54
  55extern bool global_dirty_log;
  56
  57typedef struct MemoryRegionOps MemoryRegionOps;
  58
  59typedef struct MemoryTransaction
  60{
  61    union {
  62        /*
  63         * Data is passed by values up to 64bit sizes. Beyond
  64         * that, a pointer is passed in p8.
  65         *
  66         * Note that p8 has no alignment restrictions.
  67         */
  68        uint8_t *p8;
  69        uint64_t u64;
  70        uint32_t u32;
  71        uint16_t u16;
  72        uint8_t  u8;
  73    } data;
  74    bool rw;
  75    hwaddr addr;
  76    unsigned int size;
  77    MemTxAttrs attr;
  78    void *opaque;
  79} MemoryTransaction;
  80
  81struct ReservedRegion {
  82    hwaddr low;
  83    hwaddr high;
  84    unsigned type;
  85};
  86
  87typedef struct IOMMUTLBEntry IOMMUTLBEntry;
  88
  89/* See address_space_translate: bit 0 is read, bit 1 is write.  */
  90typedef enum {
  91    IOMMU_NONE = 0,
  92    IOMMU_RO   = 1,
  93    IOMMU_WO   = 2,
  94    IOMMU_RW   = 3,
  95} IOMMUAccessFlags;
  96
  97#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
  98
  99struct IOMMUTLBEntry {
 100    AddressSpace    *target_as;
 101    hwaddr           iova;
 102    hwaddr           translated_addr;
 103    hwaddr           addr_mask;  /* 0xfff = 4k translation */
 104    IOMMUAccessFlags perm;
 105};
 106
 107/*
 108 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
 109 * register with one or multiple IOMMU Notifier capability bit(s).
 110 */
 111typedef enum {
 112    IOMMU_NOTIFIER_NONE = 0,
 113    /* Notify cache invalidations */
 114    IOMMU_NOTIFIER_UNMAP = 0x1,
 115    /* Notify entry changes (newly created entries) */
 116    IOMMU_NOTIFIER_MAP = 0x2,
 117} IOMMUNotifierFlag;
 118
 119#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
 120
 121struct IOMMUNotifier;
 122typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
 123                            IOMMUTLBEntry *data);
 124
 125struct IOMMUNotifier {
 126    IOMMUNotify notify;
 127    IOMMUNotifierFlag notifier_flags;
 128    /* Notify for address space range start <= addr <= end */
 129    hwaddr start;
 130    hwaddr end;
 131    int iommu_idx;
 132    QLIST_ENTRY(IOMMUNotifier) node;
 133};
 134typedef struct IOMMUNotifier IOMMUNotifier;
 135
 136/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
 137#define RAM_PREALLOC   (1 << 0)
 138
 139/* RAM is mmap-ed with MAP_SHARED */
 140#define RAM_SHARED     (1 << 1)
 141
 142/* Only a portion of RAM (used_length) is actually used, and migrated.
 143 * This used_length size can change across reboots.
 144 */
 145#define RAM_RESIZEABLE (1 << 2)
 146
 147/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
 148 * zero the page and wake waiting processes.
 149 * (Set during postcopy)
 150 */
 151#define RAM_UF_ZEROPAGE (1 << 3)
 152
 153/* RAM can be migrated */
 154#define RAM_MIGRATABLE (1 << 4)
 155
 156/* RAM is a persistent kind memory */
 157#define RAM_PMEM (1 << 5)
 158
 159static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
 160                                       IOMMUNotifierFlag flags,
 161                                       hwaddr start, hwaddr end,
 162                                       int iommu_idx)
 163{
 164    n->notify = fn;
 165    n->notifier_flags = flags;
 166    n->start = start;
 167    n->end = end;
 168    n->iommu_idx = iommu_idx;
 169}
 170
 171/*
 172 * Memory region callbacks
 173 */
 174struct MemoryRegionOps {
 175    /* FIXME: Remove */
 176    MemTxResult (*access)(MemoryTransaction *tr);
 177
 178    /* Read from the memory region. @addr is relative to @mr; @size is
 179     * in bytes. */
 180    uint64_t (*read)(void *opaque,
 181                     hwaddr addr,
 182                     unsigned size);
 183    /* Write to the memory region. @addr is relative to @mr; @size is
 184     * in bytes. */
 185    void (*write)(void *opaque,
 186                  hwaddr addr,
 187                  uint64_t data,
 188                  unsigned size);
 189
 190    MemTxResult (*read_with_attrs)(void *opaque,
 191                                   hwaddr addr,
 192                                   uint64_t *data,
 193                                   unsigned size,
 194                                   MemTxAttrs attrs);
 195    MemTxResult (*write_with_attrs)(void *opaque,
 196                                    hwaddr addr,
 197                                    uint64_t data,
 198                                    unsigned size,
 199                                    MemTxAttrs attrs);
 200
 201    enum device_endian endianness;
 202    /* Guest-visible constraints: */
 203    struct {
 204        /* If nonzero, specify bounds on access sizes beyond which a machine
 205         * check is thrown.
 206         */
 207        unsigned min_access_size;
 208        unsigned max_access_size;
 209        /* If true, unaligned accesses are supported.  Otherwise unaligned
 210         * accesses throw machine checks.
 211         */
 212         bool unaligned;
 213        /*
 214         * If present, and returns #false, the transaction is not accepted
 215         * by the device (and results in machine dependent behaviour such
 216         * as a machine check exception).
 217         */
 218        bool (*accepts)(void *opaque, hwaddr addr,
 219                        unsigned size, bool is_write,
 220                        MemTxAttrs attrs);
 221    } valid;
 222    /* Internal implementation constraints: */
 223    struct {
 224        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 225         * will be rounded upwards and a partial result will be returned.
 226         */
 227        unsigned min_access_size;
 228        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 229         * will be done as a series of accesses with smaller sizes.
 230         */
 231        unsigned max_access_size;
 232        /* If true, unaligned accesses are supported.  Otherwise all accesses
 233         * are converted to (possibly multiple) naturally aligned accesses.
 234         */
 235        bool unaligned;
 236    } impl;
 237};
 238
 239typedef struct MemoryRegionClass {
 240    /* private */
 241    ObjectClass parent_class;
 242} MemoryRegionClass;
 243
 244
 245enum IOMMUMemoryRegionAttr {
 246    IOMMU_ATTR_SPAPR_TCE_FD
 247};
 248
 249/**
 250 * IOMMUMemoryRegionClass:
 251 *
 252 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
 253 * and provide an implementation of at least the @translate method here
 254 * to handle requests to the memory region. Other methods are optional.
 255 *
 256 * The IOMMU implementation must use the IOMMU notifier infrastructure
 257 * to report whenever mappings are changed, by calling
 258 * memory_region_notify_iommu() (or, if necessary, by calling
 259 * memory_region_notify_one() for each registered notifier).
 260 *
 261 * Conceptually an IOMMU provides a mapping from input address
 262 * to an output TLB entry. If the IOMMU is aware of memory transaction
 263 * attributes and the output TLB entry depends on the transaction
 264 * attributes, we represent this using IOMMU indexes. Each index
 265 * selects a particular translation table that the IOMMU has:
 266 *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
 267 *   @translate takes an input address and an IOMMU index
 268 * and the mapping returned can only depend on the input address and the
 269 * IOMMU index.
 270 *
 271 * Most IOMMUs don't care about the transaction attributes and support
 272 * only a single IOMMU index. A more complex IOMMU might have one index
 273 * for secure transactions and one for non-secure transactions.
 274 */
 275typedef struct IOMMUMemoryRegionClass {
 276    /* private */
 277    MemoryRegionClass parent_class;
 278
 279    /*
 280     * Return a TLB entry that contains a given address.
 281     *
 282     * The IOMMUAccessFlags indicated via @flag are optional and may
 283     * be specified as IOMMU_NONE to indicate that the caller needs
 284     * the full translation information for both reads and writes. If
 285     * the access flags are specified then the IOMMU implementation
 286     * may use this as an optimization, to stop doing a page table
 287     * walk as soon as it knows that the requested permissions are not
 288     * allowed. If IOMMU_NONE is passed then the IOMMU must do the
 289     * full page table walk and report the permissions in the returned
 290     * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
 291     * return different mappings for reads and writes.)
 292     *
 293     * The returned information remains valid while the caller is
 294     * holding the big QEMU lock or is inside an RCU critical section;
 295     * if the caller wishes to cache the mapping beyond that it must
 296     * register an IOMMU notifier so it can invalidate its cached
 297     * information when the IOMMU mapping changes.
 298     *
 299     * @iommu: the IOMMUMemoryRegion
 300     * @hwaddr: address to be translated within the memory region
 301     * @flag: requested access permissions
 302     * @iommu_idx: IOMMU index for the translation
 303     */
 304    IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
 305                               IOMMUAccessFlags flag, int iommu_idx);
 306    IOMMUTLBEntry (*translate_attr)(IOMMUMemoryRegion *iommu, hwaddr addr,
 307                                    bool is_write, MemTxAttrs *attr);
 308    /* Returns minimum supported page size in bytes.
 309     * If this method is not provided then the minimum is assumed to
 310     * be TARGET_PAGE_SIZE.
 311     *
 312     * @iommu: the IOMMUMemoryRegion
 313     */
 314    uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
 315    /* Called when IOMMU Notifier flag changes (ie when the set of
 316     * events which IOMMU users are requesting notification for changes).
 317     * Optional method -- need not be provided if the IOMMU does not
 318     * need to know exactly which events must be notified.
 319     *
 320     * @iommu: the IOMMUMemoryRegion
 321     * @old_flags: events which previously needed to be notified
 322     * @new_flags: events which now need to be notified
 323     *
 324     * Returns 0 on success, or a negative errno; in particular
 325     * returns -EINVAL if the new flag bitmap is not supported by the
 326     * IOMMU memory region. In case of failure, the error object
 327     * must be created
 328     */
 329    int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
 330                               IOMMUNotifierFlag old_flags,
 331                               IOMMUNotifierFlag new_flags,
 332                               Error **errp);
 333    /* Called to handle memory_region_iommu_replay().
 334     *
 335     * The default implementation of memory_region_iommu_replay() is to
 336     * call the IOMMU translate method for every page in the address space
 337     * with flag == IOMMU_NONE and then call the notifier if translate
 338     * returns a valid mapping. If this method is implemented then it
 339     * overrides the default behaviour, and must provide the full semantics
 340     * of memory_region_iommu_replay(), by calling @notifier for every
 341     * translation present in the IOMMU.
 342     *
 343     * Optional method -- an IOMMU only needs to provide this method
 344     * if the default is inefficient or produces undesirable side effects.
 345     *
 346     * Note: this is not related to record-and-replay functionality.
 347     */
 348    void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
 349
 350    /* Get IOMMU misc attributes. This is an optional method that
 351     * can be used to allow users of the IOMMU to get implementation-specific
 352     * information. The IOMMU implements this method to handle calls
 353     * by IOMMU users to memory_region_iommu_get_attr() by filling in
 354     * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
 355     * the IOMMU supports. If the method is unimplemented then
 356     * memory_region_iommu_get_attr() will always return -EINVAL.
 357     *
 358     * @iommu: the IOMMUMemoryRegion
 359     * @attr: attribute being queried
 360     * @data: memory to fill in with the attribute data
 361     *
 362     * Returns 0 on success, or a negative errno; in particular
 363     * returns -EINVAL for unrecognized or unimplemented attribute types.
 364     */
 365    int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
 366                    void *data);
 367
 368    /* Return the IOMMU index to use for a given set of transaction attributes.
 369     *
 370     * Optional method: if an IOMMU only supports a single IOMMU index then
 371     * the default implementation of memory_region_iommu_attrs_to_index()
 372     * will return 0.
 373     *
 374     * The indexes supported by an IOMMU must be contiguous, starting at 0.
 375     *
 376     * @iommu: the IOMMUMemoryRegion
 377     * @attrs: memory transaction attributes
 378     */
 379    int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
 380
 381    /* Return the number of IOMMU indexes this IOMMU supports.
 382     *
 383     * Optional method: if this method is not provided, then
 384     * memory_region_iommu_num_indexes() will return 1, indicating that
 385     * only a single IOMMU index is supported.
 386     *
 387     * @iommu: the IOMMUMemoryRegion
 388     */
 389    int (*num_indexes)(IOMMUMemoryRegion *iommu);
 390} IOMMUMemoryRegionClass;
 391
 392typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 393typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 394
 395/** MemoryRegion:
 396 *
 397 * A struct representing a memory region.
 398 */
 399struct MemoryRegion {
 400    Object parent_obj;
 401
 402    /* private: */
 403
 404    /* The following fields should fit in a cache line */
 405    bool romd_mode;
 406    uint8_t ram;
 407    bool subpage;
 408    bool readonly; /* For RAM regions */
 409    bool nonvolatile;
 410    bool rom_device;
 411    bool flush_coalesced_mmio;
 412    bool global_locking;
 413    uint8_t dirty_log_mask;
 414    bool is_iommu;
 415    RAMBlock *ram_block;
 416    Object *owner;
 417
 418    const MemoryRegionOps *ops;
 419    void *opaque;
 420    MemoryRegion *container;
 421    Int128 size;
 422    hwaddr addr;
 423    void (*destructor)(MemoryRegion *mr);
 424    uint64_t align;
 425    bool terminates;
 426    bool ram_device;
 427    bool enabled;
 428    bool warning_printed; /* For reservations */
 429    uint8_t vga_logging_count;
 430    MemoryRegion *alias;
 431    hwaddr alias_offset;
 432    int32_t priority;
 433    QTAILQ_HEAD(, MemoryRegion) subregions;
 434    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 435    QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
 436    const char *name;
 437    unsigned ioeventfd_nb;
 438    MemoryRegionIoeventfd *ioeventfds;
 439    char *filename;
 440};
 441
 442struct IOMMUMemoryRegion {
 443    MemoryRegion parent_obj;
 444
 445    QLIST_HEAD(, IOMMUNotifier) iommu_notify;
 446    IOMMUNotifierFlag iommu_notify_flags;
 447};
 448
 449#define IOMMU_NOTIFIER_FOREACH(n, mr) \
 450    QLIST_FOREACH((n), &(mr)->iommu_notify, node)
 451
 452/**
 453 * MemoryListener: callbacks structure for updates to the physical memory map
 454 *
 455 * Allows a component to adjust to changes in the guest-visible memory map.
 456 * Use with memory_listener_register() and memory_listener_unregister().
 457 */
 458struct MemoryListener {
 459    /**
 460     * @begin:
 461     *
 462     * Called at the beginning of an address space update transaction.
 463     * Followed by calls to #MemoryListener.region_add(),
 464     * #MemoryListener.region_del(), #MemoryListener.region_nop(),
 465     * #MemoryListener.log_start() and #MemoryListener.log_stop() in
 466     * increasing address order.
 467     *
 468     * @listener: The #MemoryListener.
 469     */
 470    void (*begin)(MemoryListener *listener);
 471
 472    /**
 473     * @commit:
 474     *
 475     * Called at the end of an address space update transaction,
 476     * after the last call to #MemoryListener.region_add(),
 477     * #MemoryListener.region_del() or #MemoryListener.region_nop(),
 478     * #MemoryListener.log_start() and #MemoryListener.log_stop().
 479     *
 480     * @listener: The #MemoryListener.
 481     */
 482    void (*commit)(MemoryListener *listener);
 483
 484    /**
 485     * @region_add:
 486     *
 487     * Called during an address space update transaction,
 488     * for a section of the address space that is new in this address space
 489     * space since the last transaction.
 490     *
 491     * @listener: The #MemoryListener.
 492     * @section: The new #MemoryRegionSection.
 493     */
 494    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 495
 496    /**
 497     * @region_del:
 498     *
 499     * Called during an address space update transaction,
 500     * for a section of the address space that has disappeared in the address
 501     * space since the last transaction.
 502     *
 503     * @listener: The #MemoryListener.
 504     * @section: The old #MemoryRegionSection.
 505     */
 506    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 507
 508    /**
 509     * @region_nop:
 510     *
 511     * Called during an address space update transaction,
 512     * for a section of the address space that is in the same place in the address
 513     * space as in the last transaction.
 514     *
 515     * @listener: The #MemoryListener.
 516     * @section: The #MemoryRegionSection.
 517     */
 518    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 519
 520    /**
 521     * @log_start:
 522     *
 523     * Called during an address space update transaction, after
 524     * one of #MemoryListener.region_add(),#MemoryListener.region_del() or
 525     * #MemoryListener.region_nop(), if dirty memory logging clients have
 526     * become active since the last transaction.
 527     *
 528     * @listener: The #MemoryListener.
 529     * @section: The #MemoryRegionSection.
 530     * @old: A bitmap of dirty memory logging clients that were active in
 531     * the previous transaction.
 532     * @new: A bitmap of dirty memory logging clients that are active in
 533     * the current transaction.
 534     */
 535    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 536                      int old, int new);
 537
 538    /**
 539     * @log_stop:
 540     *
 541     * Called during an address space update transaction, after
 542     * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
 543     * #MemoryListener.region_nop() and possibly after
 544     * #MemoryListener.log_start(), if dirty memory logging clients have
 545     * become inactive since the last transaction.
 546     *
 547     * @listener: The #MemoryListener.
 548     * @section: The #MemoryRegionSection.
 549     * @old: A bitmap of dirty memory logging clients that were active in
 550     * the previous transaction.
 551     * @new: A bitmap of dirty memory logging clients that are active in
 552     * the current transaction.
 553     */
 554    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 555                     int old, int new);
 556
 557    /**
 558     * @log_sync:
 559     *
 560     * Called by memory_region_snapshot_and_clear_dirty() and
 561     * memory_global_dirty_log_sync(), before accessing QEMU's "official"
 562     * copy of the dirty memory bitmap for a #MemoryRegionSection.
 563     *
 564     * @listener: The #MemoryListener.
 565     * @section: The #MemoryRegionSection.
 566     */
 567    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 568
 569    /**
 570     * @log_clear:
 571     *
 572     * Called before reading the dirty memory bitmap for a
 573     * #MemoryRegionSection.
 574     *
 575     * @listener: The #MemoryListener.
 576     * @section: The #MemoryRegionSection.
 577     */
 578    void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
 579
 580    /**
 581     * @log_global_start:
 582     *
 583     * Called by memory_global_dirty_log_start(), which
 584     * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
 585     * the address space.  #MemoryListener.log_global_start() is also
 586     * called when a #MemoryListener is added, if global dirty logging is
 587     * active at that time.
 588     *
 589     * @listener: The #MemoryListener.
 590     */
 591    void (*log_global_start)(MemoryListener *listener);
 592
 593    /**
 594     * @log_global_stop:
 595     *
 596     * Called by memory_global_dirty_log_stop(), which
 597     * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
 598     * the address space.
 599     *
 600     * @listener: The #MemoryListener.
 601     */
 602    void (*log_global_stop)(MemoryListener *listener);
 603
 604    /**
 605     * @log_global_after_sync:
 606     *
 607     * Called after reading the dirty memory bitmap
 608     * for any #MemoryRegionSection.
 609     *
 610     * @listener: The #MemoryListener.
 611     */
 612    void (*log_global_after_sync)(MemoryListener *listener);
 613
 614    /**
 615     * @eventfd_add:
 616     *
 617     * Called during an address space update transaction,
 618     * for a section of the address space that has had a new ioeventfd
 619     * registration since the last transaction.
 620     *
 621     * @listener: The #MemoryListener.
 622     * @section: The new #MemoryRegionSection.
 623     * @match_data: The @match_data parameter for the new ioeventfd.
 624     * @data: The @data parameter for the new ioeventfd.
 625     * @e: The #EventNotifier parameter for the new ioeventfd.
 626     */
 627    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 628                        bool match_data, uint64_t data, EventNotifier *e);
 629
 630    /**
 631     * @eventfd_del:
 632     *
 633     * Called during an address space update transaction,
 634     * for a section of the address space that has dropped an ioeventfd
 635     * registration since the last transaction.
 636     *
 637     * @listener: The #MemoryListener.
 638     * @section: The new #MemoryRegionSection.
 639     * @match_data: The @match_data parameter for the dropped ioeventfd.
 640     * @data: The @data parameter for the dropped ioeventfd.
 641     * @e: The #EventNotifier parameter for the dropped ioeventfd.
 642     */
 643    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 644                        bool match_data, uint64_t data, EventNotifier *e);
 645
 646    /**
 647     * @coalesced_io_add:
 648     *
 649     * Called during an address space update transaction,
 650     * for a section of the address space that has had a new coalesced
 651     * MMIO range registration since the last transaction.
 652     *
 653     * @listener: The #MemoryListener.
 654     * @section: The new #MemoryRegionSection.
 655     * @addr: The starting address for the coalesced MMIO range.
 656     * @len: The length of the coalesced MMIO range.
 657     */
 658    void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
 659                               hwaddr addr, hwaddr len);
 660
 661    /**
 662     * @coalesced_io_del:
 663     *
 664     * Called during an address space update transaction,
 665     * for a section of the address space that has dropped a coalesced
 666     * MMIO range since the last transaction.
 667     *
 668     * @listener: The #MemoryListener.
 669     * @section: The new #MemoryRegionSection.
 670     * @addr: The starting address for the coalesced MMIO range.
 671     * @len: The length of the coalesced MMIO range.
 672     */
 673    void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
 674                               hwaddr addr, hwaddr len);
 675    /**
 676     * @priority:
 677     *
 678     * Govern the order in which memory listeners are invoked. Lower priorities
 679     * are invoked earlier for "add" or "start" callbacks, and later for "delete"
 680     * or "stop" callbacks.
 681     */
 682    unsigned priority;
 683
 684    /* private: */
 685    AddressSpace *address_space;
 686    QTAILQ_ENTRY(MemoryListener) link;
 687    QTAILQ_ENTRY(MemoryListener) link_as;
 688};
 689
 690/**
 691 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
 692 */
 693struct AddressSpace {
 694    /* private: */
 695    struct rcu_head rcu;
 696    char *name;
 697    MemoryRegion *root;
 698
 699    /* Accessed via RCU.  */
 700    struct FlatView *current_map;
 701
 702    int ioeventfd_nb;
 703    struct MemoryRegionIoeventfd *ioeventfds;
 704    QTAILQ_HEAD(, MemoryListener) listeners;
 705    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
 706};
 707
 708typedef struct AddressSpaceDispatch AddressSpaceDispatch;
 709typedef struct FlatRange FlatRange;
 710
 711/* Flattened global view of current active memory hierarchy.  Kept in sorted
 712 * order.
 713 */
 714struct FlatView {
 715    struct rcu_head rcu;
 716    unsigned ref;
 717    FlatRange *ranges;
 718    unsigned nr;
 719    unsigned nr_allocated;
 720    struct AddressSpaceDispatch *dispatch;
 721    MemoryRegion *root;
 722};
 723
 724static inline FlatView *address_space_to_flatview(AddressSpace *as)
 725{
 726    return atomic_rcu_read(&as->current_map);
 727}
 728
 729
 730/**
 731 * MemoryRegionSection: describes a fragment of a #MemoryRegion
 732 *
 733 * @mr: the region, or %NULL if empty
 734 * @fv: the flat view of the address space the region is mapped in
 735 * @offset_within_region: the beginning of the section, relative to @mr's start
 736 * @size: the size of the section; will not exceed @mr's boundaries
 737 * @offset_within_address_space: the address of the first byte of the section
 738 *     relative to the region's address space
 739 * @readonly: writes to this section are ignored
 740 * @nonvolatile: this section is non-volatile
 741 */
 742struct MemoryRegionSection {
 743    Int128 size;
 744    MemoryRegion *mr;
 745    FlatView *fv;
 746    hwaddr offset_within_region;
 747    hwaddr offset_within_address_space;
 748    bool readonly;
 749    bool nonvolatile;
 750};
 751
 752static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
 753                                          MemoryRegionSection *b)
 754{
 755    return a->mr == b->mr &&
 756           a->fv == b->fv &&
 757           a->offset_within_region == b->offset_within_region &&
 758           a->offset_within_address_space == b->offset_within_address_space &&
 759           int128_eq(a->size, b->size) &&
 760           a->readonly == b->readonly &&
 761           a->nonvolatile == b->nonvolatile;
 762}
 763
 764/**
 765 * memory_region_init: Initialize a memory region
 766 *
 767 * The region typically acts as a container for other memory regions.  Use
 768 * memory_region_add_subregion() to add subregions.
 769 *
 770 * @mr: the #MemoryRegion to be initialized
 771 * @owner: the object that tracks the region's reference count
 772 * @name: used for debugging; not visible to the user or ABI
 773 * @size: size of the region; any subregions beyond this size will be clipped
 774 */
 775void memory_region_init(MemoryRegion *mr,
 776                        struct Object *owner,
 777                        const char *name,
 778                        uint64_t size);
 779
 780/**
 781 * memory_region_ref: Add 1 to a memory region's reference count
 782 *
 783 * Whenever memory regions are accessed outside the BQL, they need to be
 784 * preserved against hot-unplug.  MemoryRegions actually do not have their
 785 * own reference count; they piggyback on a QOM object, their "owner".
 786 * This function adds a reference to the owner.
 787 *
 788 * All MemoryRegions must have an owner if they can disappear, even if the
 789 * device they belong to operates exclusively under the BQL.  This is because
 790 * the region could be returned at any time by memory_region_find, and this
 791 * is usually under guest control.
 792 *
 793 * @mr: the #MemoryRegion
 794 */
 795void memory_region_ref(MemoryRegion *mr);
 796
 797/**
 798 * memory_region_unref: Remove 1 to a memory region's reference count
 799 *
 800 * Whenever memory regions are accessed outside the BQL, they need to be
 801 * preserved against hot-unplug.  MemoryRegions actually do not have their
 802 * own reference count; they piggyback on a QOM object, their "owner".
 803 * This function removes a reference to the owner and possibly destroys it.
 804 *
 805 * @mr: the #MemoryRegion
 806 */
 807void memory_region_unref(MemoryRegion *mr);
 808
 809/**
 810 * memory_region_init_io: Initialize an I/O memory region.
 811 *
 812 * Accesses into the region will cause the callbacks in @ops to be called.
 813 * if @size is nonzero, subregions will be clipped to @size.
 814 *
 815 * @mr: the #MemoryRegion to be initialized.
 816 * @owner: the object that tracks the region's reference count
 817 * @ops: a structure containing read and write callbacks to be used when
 818 *       I/O is performed on the region.
 819 * @opaque: passed to the read and write callbacks of the @ops structure.
 820 * @name: used for debugging; not visible to the user or ABI
 821 * @size: size of the region.
 822 */
 823void memory_region_init_io(MemoryRegion *mr,
 824                           struct Object *owner,
 825                           const MemoryRegionOps *ops,
 826                           void *opaque,
 827                           const char *name,
 828                           uint64_t size);
 829
 830/**
 831 * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
 832 *                                    into the region will modify memory
 833 *                                    directly.
 834 *
 835 * @mr: the #MemoryRegion to be initialized.
 836 * @owner: the object that tracks the region's reference count
 837 * @name: Region name, becomes part of RAMBlock name used in migration stream
 838 *        must be unique within any device
 839 * @size: size of the region.
 840 * @errp: pointer to Error*, to store an error if it happens.
 841 *
 842 * Note that this function does not do anything to cause the data in the
 843 * RAM memory region to be migrated; that is the responsibility of the caller.
 844 */
 845void memory_region_init_ram_nomigrate(MemoryRegion *mr,
 846                                      struct Object *owner,
 847                                      const char *name,
 848                                      uint64_t size,
 849                                      Error **errp);
 850
 851/**
 852 * memory_region_init_ram_shared_nomigrate:  Initialize RAM memory region.
 853 *                                           Accesses into the region will
 854 *                                           modify memory directly.
 855 *
 856 * @mr: the #MemoryRegion to be initialized.
 857 * @owner: the object that tracks the region's reference count
 858 * @name: Region name, becomes part of RAMBlock name used in migration stream
 859 *        must be unique within any device
 860 * @size: size of the region.
 861 * @share: allow remapping RAM to different addresses
 862 * @errp: pointer to Error*, to store an error if it happens.
 863 *
 864 * Note that this function is similar to memory_region_init_ram_nomigrate.
 865 * The only difference is part of the RAM region can be remapped.
 866 */
 867void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
 868                                             struct Object *owner,
 869                                             const char *name,
 870                                             uint64_t size,
 871                                             bool share,
 872                                             Error **errp);
 873
 874/**
 875 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
 876 *                                     RAM.  Accesses into the region will
 877 *                                     modify memory directly.  Only an initial
 878 *                                     portion of this RAM is actually used.
 879 *                                     The used size can change across reboots.
 880 *
 881 * @mr: the #MemoryRegion to be initialized.
 882 * @owner: the object that tracks the region's reference count
 883 * @name: Region name, becomes part of RAMBlock name used in migration stream
 884 *        must be unique within any device
 885 * @size: used size of the region.
 886 * @max_size: max size of the region.
 887 * @resized: callback to notify owner about used size change.
 888 * @errp: pointer to Error*, to store an error if it happens.
 889 *
 890 * Note that this function does not do anything to cause the data in the
 891 * RAM memory region to be migrated; that is the responsibility of the caller.
 892 */
 893void memory_region_init_resizeable_ram(MemoryRegion *mr,
 894                                       struct Object *owner,
 895                                       const char *name,
 896                                       uint64_t size,
 897                                       uint64_t max_size,
 898                                       void (*resized)(const char*,
 899                                                       uint64_t length,
 900                                                       void *host),
 901                                       Error **errp);
 902#ifdef CONFIG_POSIX
 903
 904/**
 905 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
 906 *                                    mmap-ed backend.
 907 *
 908 * @mr: the #MemoryRegion to be initialized.
 909 * @owner: the object that tracks the region's reference count
 910 * @name: Region name, becomes part of RAMBlock name used in migration stream
 911 *        must be unique within any device
 912 * @size: size of the region.
 913 * @align: alignment of the region base address; if 0, the default alignment
 914 *         (getpagesize()) will be used.
 915 * @ram_flags: Memory region features:
 916 *             - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
 917 *             - RAM_PMEM: the memory is persistent memory
 918 *             Other bits are ignored now.
 919 * @path: the path in which to allocate the RAM.
 920 * @errp: pointer to Error*, to store an error if it happens.
 921 *
 922 * Note that this function does not do anything to cause the data in the
 923 * RAM memory region to be migrated; that is the responsibility of the caller.
 924 */
 925void memory_region_init_ram_from_file(MemoryRegion *mr,
 926                                      struct Object *owner,
 927                                      const char *name,
 928                                      uint64_t size,
 929                                      uint64_t align,
 930                                      uint32_t ram_flags,
 931                                      const char *path,
 932                                      Error **errp);
 933
 934/**
 935 * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
 936 *                                  mmap-ed backend.
 937 *
 938 * @mr: the #MemoryRegion to be initialized.
 939 * @owner: the object that tracks the region's reference count
 940 * @name: the name of the region.
 941 * @size: size of the region.
 942 * @share: %true if memory must be mmaped with the MAP_SHARED flag
 943 * @fd: the fd to mmap.
 944 * @errp: pointer to Error*, to store an error if it happens.
 945 *
 946 * Note that this function does not do anything to cause the data in the
 947 * RAM memory region to be migrated; that is the responsibility of the caller.
 948 */
 949void memory_region_init_ram_from_fd(MemoryRegion *mr,
 950                                    struct Object *owner,
 951                                    const char *name,
 952                                    uint64_t size,
 953                                    bool share,
 954                                    int fd,
 955                                    Error **errp);
 956#endif
 957
 958/**
 959 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
 960 *                              user-provided pointer.  Accesses into the
 961 *                              region will modify memory directly.
 962 *
 963 * @mr: the #MemoryRegion to be initialized.
 964 * @owner: the object that tracks the region's reference count
 965 * @name: Region name, becomes part of RAMBlock name used in migration stream
 966 *        must be unique within any device
 967 * @size: size of the region.
 968 * @ptr: memory to be mapped; must contain at least @size bytes.
 969 *
 970 * Note that this function does not do anything to cause the data in the
 971 * RAM memory region to be migrated; that is the responsibility of the caller.
 972 */
 973void memory_region_init_ram_ptr(MemoryRegion *mr,
 974                                struct Object *owner,
 975                                const char *name,
 976                                uint64_t size,
 977                                void *ptr);
 978
 979/**
 980 * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
 981 *                                     a user-provided pointer.
 982 *
 983 * A RAM device represents a mapping to a physical device, such as to a PCI
 984 * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
 985 * into the VM address space and access to the region will modify memory
 986 * directly.  However, the memory region should not be included in a memory
 987 * dump (device may not be enabled/mapped at the time of the dump), and
 988 * operations incompatible with manipulating MMIO should be avoided.  Replaces
 989 * skip_dump flag.
 990 *
 991 * @mr: the #MemoryRegion to be initialized.
 992 * @owner: the object that tracks the region's reference count
 993 * @name: the name of the region.
 994 * @size: size of the region.
 995 * @ptr: memory to be mapped; must contain at least @size bytes.
 996 *
 997 * Note that this function does not do anything to cause the data in the
 998 * RAM memory region to be migrated; that is the responsibility of the caller.
 999 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1000 */
1001void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1002                                       struct Object *owner,
1003                                       const char *name,
1004                                       uint64_t size,
1005                                       void *ptr);
1006
1007/**
1008 * memory_region_init_alias: Initialize a memory region that aliases all or a
1009 *                           part of another memory region.
1010 *
1011 * @mr: the #MemoryRegion to be initialized.
1012 * @owner: the object that tracks the region's reference count
1013 * @name: used for debugging; not visible to the user or ABI
1014 * @orig: the region to be referenced; @mr will be equivalent to
1015 *        @orig between @offset and @offset + @size - 1.
1016 * @offset: start of the section in @orig to be referenced.
1017 * @size: size of the region.
1018 */
1019void memory_region_init_alias(MemoryRegion *mr,
1020                              struct Object *owner,
1021                              const char *name,
1022                              MemoryRegion *orig,
1023                              hwaddr offset,
1024                              uint64_t size);
1025
1026/**
1027 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1028 *
1029 * This has the same effect as calling memory_region_init_ram_nomigrate()
1030 * and then marking the resulting region read-only with
1031 * memory_region_set_readonly().
1032 *
1033 * Note that this function does not do anything to cause the data in the
1034 * RAM side of the memory region to be migrated; that is the responsibility
1035 * of the caller.
1036 *
1037 * @mr: the #MemoryRegion to be initialized.
1038 * @owner: the object that tracks the region's reference count
1039 * @name: Region name, becomes part of RAMBlock name used in migration stream
1040 *        must be unique within any device
1041 * @size: size of the region.
1042 * @errp: pointer to Error*, to store an error if it happens.
1043 */
1044void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1045                                      struct Object *owner,
1046                                      const char *name,
1047                                      uint64_t size,
1048                                      Error **errp);
1049
1050/**
1051 * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1052 *                                 Writes are handled via callbacks.
1053 *
1054 * Note that this function does not do anything to cause the data in the
1055 * RAM side of the memory region to be migrated; that is the responsibility
1056 * of the caller.
1057 *
1058 * @mr: the #MemoryRegion to be initialized.
1059 * @owner: the object that tracks the region's reference count
1060 * @ops: callbacks for write access handling (must not be NULL).
1061 * @opaque: passed to the read and write callbacks of the @ops structure.
1062 * @name: Region name, becomes part of RAMBlock name used in migration stream
1063 *        must be unique within any device
1064 * @size: size of the region.
1065 * @errp: pointer to Error*, to store an error if it happens.
1066 */
1067void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1068                                             struct Object *owner,
1069                                             const MemoryRegionOps *ops,
1070                                             void *opaque,
1071                                             const char *name,
1072                                             uint64_t size,
1073                                             Error **errp);
1074
1075/**
1076 * memory_region_init_iommu: Initialize a memory region of a custom type
1077 * that translates addresses
1078 *
1079 * An IOMMU region translates addresses and forwards accesses to a target
1080 * memory region.
1081 *
1082 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1083 * @_iommu_mr should be a pointer to enough memory for an instance of
1084 * that subclass, @instance_size is the size of that subclass, and
1085 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1086 * instance of the subclass, and its methods will then be called to handle
1087 * accesses to the memory region. See the documentation of
1088 * #IOMMUMemoryRegionClass for further details.
1089 *
1090 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1091 * @instance_size: the IOMMUMemoryRegion subclass instance size
1092 * @mrtypename: the type name of the #IOMMUMemoryRegion
1093 * @owner: the object that tracks the region's reference count
1094 * @name: used for debugging; not visible to the user or ABI
1095 * @size: size of the region.
1096 */
1097void memory_region_init_iommu(void *_iommu_mr,
1098                              size_t instance_size,
1099                              const char *mrtypename,
1100                              Object *owner,
1101                              const char *name,
1102                              uint64_t size);
1103
1104/**
1105 * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1106 *                          region will modify memory directly.
1107 *
1108 * @mr: the #MemoryRegion to be initialized
1109 * @owner: the object that tracks the region's reference count (must be
1110 *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1111 * @name: name of the memory region
1112 * @size: size of the region in bytes
1113 * @errp: pointer to Error*, to store an error if it happens.
1114 *
1115 * This function allocates RAM for a board model or device, and
1116 * arranges for it to be migrated (by calling vmstate_register_ram()
1117 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1118 * @owner is NULL).
1119 *
1120 * TODO: Currently we restrict @owner to being either NULL (for
1121 * global RAM regions with no owner) or devices, so that we can
1122 * give the RAM block a unique name for migration purposes.
1123 * We should lift this restriction and allow arbitrary Objects.
1124 * If you pass a non-NULL non-device @owner then we will assert.
1125 */
1126void memory_region_init_ram(MemoryRegion *mr,
1127                            struct Object *owner,
1128                            const char *name,
1129                            uint64_t size,
1130                            Error **errp);
1131
1132/**
1133 * memory_region_init_rom: Initialize a ROM memory region.
1134 *
1135 * This has the same effect as calling memory_region_init_ram()
1136 * and then marking the resulting region read-only with
1137 * memory_region_set_readonly(). This includes arranging for the
1138 * contents to be migrated.
1139 *
1140 * TODO: Currently we restrict @owner to being either NULL (for
1141 * global RAM regions with no owner) or devices, so that we can
1142 * give the RAM block a unique name for migration purposes.
1143 * We should lift this restriction and allow arbitrary Objects.
1144 * If you pass a non-NULL non-device @owner then we will assert.
1145 *
1146 * @mr: the #MemoryRegion to be initialized.
1147 * @owner: the object that tracks the region's reference count
1148 * @name: Region name, becomes part of RAMBlock name used in migration stream
1149 *        must be unique within any device
1150 * @size: size of the region.
1151 * @errp: pointer to Error*, to store an error if it happens.
1152 */
1153void memory_region_init_rom(MemoryRegion *mr,
1154                            struct Object *owner,
1155                            const char *name,
1156                            uint64_t size,
1157                            Error **errp);
1158
1159/**
1160 * memory_region_init_rom_device:  Initialize a ROM memory region.
1161 *                                 Writes are handled via callbacks.
1162 *
1163 * This function initializes a memory region backed by RAM for reads
1164 * and callbacks for writes, and arranges for the RAM backing to
1165 * be migrated (by calling vmstate_register_ram()
1166 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1167 * @owner is NULL).
1168 *
1169 * TODO: Currently we restrict @owner to being either NULL (for
1170 * global RAM regions with no owner) or devices, so that we can
1171 * give the RAM block a unique name for migration purposes.
1172 * We should lift this restriction and allow arbitrary Objects.
1173 * If you pass a non-NULL non-device @owner then we will assert.
1174 *
1175 * @mr: the #MemoryRegion to be initialized.
1176 * @owner: the object that tracks the region's reference count
1177 * @ops: callbacks for write access handling (must not be NULL).
1178 * @opaque: passed to the read and write callbacks of the @ops structure.
1179 * @name: Region name, becomes part of RAMBlock name used in migration stream
1180 *        must be unique within any device
1181 * @size: size of the region.
1182 * @errp: pointer to Error*, to store an error if it happens.
1183 */
1184void memory_region_init_rom_device(MemoryRegion *mr,
1185                                   struct Object *owner,
1186                                   const MemoryRegionOps *ops,
1187                                   void *opaque,
1188                                   const char *name,
1189                                   uint64_t size,
1190                                   Error **errp);
1191
1192
1193/**
1194 * memory_region_owner: get a memory region's owner.
1195 *
1196 * @mr: the memory region being queried.
1197 */
1198struct Object *memory_region_owner(MemoryRegion *mr);
1199
1200/**
1201 * memory_region_size: get a memory region's size.
1202 *
1203 * @mr: the memory region being queried.
1204 */
1205uint64_t memory_region_size(MemoryRegion *mr);
1206
1207/**
1208 * memory_region_is_ram: check whether a memory region is random access
1209 *
1210 * Returns %true if a memory region is random access.
1211 *
1212 * @mr: the memory region being queried
1213 */
1214static inline bool memory_region_is_ram(MemoryRegion *mr)
1215{
1216    return mr->ram;
1217}
1218
1219/**
1220 * memory_region_is_ram_device: check whether a memory region is a ram device
1221 *
1222 * Returns %true if a memory region is a device backed ram region
1223 *
1224 * @mr: the memory region being queried
1225 */
1226bool memory_region_is_ram_device(MemoryRegion *mr);
1227
1228/**
1229 * memory_region_is_romd: check whether a memory region is in ROMD mode
1230 *
1231 * Returns %true if a memory region is a ROM device and currently set to allow
1232 * direct reads.
1233 *
1234 * @mr: the memory region being queried
1235 */
1236static inline bool memory_region_is_romd(MemoryRegion *mr)
1237{
1238    return mr->rom_device && mr->romd_mode;
1239}
1240
1241/**
1242 * memory_region_get_iommu: check whether a memory region is an iommu
1243 *
1244 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1245 * otherwise NULL.
1246 *
1247 * @mr: the memory region being queried
1248 */
1249static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1250{
1251    if (mr->alias) {
1252        return memory_region_get_iommu(mr->alias);
1253    }
1254    if (mr->is_iommu) {
1255        return (IOMMUMemoryRegion *) mr;
1256    }
1257    return NULL;
1258}
1259
1260/**
1261 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1262 *   if an iommu or NULL if not
1263 *
1264 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1265 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1266 *
1267 * @iommu_mr: the memory region being queried
1268 */
1269static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1270        IOMMUMemoryRegion *iommu_mr)
1271{
1272    return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1273}
1274
1275#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1276
1277/**
1278 * memory_region_iommu_get_min_page_size: get minimum supported page size
1279 * for an iommu
1280 *
1281 * Returns minimum supported page size for an iommu.
1282 *
1283 * @iommu_mr: the memory region being queried
1284 */
1285uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1286
1287/**
1288 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1289 *
1290 * The notification type will be decided by entry.perm bits:
1291 *
1292 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1293 * - For MAP (newly added entry) notifies: set entry.perm to the
1294 *   permission of the page (which is definitely !IOMMU_NONE).
1295 *
1296 * Note: for any IOMMU implementation, an in-place mapping change
1297 * should be notified with an UNMAP followed by a MAP.
1298 *
1299 * @iommu_mr: the memory region that was changed
1300 * @iommu_idx: the IOMMU index for the translation table which has changed
1301 * @entry: the new entry in the IOMMU translation table.  The entry
1302 *         replaces all old entries for the same virtual I/O address range.
1303 *         Deleted entries have .@perm == 0.
1304 */
1305void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1306                                int iommu_idx,
1307                                IOMMUTLBEntry entry);
1308
1309/**
1310 * memory_region_notify_one: notify a change in an IOMMU translation
1311 *                           entry to a single notifier
1312 *
1313 * This works just like memory_region_notify_iommu(), but it only
1314 * notifies a specific notifier, not all of them.
1315 *
1316 * @notifier: the notifier to be notified
1317 * @entry: the new entry in the IOMMU translation table.  The entry
1318 *         replaces all old entries for the same virtual I/O address range.
1319 *         Deleted entries have .@perm == 0.
1320 */
1321void memory_region_notify_one(IOMMUNotifier *notifier,
1322                              IOMMUTLBEntry *entry);
1323
1324/**
1325 * memory_region_register_iommu_notifier: register a notifier for changes to
1326 * IOMMU translation entries.
1327 *
1328 * Returns 0 on success, or a negative errno otherwise. In particular,
1329 * -EINVAL indicates that at least one of the attributes of the notifier
1330 * is not supported (flag/range) by the IOMMU memory region. In case of error
1331 * the error object must be created.
1332 *
1333 * @mr: the memory region to observe
1334 * @n: the IOMMUNotifier to be added; the notify callback receives a
1335 *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1336 *     ceases to be valid on exit from the notifier.
1337 * @errp: pointer to Error*, to store an error if it happens.
1338 */
1339int memory_region_register_iommu_notifier(MemoryRegion *mr,
1340                                          IOMMUNotifier *n, Error **errp);
1341
1342/**
1343 * memory_region_iommu_replay: replay existing IOMMU translations to
1344 * a notifier with the minimum page granularity returned by
1345 * mr->iommu_ops->get_page_size().
1346 *
1347 * Note: this is not related to record-and-replay functionality.
1348 *
1349 * @iommu_mr: the memory region to observe
1350 * @n: the notifier to which to replay iommu mappings
1351 */
1352void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1353
1354/**
1355 * memory_region_unregister_iommu_notifier: unregister a notifier for
1356 * changes to IOMMU translation entries.
1357 *
1358 * @mr: the memory region which was observed and for which notity_stopped()
1359 *      needs to be called
1360 * @n: the notifier to be removed.
1361 */
1362void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1363                                             IOMMUNotifier *n);
1364
1365/**
1366 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1367 * defined on the IOMMU.
1368 *
1369 * Returns 0 on success, or a negative errno otherwise. In particular,
1370 * -EINVAL indicates that the IOMMU does not support the requested
1371 * attribute.
1372 *
1373 * @iommu_mr: the memory region
1374 * @attr: the requested attribute
1375 * @data: a pointer to the requested attribute data
1376 */
1377int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1378                                 enum IOMMUMemoryRegionAttr attr,
1379                                 void *data);
1380
1381/**
1382 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1383 * use for translations with the given memory transaction attributes.
1384 *
1385 * @iommu_mr: the memory region
1386 * @attrs: the memory transaction attributes
1387 */
1388int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1389                                       MemTxAttrs attrs);
1390
1391/**
1392 * memory_region_iommu_num_indexes: return the total number of IOMMU
1393 * indexes that this IOMMU supports.
1394 *
1395 * @iommu_mr: the memory region
1396 */
1397int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1398
1399/**
1400 * memory_region_name: get a memory region's name
1401 *
1402 * Returns the string that was used to initialize the memory region.
1403 *
1404 * @mr: the memory region being queried
1405 */
1406const char *memory_region_name(const MemoryRegion *mr);
1407
1408/**
1409 * memory_region_is_logging: return whether a memory region is logging writes
1410 *
1411 * Returns %true if the memory region is logging writes for the given client
1412 *
1413 * @mr: the memory region being queried
1414 * @client: the client being queried
1415 */
1416bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1417
1418/**
1419 * memory_region_get_dirty_log_mask: return the clients for which a
1420 * memory region is logging writes.
1421 *
1422 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1423 * are the bit indices.
1424 *
1425 * @mr: the memory region being queried
1426 */
1427uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1428
1429/**
1430 * memory_region_is_rom: check whether a memory region is ROM
1431 *
1432 * Returns %true if a memory region is read-only memory.
1433 *
1434 * @mr: the memory region being queried
1435 */
1436static inline bool memory_region_is_rom(MemoryRegion *mr)
1437{
1438    return mr->ram && mr->readonly;
1439}
1440
1441/**
1442 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1443 *
1444 * Returns %true is a memory region is non-volatile memory.
1445 *
1446 * @mr: the memory region being queried
1447 */
1448static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1449{
1450    return mr->nonvolatile;
1451}
1452
1453/**
1454 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1455 *
1456 * Returns a file descriptor backing a file-based RAM memory region,
1457 * or -1 if the region is not a file-based RAM memory region.
1458 *
1459 * @mr: the RAM or alias memory region being queried.
1460 */
1461int memory_region_get_fd(MemoryRegion *mr);
1462
1463/**
1464 * memory_region_from_host: Convert a pointer into a RAM memory region
1465 * and an offset within it.
1466 *
1467 * Given a host pointer inside a RAM memory region (created with
1468 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1469 * the MemoryRegion and the offset within it.
1470 *
1471 * Use with care; by the time this function returns, the returned pointer is
1472 * not protected by RCU anymore.  If the caller is not within an RCU critical
1473 * section and does not hold the iothread lock, it must have other means of
1474 * protecting the pointer, such as a reference to the region that includes
1475 * the incoming ram_addr_t.
1476 *
1477 * @ptr: the host pointer to be converted
1478 * @offset: the offset within memory region
1479 */
1480MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1481
1482/**
1483 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1484 *
1485 * Returns a host pointer to a RAM memory region (created with
1486 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1487 *
1488 * Use with care; by the time this function returns, the returned pointer is
1489 * not protected by RCU anymore.  If the caller is not within an RCU critical
1490 * section and does not hold the iothread lock, it must have other means of
1491 * protecting the pointer, such as a reference to the region that includes
1492 * the incoming ram_addr_t.
1493 *
1494 * @mr: the memory region being queried.
1495 */
1496void *memory_region_get_ram_ptr(MemoryRegion *mr);
1497
1498/* memory_region_ram_resize: Resize a RAM region.
1499 *
1500 * Only legal before guest might have detected the memory size: e.g. on
1501 * incoming migration, or right after reset.
1502 *
1503 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1504 * @newsize: the new size the region
1505 * @errp: pointer to Error*, to store an error if it happens.
1506 */
1507void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1508                              Error **errp);
1509
1510/**
1511 * memory_region_msync: Synchronize selected address range of
1512 * a memory mapped region
1513 *
1514 * @mr: the memory region to be msync
1515 * @addr: the initial address of the range to be sync
1516 * @size: the size of the range to be sync
1517 */
1518void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1519
1520/**
1521 * memory_region_writeback: Trigger cache writeback for
1522 * selected address range
1523 *
1524 * @mr: the memory region to be updated
1525 * @addr: the initial address of the range to be written back
1526 * @size: the size of the range to be written back
1527 */
1528void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1529
1530/**
1531 * memory_region_set_log: Turn dirty logging on or off for a region.
1532 *
1533 * Turns dirty logging on or off for a specified client (display, migration).
1534 * Only meaningful for RAM regions.
1535 *
1536 * @mr: the memory region being updated.
1537 * @log: whether dirty logging is to be enabled or disabled.
1538 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1539 */
1540void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1541
1542/**
1543 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1544 *
1545 * Marks a range of bytes as dirty, after it has been dirtied outside
1546 * guest code.
1547 *
1548 * @mr: the memory region being dirtied.
1549 * @addr: the address (relative to the start of the region) being dirtied.
1550 * @size: size of the range being dirtied.
1551 */
1552void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1553                             hwaddr size);
1554
1555/**
1556 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1557 *
1558 * This function is called when the caller wants to clear the remote
1559 * dirty bitmap of a memory range within the memory region.  This can
1560 * be used by e.g. KVM to manually clear dirty log when
1561 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1562 * kernel.
1563 *
1564 * @mr:     the memory region to clear the dirty log upon
1565 * @start:  start address offset within the memory region
1566 * @len:    length of the memory region to clear dirty bitmap
1567 */
1568void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1569                                      hwaddr len);
1570
1571/**
1572 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1573 *                                         bitmap and clear it.
1574 *
1575 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1576 * returns the snapshot.  The snapshot can then be used to query dirty
1577 * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1578 * querying the same page multiple times, which is especially useful for
1579 * display updates where the scanlines often are not page aligned.
1580 *
1581 * The dirty bitmap region which gets copyed into the snapshot (and
1582 * cleared afterwards) can be larger than requested.  The boundaries
1583 * are rounded up/down so complete bitmap longs (covering 64 pages on
1584 * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1585 * isn't a problem for display updates as the extra pages are outside
1586 * the visible area, and in case the visible area changes a full
1587 * display redraw is due anyway.  Should other use cases for this
1588 * function emerge we might have to revisit this implementation
1589 * detail.
1590 *
1591 * Use g_free to release DirtyBitmapSnapshot.
1592 *
1593 * @mr: the memory region being queried.
1594 * @addr: the address (relative to the start of the region) being queried.
1595 * @size: the size of the range being queried.
1596 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1597 */
1598DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1599                                                            hwaddr addr,
1600                                                            hwaddr size,
1601                                                            unsigned client);
1602
1603/**
1604 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1605 *                                   in the specified dirty bitmap snapshot.
1606 *
1607 * @mr: the memory region being queried.
1608 * @snap: the dirty bitmap snapshot
1609 * @addr: the address (relative to the start of the region) being queried.
1610 * @size: the size of the range being queried.
1611 */
1612bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1613                                      DirtyBitmapSnapshot *snap,
1614                                      hwaddr addr, hwaddr size);
1615
1616/**
1617 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1618 *                            client.
1619 *
1620 * Marks a range of pages as no longer dirty.
1621 *
1622 * @mr: the region being updated.
1623 * @addr: the start of the subrange being cleaned.
1624 * @size: the size of the subrange being cleaned.
1625 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1626 *          %DIRTY_MEMORY_VGA.
1627 */
1628void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1629                               hwaddr size, unsigned client);
1630
1631/**
1632 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1633 *                                 TBs (for self-modifying code).
1634 *
1635 * The MemoryRegionOps->write() callback of a ROM device must use this function
1636 * to mark byte ranges that have been modified internally, such as by directly
1637 * accessing the memory returned by memory_region_get_ram_ptr().
1638 *
1639 * This function marks the range dirty and invalidates TBs so that TCG can
1640 * detect self-modifying code.
1641 *
1642 * @mr: the region being flushed.
1643 * @addr: the start, relative to the start of the region, of the range being
1644 *        flushed.
1645 * @size: the size, in bytes, of the range being flushed.
1646 */
1647void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1648
1649/**
1650 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1651 *
1652 * Allows a memory region to be marked as read-only (turning it into a ROM).
1653 * only useful on RAM regions.
1654 *
1655 * @mr: the region being updated.
1656 * @readonly: whether rhe region is to be ROM or RAM.
1657 */
1658void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1659
1660/**
1661 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1662 *
1663 * Allows a memory region to be marked as non-volatile.
1664 * only useful on RAM regions.
1665 *
1666 * @mr: the region being updated.
1667 * @nonvolatile: whether rhe region is to be non-volatile.
1668 */
1669void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1670
1671/**
1672 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1673 *
1674 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1675 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1676 * device is mapped to guest memory and satisfies read access directly.
1677 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1678 * Writes are always handled by the #MemoryRegion.write function.
1679 *
1680 * @mr: the memory region to be updated
1681 * @romd_mode: %true to put the region into ROMD mode
1682 */
1683void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1684
1685/**
1686 * memory_region_set_coalescing: Enable memory coalescing for the region.
1687 *
1688 * Enabled writes to a region to be queued for later processing. MMIO ->write
1689 * callbacks may be delayed until a non-coalesced MMIO is issued.
1690 * Only useful for IO regions.  Roughly similar to write-combining hardware.
1691 *
1692 * @mr: the memory region to be write coalesced
1693 */
1694void memory_region_set_coalescing(MemoryRegion *mr);
1695
1696/**
1697 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1698 *                               a region.
1699 *
1700 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1701 * Multiple calls can be issued coalesced disjoint ranges.
1702 *
1703 * @mr: the memory region to be updated.
1704 * @offset: the start of the range within the region to be coalesced.
1705 * @size: the size of the subrange to be coalesced.
1706 */
1707void memory_region_add_coalescing(MemoryRegion *mr,
1708                                  hwaddr offset,
1709                                  uint64_t size);
1710
1711/**
1712 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1713 *
1714 * Disables any coalescing caused by memory_region_set_coalescing() or
1715 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1716 * hardware.
1717 *
1718 * @mr: the memory region to be updated.
1719 */
1720void memory_region_clear_coalescing(MemoryRegion *mr);
1721
1722/**
1723 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1724 *                                    accesses.
1725 *
1726 * Ensure that pending coalesced MMIO request are flushed before the memory
1727 * region is accessed. This property is automatically enabled for all regions
1728 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1729 *
1730 * @mr: the memory region to be updated.
1731 */
1732void memory_region_set_flush_coalesced(MemoryRegion *mr);
1733
1734/**
1735 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1736 *                                      accesses.
1737 *
1738 * Clear the automatic coalesced MMIO flushing enabled via
1739 * memory_region_set_flush_coalesced. Note that this service has no effect on
1740 * memory regions that have MMIO coalescing enabled for themselves. For them,
1741 * automatic flushing will stop once coalescing is disabled.
1742 *
1743 * @mr: the memory region to be updated.
1744 */
1745void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1746
1747/**
1748 * memory_region_clear_global_locking: Declares that access processing does
1749 *                                     not depend on the QEMU global lock.
1750 *
1751 * By clearing this property, accesses to the memory region will be processed
1752 * outside of QEMU's global lock (unless the lock is held on when issuing the
1753 * access request). In this case, the device model implementing the access
1754 * handlers is responsible for synchronization of concurrency.
1755 *
1756 * @mr: the memory region to be updated.
1757 */
1758void memory_region_clear_global_locking(MemoryRegion *mr);
1759
1760/**
1761 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1762 *                            is written to a location.
1763 *
1764 * Marks a word in an IO region (initialized with memory_region_init_io())
1765 * as a trigger for an eventfd event.  The I/O callback will not be called.
1766 * The caller must be prepared to handle failure (that is, take the required
1767 * action if the callback _is_ called).
1768 *
1769 * @mr: the memory region being updated.
1770 * @addr: the address within @mr that is to be monitored
1771 * @size: the size of the access to trigger the eventfd
1772 * @match_data: whether to match against @data, instead of just @addr
1773 * @data: the data to match against the guest write
1774 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1775 **/
1776void memory_region_add_eventfd(MemoryRegion *mr,
1777                               hwaddr addr,
1778                               unsigned size,
1779                               bool match_data,
1780                               uint64_t data,
1781                               EventNotifier *e);
1782
1783/**
1784 * memory_region_del_eventfd: Cancel an eventfd.
1785 *
1786 * Cancels an eventfd trigger requested by a previous
1787 * memory_region_add_eventfd() call.
1788 *
1789 * @mr: the memory region being updated.
1790 * @addr: the address within @mr that is to be monitored
1791 * @size: the size of the access to trigger the eventfd
1792 * @match_data: whether to match against @data, instead of just @addr
1793 * @data: the data to match against the guest write
1794 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1795 */
1796void memory_region_del_eventfd(MemoryRegion *mr,
1797                               hwaddr addr,
1798                               unsigned size,
1799                               bool match_data,
1800                               uint64_t data,
1801                               EventNotifier *e);
1802
1803/**
1804 * memory_region_add_subregion: Add a subregion to a container.
1805 *
1806 * Adds a subregion at @offset.  The subregion may not overlap with other
1807 * subregions (except for those explicitly marked as overlapping).  A region
1808 * may only be added once as a subregion (unless removed with
1809 * memory_region_del_subregion()); use memory_region_init_alias() if you
1810 * want a region to be a subregion in multiple locations.
1811 *
1812 * @mr: the region to contain the new subregion; must be a container
1813 *      initialized with memory_region_init().
1814 * @offset: the offset relative to @mr where @subregion is added.
1815 * @subregion: the subregion to be added.
1816 */
1817void memory_region_add_subregion(MemoryRegion *mr,
1818                                 hwaddr offset,
1819                                 MemoryRegion *subregion);
1820/**
1821 * memory_region_add_subregion_overlap: Add a subregion to a container
1822 *                                      with overlap.
1823 *
1824 * Adds a subregion at @offset.  The subregion may overlap with other
1825 * subregions.  Conflicts are resolved by having a higher @priority hide a
1826 * lower @priority. Subregions without priority are taken as @priority 0.
1827 * A region may only be added once as a subregion (unless removed with
1828 * memory_region_del_subregion()); use memory_region_init_alias() if you
1829 * want a region to be a subregion in multiple locations.
1830 *
1831 * @mr: the region to contain the new subregion; must be a container
1832 *      initialized with memory_region_init().
1833 * @offset: the offset relative to @mr where @subregion is added.
1834 * @subregion: the subregion to be added.
1835 * @priority: used for resolving overlaps; highest priority wins.
1836 */
1837void memory_region_add_subregion_overlap(MemoryRegion *mr,
1838                                         hwaddr offset,
1839                                         MemoryRegion *subregion,
1840                                         int priority);
1841
1842/**
1843 * memory_region_get_ram_addr: Get the ram address associated with a memory
1844 *                             region
1845 *
1846 * @mr: the region to be queried
1847 */
1848ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1849
1850uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1851/**
1852 * memory_region_del_subregion: Remove a subregion.
1853 *
1854 * Removes a subregion from its container.
1855 *
1856 * @mr: the container to be updated.
1857 * @subregion: the region being removed; must be a current subregion of @mr.
1858 */
1859void memory_region_del_subregion(MemoryRegion *mr,
1860                                 MemoryRegion *subregion);
1861
1862/*
1863 * memory_region_set_enabled: dynamically enable or disable a region
1864 *
1865 * Enables or disables a memory region.  A disabled memory region
1866 * ignores all accesses to itself and its subregions.  It does not
1867 * obscure sibling subregions with lower priority - it simply behaves as
1868 * if it was removed from the hierarchy.
1869 *
1870 * Regions default to being enabled.
1871 *
1872 * @mr: the region to be updated
1873 * @enabled: whether to enable or disable the region
1874 */
1875void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1876
1877/*
1878 * memory_region_set_address: dynamically update the address of a region
1879 *
1880 * Dynamically updates the address of a region, relative to its container.
1881 * May be used on regions are currently part of a memory hierarchy.
1882 *
1883 * @mr: the region to be updated
1884 * @addr: new address, relative to container region
1885 */
1886void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1887
1888/*
1889 * memory_region_set_size: dynamically update the size of a region.
1890 *
1891 * Dynamically updates the size of a region.
1892 *
1893 * @mr: the region to be updated
1894 * @size: used size of the region.
1895 */
1896void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1897
1898/*
1899 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1900 *
1901 * Dynamically updates the offset into the target region that an alias points
1902 * to, as if the fourth argument to memory_region_init_alias() has changed.
1903 *
1904 * @mr: the #MemoryRegion to be updated; should be an alias.
1905 * @offset: the new offset into the target memory region
1906 */
1907void memory_region_set_alias_offset(MemoryRegion *mr,
1908                                    hwaddr offset);
1909
1910/**
1911 * memory_region_present: checks if an address relative to a @container
1912 * translates into #MemoryRegion within @container
1913 *
1914 * Answer whether a #MemoryRegion within @container covers the address
1915 * @addr.
1916 *
1917 * @container: a #MemoryRegion within which @addr is a relative address
1918 * @addr: the area within @container to be searched
1919 */
1920bool memory_region_present(MemoryRegion *container, hwaddr addr);
1921
1922/**
1923 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1924 * into any address space.
1925 *
1926 * @mr: a #MemoryRegion which should be checked if it's mapped
1927 */
1928bool memory_region_is_mapped(MemoryRegion *mr);
1929
1930/**
1931 * memory_region_find: translate an address/size relative to a
1932 * MemoryRegion into a #MemoryRegionSection.
1933 *
1934 * Locates the first #MemoryRegion within @mr that overlaps the range
1935 * given by @addr and @size.
1936 *
1937 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1938 * It will have the following characteristics:
1939 * - @size = 0 iff no overlap was found
1940 * - @mr is non-%NULL iff an overlap was found
1941 *
1942 * Remember that in the return value the @offset_within_region is
1943 * relative to the returned region (in the .@mr field), not to the
1944 * @mr argument.
1945 *
1946 * Similarly, the .@offset_within_address_space is relative to the
1947 * address space that contains both regions, the passed and the
1948 * returned one.  However, in the special case where the @mr argument
1949 * has no container (and thus is the root of the address space), the
1950 * following will hold:
1951 * - @offset_within_address_space >= @addr
1952 * - @offset_within_address_space + .@size <= @addr + @size
1953 *
1954 * @mr: a MemoryRegion within which @addr is a relative address
1955 * @addr: start of the area within @as to be searched
1956 * @size: size of the area to be searched
1957 */
1958MemoryRegionSection memory_region_find(MemoryRegion *mr,
1959                                       hwaddr addr, uint64_t size);
1960
1961/**
1962 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1963 *
1964 * Synchronizes the dirty page log for all address spaces.
1965 */
1966void memory_global_dirty_log_sync(void);
1967
1968/**
1969 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1970 *
1971 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
1972 * This function must be called after the dirty log bitmap is cleared, and
1973 * before dirty guest memory pages are read.  If you are using
1974 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
1975 * care of doing this.
1976 */
1977void memory_global_after_dirty_log_sync(void);
1978
1979/**
1980 * memory_region_transaction_begin: Start a transaction.
1981 *
1982 * During a transaction, changes will be accumulated and made visible
1983 * only when the transaction ends (is committed).
1984 */
1985void memory_region_transaction_begin(void);
1986
1987/**
1988 * memory_region_transaction_commit: Commit a transaction and make changes
1989 *                                   visible to the guest.
1990 */
1991void memory_region_transaction_commit(void);
1992
1993/**
1994 * memory_listener_register: register callbacks to be called when memory
1995 *                           sections are mapped or unmapped into an address
1996 *                           space
1997 *
1998 * @listener: an object containing the callbacks to be called
1999 * @filter: if non-%NULL, only regions in this address space will be observed
2000 */
2001void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2002
2003/**
2004 * memory_listener_unregister: undo the effect of memory_listener_register()
2005 *
2006 * @listener: an object containing the callbacks to be removed
2007 */
2008void memory_listener_unregister(MemoryListener *listener);
2009
2010/**
2011 * memory_global_dirty_log_start: begin dirty logging for all regions
2012 */
2013void memory_global_dirty_log_start(void);
2014
2015/**
2016 * memory_global_dirty_log_stop: end dirty logging for all regions
2017 */
2018void memory_global_dirty_log_stop(void);
2019
2020void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2021
2022/**
2023 * memory_region_dispatch_read: perform a read directly to the specified
2024 * MemoryRegion.
2025 *
2026 * @mr: #MemoryRegion to access
2027 * @addr: address within that region
2028 * @pval: pointer to uint64_t which the data is written to
2029 * @op: size, sign, and endianness of the memory operation
2030 * @attrs: memory transaction attributes to use for the access
2031 */
2032MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2033                                        hwaddr addr,
2034                                        uint64_t *pval,
2035                                        MemOp op,
2036                                        MemTxAttrs attrs);
2037/**
2038 * memory_region_dispatch_write: perform a write directly to the specified
2039 * MemoryRegion.
2040 *
2041 * @mr: #MemoryRegion to access
2042 * @addr: address within that region
2043 * @data: data to write
2044 * @op: size, sign, and endianness of the memory operation
2045 * @attrs: memory transaction attributes to use for the access
2046 */
2047MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2048                                         hwaddr addr,
2049                                         uint64_t data,
2050                                         MemOp op,
2051                                         MemTxAttrs attrs);
2052
2053/**
2054 * address_space_init: initializes an address space
2055 *
2056 * @as: an uninitialized #AddressSpace
2057 * @root: a #MemoryRegion that routes addresses for the address space
2058 * @name: an address space name.  The name is only used for debugging
2059 *        output.
2060 */
2061void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2062
2063/* Remove this */
2064AddressSpace *address_space_init_shareable(MemoryRegion *root,
2065                                           const char *name);
2066
2067/**
2068 * address_space_destroy: destroy an address space
2069 *
2070 * Releases all resources associated with an address space.  After an address space
2071 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2072 * as well.
2073 *
2074 * @as: address space to be destroyed
2075 */
2076void address_space_destroy(AddressSpace *as);
2077
2078/**
2079 * address_space_remove_listeners: unregister all listeners of an address space
2080 *
2081 * Removes all callbacks previously registered with memory_listener_register()
2082 * for @as.
2083 *
2084 * @as: an initialized #AddressSpace
2085 */
2086void address_space_remove_listeners(AddressSpace *as);
2087
2088/**
2089 * address_space_rw: read from or write to an address space.
2090 *
2091 * Return a MemTxResult indicating whether the operation succeeded
2092 * or failed (eg unassigned memory, device rejected the transaction,
2093 * IOMMU fault).
2094 *
2095 * @as: #AddressSpace to be accessed
2096 * @addr: address within that address space
2097 * @attrs: memory transaction attributes
2098 * @buf: buffer with the data transferred
2099 * @len: the number of bytes to read or write
2100 * @is_write: indicates the transfer direction
2101 */
2102MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2103                             MemTxAttrs attrs, void *buf,
2104                             hwaddr len, bool is_write);
2105
2106/**
2107 * address_space_write: write to address space.
2108 *
2109 * Return a MemTxResult indicating whether the operation succeeded
2110 * or failed (eg unassigned memory, device rejected the transaction,
2111 * IOMMU fault).
2112 *
2113 * @as: #AddressSpace to be accessed
2114 * @addr: address within that address space
2115 * @attrs: memory transaction attributes
2116 * @buf: buffer with the data transferred
2117 * @len: the number of bytes to write
2118 */
2119MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2120                                MemTxAttrs attrs,
2121                                const void *buf, hwaddr len);
2122
2123/**
2124 * address_space_write_rom: write to address space, including ROM.
2125 *
2126 * This function writes to the specified address space, but will
2127 * write data to both ROM and RAM. This is used for non-guest
2128 * writes like writes from the gdb debug stub or initial loading
2129 * of ROM contents.
2130 *
2131 * Note that portions of the write which attempt to write data to
2132 * a device will be silently ignored -- only real RAM and ROM will
2133 * be written to.
2134 *
2135 * Return a MemTxResult indicating whether the operation succeeded
2136 * or failed (eg unassigned memory, device rejected the transaction,
2137 * IOMMU fault).
2138 *
2139 * @as: #AddressSpace to be accessed
2140 * @addr: address within that address space
2141 * @attrs: memory transaction attributes
2142 * @buf: buffer with the data transferred
2143 * @len: the number of bytes to write
2144 */
2145MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2146                                    MemTxAttrs attrs,
2147                                    const void *buf, hwaddr len);
2148
2149/* address_space_ld*: load from an address space
2150 * address_space_st*: store to an address space
2151 *
2152 * These functions perform a load or store of the byte, word,
2153 * longword or quad to the specified address within the AddressSpace.
2154 * The _le suffixed functions treat the data as little endian;
2155 * _be indicates big endian; no suffix indicates "same endianness
2156 * as guest CPU".
2157 *
2158 * The "guest CPU endianness" accessors are deprecated for use outside
2159 * target-* code; devices should be CPU-agnostic and use either the LE
2160 * or the BE accessors.
2161 *
2162 * @as #AddressSpace to be accessed
2163 * @addr: address within that address space
2164 * @val: data value, for stores
2165 * @attrs: memory transaction attributes
2166 * @result: location to write the success/failure of the transaction;
2167 *   if NULL, this information is discarded
2168 */
2169
2170#define SUFFIX
2171#define ARG1         as
2172#define ARG1_DECL    AddressSpace *as
2173#include "exec/memory_ldst.inc.h"
2174
2175#define SUFFIX
2176#define ARG1         as
2177#define ARG1_DECL    AddressSpace *as
2178#include "exec/memory_ldst_phys.inc.h"
2179
2180struct MemoryRegionCache {
2181    void *ptr;
2182    hwaddr xlat;
2183    hwaddr len;
2184    FlatView *fv;
2185    MemoryRegionSection mrs;
2186    bool is_write;
2187};
2188
2189#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2190
2191
2192/* address_space_ld*_cached: load from a cached #MemoryRegion
2193 * address_space_st*_cached: store into a cached #MemoryRegion
2194 *
2195 * These functions perform a load or store of the byte, word,
2196 * longword or quad to the specified address.  The address is
2197 * a physical address in the AddressSpace, but it must lie within
2198 * a #MemoryRegion that was mapped with address_space_cache_init.
2199 *
2200 * The _le suffixed functions treat the data as little endian;
2201 * _be indicates big endian; no suffix indicates "same endianness
2202 * as guest CPU".
2203 *
2204 * The "guest CPU endianness" accessors are deprecated for use outside
2205 * target-* code; devices should be CPU-agnostic and use either the LE
2206 * or the BE accessors.
2207 *
2208 * @cache: previously initialized #MemoryRegionCache to be accessed
2209 * @addr: address within the address space
2210 * @val: data value, for stores
2211 * @attrs: memory transaction attributes
2212 * @result: location to write the success/failure of the transaction;
2213 *   if NULL, this information is discarded
2214 */
2215
2216#define SUFFIX       _cached_slow
2217#define ARG1         cache
2218#define ARG1_DECL    MemoryRegionCache *cache
2219#include "exec/memory_ldst.inc.h"
2220
2221/* Inline fast path for direct RAM access.  */
2222static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2223    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2224{
2225    assert(addr < cache->len);
2226    if (likely(cache->ptr)) {
2227        return ldub_p(cache->ptr + addr);
2228    } else {
2229        return address_space_ldub_cached_slow(cache, addr, attrs, result);
2230    }
2231}
2232
2233static inline void address_space_stb_cached(MemoryRegionCache *cache,
2234    hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
2235{
2236    assert(addr < cache->len);
2237    if (likely(cache->ptr)) {
2238        stb_p(cache->ptr + addr, val);
2239    } else {
2240        address_space_stb_cached_slow(cache, addr, val, attrs, result);
2241    }
2242}
2243
2244#define ENDIANNESS   _le
2245#include "exec/memory_ldst_cached.inc.h"
2246
2247#define ENDIANNESS   _be
2248#include "exec/memory_ldst_cached.inc.h"
2249
2250#define SUFFIX       _cached
2251#define ARG1         cache
2252#define ARG1_DECL    MemoryRegionCache *cache
2253#include "exec/memory_ldst_phys.inc.h"
2254
2255/* address_space_cache_init: prepare for repeated access to a physical
2256 * memory region
2257 *
2258 * @cache: #MemoryRegionCache to be filled
2259 * @as: #AddressSpace to be accessed
2260 * @addr: address within that address space
2261 * @len: length of buffer
2262 * @is_write: indicates the transfer direction
2263 *
2264 * Will only work with RAM, and may map a subset of the requested range by
2265 * returning a value that is less than @len.  On failure, return a negative
2266 * errno value.
2267 *
2268 * Because it only works with RAM, this function can be used for
2269 * read-modify-write operations.  In this case, is_write should be %true.
2270 *
2271 * Note that addresses passed to the address_space_*_cached functions
2272 * are relative to @addr.
2273 */
2274int64_t address_space_cache_init(MemoryRegionCache *cache,
2275                                 AddressSpace *as,
2276                                 hwaddr addr,
2277                                 hwaddr len,
2278                                 bool is_write);
2279
2280/**
2281 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2282 *
2283 * @cache: The #MemoryRegionCache to operate on.
2284 * @addr: The first physical address that was written, relative to the
2285 * address that was passed to @address_space_cache_init.
2286 * @access_len: The number of bytes that were written starting at @addr.
2287 */
2288void address_space_cache_invalidate(MemoryRegionCache *cache,
2289                                    hwaddr addr,
2290                                    hwaddr access_len);
2291
2292/**
2293 * address_space_cache_destroy: free a #MemoryRegionCache
2294 *
2295 * @cache: The #MemoryRegionCache whose memory should be released.
2296 */
2297void address_space_cache_destroy(MemoryRegionCache *cache);
2298
2299/* address_space_get_iotlb_entry: translate an address into an IOTLB
2300 * entry. Should be called from an RCU critical section.
2301 */
2302IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2303                                            bool is_write, MemTxAttrs attrs);
2304
2305/* address_space_translate: translate an address range into an address space
2306 * into a MemoryRegion and an address range into that section.  Should be
2307 * called from an RCU critical section, to avoid that the last reference
2308 * to the returned region disappears after address_space_translate returns.
2309 *
2310 * @fv: #FlatView to be accessed
2311 * @addr: address within that address space
2312 * @xlat: pointer to address within the returned memory region section's
2313 * #MemoryRegion.
2314 * @len: pointer to length
2315 * @is_write: indicates the transfer direction
2316 * @attrs: memory attributes
2317 */
2318MemoryRegion *flatview_translate(FlatView *fv,
2319                                 hwaddr addr, hwaddr *xlat,
2320                                 hwaddr *len, bool is_write,
2321                                 MemTxAttrs attrs);
2322
2323static inline MemoryRegion *address_space_translate(AddressSpace *as,
2324                                                    hwaddr addr, hwaddr *xlat,
2325                                                    hwaddr *len, bool is_write,
2326                                                    MemTxAttrs attrs)
2327{
2328    return flatview_translate(address_space_to_flatview(as),
2329                              addr, xlat, len, is_write, attrs);
2330}
2331
2332MemoryRegion *ats_do_translate(AddressSpace *as,
2333                               hwaddr addr,
2334                               hwaddr *xlat,
2335                               hwaddr *plen_out,
2336                               AddressSpace **target_as,
2337                               int *prot,
2338                               MemTxAttrs attrs);
2339
2340MemoryRegion *address_space_translate_attr(AddressSpace *as, hwaddr addr,
2341                                      hwaddr *xlat, hwaddr *plen,
2342                                      bool is_write, MemTxAttrs *attr);
2343
2344/* address_space_access_valid: check for validity of accessing an address
2345 * space range
2346 *
2347 * Check whether memory is assigned to the given address space range, and
2348 * access is permitted by any IOMMU regions that are active for the address
2349 * space.
2350 *
2351 * For now, addr and len should be aligned to a page size.  This limitation
2352 * will be lifted in the future.
2353 *
2354 * @as: #AddressSpace to be accessed
2355 * @addr: address within that address space
2356 * @len: length of the area to be checked
2357 * @is_write: indicates the transfer direction
2358 * @attrs: memory attributes
2359 */
2360bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2361                                bool is_write, MemTxAttrs attrs);
2362
2363/* address_space_map: map a physical memory region into a host virtual address
2364 *
2365 * May map a subset of the requested range, given by and returned in @plen.
2366 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2367 * the mapping are exhausted.
2368 * Use only for reads OR writes - not for read-modify-write operations.
2369 * Use cpu_register_map_client() to know when retrying the map operation is
2370 * likely to succeed.
2371 *
2372 * @as: #AddressSpace to be accessed
2373 * @addr: address within that address space
2374 * @plen: pointer to length of buffer; updated on return
2375 * @is_write: indicates the transfer direction
2376 * @attrs: memory attributes
2377 */
2378void *address_space_map(AddressSpace *as, hwaddr addr,
2379                        hwaddr *plen, bool is_write, MemTxAttrs attrs);
2380
2381/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2382 *
2383 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2384 * the amount of memory that was actually read or written by the caller.
2385 *
2386 * @as: #AddressSpace used
2387 * @buffer: host pointer as returned by address_space_map()
2388 * @len: buffer length as returned by address_space_map()
2389 * @access_len: amount of data actually transferred
2390 * @is_write: indicates the transfer direction
2391 */
2392void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2393                         bool is_write, hwaddr access_len);
2394
2395
2396/* Internal functions, part of the implementation of address_space_read.  */
2397MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2398                                    MemTxAttrs attrs, void *buf, hwaddr len);
2399MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2400                                   MemTxAttrs attrs, void *buf,
2401                                   hwaddr len, hwaddr addr1, hwaddr l,
2402                                   MemoryRegion *mr);
2403void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2404
2405/* Internal functions, part of the implementation of address_space_read_cached
2406 * and address_space_write_cached.  */
2407MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2408                                           hwaddr addr, void *buf, hwaddr len);
2409MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2410                                            hwaddr addr, const void *buf,
2411                                            hwaddr len);
2412
2413static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2414{
2415    if (is_write) {
2416        return memory_region_is_ram(mr) && !mr->readonly &&
2417               !mr->rom_device && !memory_region_is_ram_device(mr);
2418    } else {
2419        return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2420               memory_region_is_romd(mr);
2421    }
2422}
2423
2424/**
2425 * address_space_read: read from an address space.
2426 *
2427 * Return a MemTxResult indicating whether the operation succeeded
2428 * or failed (eg unassigned memory, device rejected the transaction,
2429 * IOMMU fault).  Called within RCU critical section.
2430 *
2431 * @as: #AddressSpace to be accessed
2432 * @addr: address within that address space
2433 * @attrs: memory transaction attributes
2434 * @buf: buffer with the data transferred
2435 * @len: length of the data transferred
2436 */
2437static inline __attribute__((__always_inline__))
2438MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2439                               MemTxAttrs attrs, void *buf,
2440                               hwaddr len)
2441{
2442    MemTxResult result = MEMTX_OK;
2443    hwaddr l, addr1;
2444    void *ptr;
2445    MemoryRegion *mr;
2446    FlatView *fv;
2447
2448    if (__builtin_constant_p(len)) {
2449        if (len) {
2450            RCU_READ_LOCK_GUARD();
2451            fv = address_space_to_flatview(as);
2452            l = len;
2453            mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2454            if (len == l && memory_access_is_direct(mr, false)) {
2455                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2456                memcpy(buf, ptr, len);
2457            } else {
2458                result = flatview_read_continue(fv, addr, attrs, buf, len,
2459                                                addr1, l, mr);
2460            }
2461        }
2462    } else {
2463        result = address_space_read_full(as, addr, attrs, buf, len);
2464    }
2465    return result;
2466}
2467
2468/**
2469 * address_space_read_cached: read from a cached RAM region
2470 *
2471 * @cache: Cached region to be addressed
2472 * @addr: address relative to the base of the RAM region
2473 * @buf: buffer with the data transferred
2474 * @len: length of the data transferred
2475 */
2476static inline MemTxResult
2477address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2478                          void *buf, hwaddr len)
2479{
2480    assert(addr < cache->len && len <= cache->len - addr);
2481    if (likely(cache->ptr)) {
2482        memcpy(buf, cache->ptr + addr, len);
2483        return MEMTX_OK;
2484    } else {
2485        return address_space_read_cached_slow(cache, addr, buf, len);
2486    }
2487}
2488
2489/**
2490 * address_space_write_cached: write to a cached RAM region
2491 *
2492 * @cache: Cached region to be addressed
2493 * @addr: address relative to the base of the RAM region
2494 * @buf: buffer with the data transferred
2495 * @len: length of the data transferred
2496 */
2497static inline MemTxResult
2498address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2499                           const void *buf, hwaddr len)
2500{
2501    assert(addr < cache->len && len <= cache->len - addr);
2502    if (likely(cache->ptr)) {
2503        memcpy(cache->ptr + addr, buf, len);
2504        return MEMTX_OK;
2505    } else {
2506        return address_space_write_cached_slow(cache, addr, buf, len);
2507    }
2508}
2509
2510#ifdef NEED_CPU_H
2511/* enum device_endian to MemOp.  */
2512static inline MemOp devend_memop(enum device_endian end)
2513{
2514    QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2515                      DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2516
2517#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2518    /* Swap if non-host endianness or native (target) endianness */
2519    return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2520#else
2521    const int non_host_endianness =
2522        DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2523
2524    /* In this case, native (target) endianness needs no swap.  */
2525    return (end == non_host_endianness) ? MO_BSWAP : 0;
2526#endif
2527}
2528#endif
2529
2530/*
2531 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2532 * to manage the actual amount of memory consumed by the VM (then, the memory
2533 * provided by RAM blocks might be bigger than the desired memory consumption).
2534 * This *must* be set if:
2535 * - Discarding parts of a RAM blocks does not result in the change being
2536 *   reflected in the VM and the pages getting freed.
2537 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2538 *   discards blindly.
2539 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2540 *   encrypted VMs).
2541 * Technologies that only temporarily pin the current working set of a
2542 * driver are fine, because we don't expect such pages to be discarded
2543 * (esp. based on guest action like balloon inflation).
2544 *
2545 * This is *not* to be used to protect from concurrent discards (esp.,
2546 * postcopy).
2547 *
2548 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2549 * discards to work reliably is active.
2550 */
2551int ram_block_discard_disable(bool state);
2552
2553/*
2554 * Inhibit technologies that disable discarding of pages in RAM blocks.
2555 *
2556 * Returns 0 if successful. Returns -EBUSY if discards are already set to
2557 * broken.
2558 */
2559int ram_block_discard_require(bool state);
2560
2561/*
2562 * Test if discarding of memory in ram blocks is disabled.
2563 */
2564bool ram_block_discard_is_disabled(void);
2565
2566/*
2567 * Test if discarding of memory in ram blocks is required to work reliably.
2568 */
2569bool ram_block_discard_is_required(void);
2570
2571#endif
2572
2573#endif
2574