1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50#include "qemu/osdep.h"
51#include "qemu/error-report.h"
52#include "qemu/main-loop.h"
53#include "exec/address-spaces.h"
54#include "exec/exec-all.h"
55#include "sysemu/cpus.h"
56#include "sysemu/hvf.h"
57#include "sysemu/hvf_int.h"
58#include "sysemu/runstate.h"
59#include "qemu/guest-random.h"
60
61HVFState *hvf_state;
62
63
64
65hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
66{
67 hvf_slot *slot;
68 int x;
69 for (x = 0; x < hvf_state->num_slots; ++x) {
70 slot = &hvf_state->slots[x];
71 if (slot->size && start < (slot->start + slot->size) &&
72 (start + size) > slot->start) {
73 return slot;
74 }
75 }
76 return NULL;
77}
78
79struct mac_slot {
80 int present;
81 uint64_t size;
82 uint64_t gpa_start;
83 uint64_t gva;
84};
85
86struct mac_slot mac_slots[32];
87
88static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
89{
90 struct mac_slot *macslot;
91 hv_return_t ret;
92
93 macslot = &mac_slots[slot->slot_id];
94
95 if (macslot->present) {
96 if (macslot->size != slot->size) {
97 macslot->present = 0;
98 ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
99 assert_hvf_ok(ret);
100 }
101 }
102
103 if (!slot->size) {
104 return 0;
105 }
106
107 macslot->present = 1;
108 macslot->gpa_start = slot->start;
109 macslot->size = slot->size;
110 ret = hv_vm_map(slot->mem, slot->start, slot->size, flags);
111 assert_hvf_ok(ret);
112 return 0;
113}
114
115static void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
116{
117 hvf_slot *mem;
118 MemoryRegion *area = section->mr;
119 bool writeable = !area->readonly && !area->rom_device;
120 hv_memory_flags_t flags;
121
122 if (!memory_region_is_ram(area)) {
123 if (writeable) {
124 return;
125 } else if (!memory_region_is_romd(area)) {
126
127
128
129
130 add = false;
131 }
132 }
133
134 mem = hvf_find_overlap_slot(
135 section->offset_within_address_space,
136 int128_get64(section->size));
137
138 if (mem && add) {
139 if (mem->size == int128_get64(section->size) &&
140 mem->start == section->offset_within_address_space &&
141 mem->mem == (memory_region_get_ram_ptr(area) +
142 section->offset_within_region)) {
143 return;
144 }
145 }
146
147
148 if (mem) {
149 mem->size = 0;
150 if (do_hvf_set_memory(mem, 0)) {
151 error_report("Failed to reset overlapping slot");
152 abort();
153 }
154 }
155
156 if (!add) {
157 return;
158 }
159
160 if (area->readonly ||
161 (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
162 flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
163 } else {
164 flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
165 }
166
167
168 int x;
169
170 for (x = 0; x < hvf_state->num_slots; ++x) {
171 mem = &hvf_state->slots[x];
172 if (!mem->size) {
173 break;
174 }
175 }
176
177 if (x == hvf_state->num_slots) {
178 error_report("No free slots");
179 abort();
180 }
181
182 mem->size = int128_get64(section->size);
183 mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
184 mem->start = section->offset_within_address_space;
185 mem->region = area;
186
187 if (do_hvf_set_memory(mem, flags)) {
188 error_report("Error registering new memory slot");
189 abort();
190 }
191}
192
193static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
194{
195 if (!cpu->vcpu_dirty) {
196 hvf_get_registers(cpu);
197 cpu->vcpu_dirty = true;
198 }
199}
200
201static void hvf_cpu_synchronize_state(CPUState *cpu)
202{
203 if (!cpu->vcpu_dirty) {
204 run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
205 }
206}
207
208static void do_hvf_cpu_synchronize_set_dirty(CPUState *cpu,
209 run_on_cpu_data arg)
210{
211
212 cpu->vcpu_dirty = true;
213}
214
215static void hvf_cpu_synchronize_post_reset(CPUState *cpu)
216{
217 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
218}
219
220static void hvf_cpu_synchronize_post_init(CPUState *cpu)
221{
222 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
223}
224
225static void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
226{
227 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
228}
229
230static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
231{
232 hvf_slot *slot;
233
234 slot = hvf_find_overlap_slot(
235 section->offset_within_address_space,
236 int128_get64(section->size));
237
238
239 if (on) {
240 slot->flags |= HVF_SLOT_LOG;
241 hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
242 HV_MEMORY_READ);
243
244 } else {
245 slot->flags &= ~HVF_SLOT_LOG;
246 hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
247 HV_MEMORY_READ | HV_MEMORY_WRITE);
248 }
249}
250
251static void hvf_log_start(MemoryListener *listener,
252 MemoryRegionSection *section, int old, int new)
253{
254 if (old != 0) {
255 return;
256 }
257
258 hvf_set_dirty_tracking(section, 1);
259}
260
261static void hvf_log_stop(MemoryListener *listener,
262 MemoryRegionSection *section, int old, int new)
263{
264 if (new != 0) {
265 return;
266 }
267
268 hvf_set_dirty_tracking(section, 0);
269}
270
271static void hvf_log_sync(MemoryListener *listener,
272 MemoryRegionSection *section)
273{
274
275
276
277
278 hvf_set_dirty_tracking(section, 1);
279}
280
281static void hvf_region_add(MemoryListener *listener,
282 MemoryRegionSection *section)
283{
284 hvf_set_phys_mem(section, true);
285}
286
287static void hvf_region_del(MemoryListener *listener,
288 MemoryRegionSection *section)
289{
290 hvf_set_phys_mem(section, false);
291}
292
293static MemoryListener hvf_memory_listener = {
294 .priority = 10,
295 .region_add = hvf_region_add,
296 .region_del = hvf_region_del,
297 .log_start = hvf_log_start,
298 .log_stop = hvf_log_stop,
299 .log_sync = hvf_log_sync,
300};
301
302static void dummy_signal(int sig)
303{
304}
305
306bool hvf_allowed;
307
308static int hvf_accel_init(MachineState *ms)
309{
310 int x;
311 hv_return_t ret;
312 HVFState *s;
313
314 ret = hv_vm_create(HV_VM_DEFAULT);
315 assert_hvf_ok(ret);
316
317 s = g_new0(HVFState, 1);
318
319 s->num_slots = 32;
320 for (x = 0; x < s->num_slots; ++x) {
321 s->slots[x].size = 0;
322 s->slots[x].slot_id = x;
323 }
324
325 hvf_state = s;
326 memory_listener_register(&hvf_memory_listener, &address_space_memory);
327 return 0;
328}
329
330static void hvf_accel_class_init(ObjectClass *oc, void *data)
331{
332 AccelClass *ac = ACCEL_CLASS(oc);
333 ac->name = "HVF";
334 ac->init_machine = hvf_accel_init;
335 ac->allowed = &hvf_allowed;
336}
337
338static const TypeInfo hvf_accel_type = {
339 .name = TYPE_HVF_ACCEL,
340 .parent = TYPE_ACCEL,
341 .class_init = hvf_accel_class_init,
342};
343
344static void hvf_type_init(void)
345{
346 type_register_static(&hvf_accel_type);
347}
348
349type_init(hvf_type_init);
350
351static void hvf_vcpu_destroy(CPUState *cpu)
352{
353 hv_return_t ret = hv_vcpu_destroy(cpu->hvf->fd);
354 assert_hvf_ok(ret);
355
356 hvf_arch_vcpu_destroy(cpu);
357 g_free(cpu->hvf);
358 cpu->hvf = NULL;
359}
360
361static int hvf_init_vcpu(CPUState *cpu)
362{
363 int r;
364
365 cpu->hvf = g_malloc0(sizeof(*cpu->hvf));
366
367
368 sigset_t set;
369 struct sigaction sigact;
370
371 memset(&sigact, 0, sizeof(sigact));
372 sigact.sa_handler = dummy_signal;
373 sigaction(SIG_IPI, &sigact, NULL);
374
375 pthread_sigmask(SIG_BLOCK, NULL, &set);
376 sigdelset(&set, SIG_IPI);
377
378 r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf->fd, HV_VCPU_DEFAULT);
379 cpu->vcpu_dirty = 1;
380 assert_hvf_ok(r);
381
382 return hvf_arch_init_vcpu(cpu);
383}
384
385
386
387
388
389static void *hvf_cpu_thread_fn(void *arg)
390{
391 CPUState *cpu = arg;
392
393 int r;
394
395 assert(hvf_enabled());
396
397 rcu_register_thread();
398
399 qemu_mutex_lock_iothread();
400 qemu_thread_get_self(cpu->thread);
401
402 cpu->thread_id = qemu_get_thread_id();
403 cpu->can_do_io = 1;
404 current_cpu = cpu;
405
406 hvf_init_vcpu(cpu);
407
408
409 cpu_thread_signal_created(cpu);
410 qemu_guest_random_seed_thread_part2(cpu->random_seed);
411
412 do {
413 if (cpu_can_run(cpu)) {
414 r = hvf_vcpu_exec(cpu);
415 if (r == EXCP_DEBUG) {
416 cpu_handle_guest_debug(cpu);
417 }
418 }
419 qemu_wait_io_event(cpu);
420 } while (!cpu->unplug || cpu_can_run(cpu));
421
422 hvf_vcpu_destroy(cpu);
423 cpu_thread_signal_destroyed(cpu);
424 qemu_mutex_unlock_iothread();
425 rcu_unregister_thread();
426 return NULL;
427}
428
429static void hvf_start_vcpu_thread(CPUState *cpu)
430{
431 char thread_name[VCPU_THREAD_NAME_SIZE];
432
433
434
435
436
437 assert(hvf_enabled());
438
439 cpu->thread = g_malloc0(sizeof(QemuThread));
440 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
441 qemu_cond_init(cpu->halt_cond);
442
443 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
444 cpu->cpu_index);
445 qemu_thread_create(cpu->thread, thread_name, hvf_cpu_thread_fn,
446 cpu, QEMU_THREAD_JOINABLE);
447}
448
449static void hvf_accel_ops_class_init(ObjectClass *oc, void *data)
450{
451 AccelOpsClass *ops = ACCEL_OPS_CLASS(oc);
452
453 ops->create_vcpu_thread = hvf_start_vcpu_thread;
454
455 ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset;
456 ops->synchronize_post_init = hvf_cpu_synchronize_post_init;
457 ops->synchronize_state = hvf_cpu_synchronize_state;
458 ops->synchronize_pre_loadvm = hvf_cpu_synchronize_pre_loadvm;
459};
460static const TypeInfo hvf_accel_ops_type = {
461 .name = ACCEL_OPS_NAME("hvf"),
462
463 .parent = TYPE_ACCEL_OPS,
464 .class_init = hvf_accel_ops_class_init,
465 .abstract = true,
466};
467static void hvf_accel_ops_register_types(void)
468{
469 type_register_static(&hvf_accel_ops_type);
470}
471type_init(hvf_accel_ops_register_types);
472