qemu/hw/audio/fmopl.c
<<
>>
Prefs
   1/*
   2**
   3** File: fmopl.c -- software implementation of FM sound generator
   4**
   5** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
   6**
   7** Version 0.37a
   8**
   9*/
  10
  11/*
  12        preliminary :
  13        Problem :
  14        note:
  15*/
  16
  17/* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
  18 *
  19 * This library is free software; you can redistribute it and/or
  20 * modify it under the terms of the GNU Lesser General Public
  21 * License as published by the Free Software Foundation; either
  22 * version 2.1 of the License, or (at your option) any later version.
  23 *
  24 * This library is distributed in the hope that it will be useful,
  25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  27 * Lesser General Public License for more details.
  28 *
  29 * You should have received a copy of the GNU Lesser General Public
  30 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  31 */
  32
  33#include "qemu/osdep.h"
  34#include <math.h>
  35//#include "driver.h"           /* use M.A.M.E. */
  36#include "fmopl.h"
  37#ifndef PI
  38#define PI 3.14159265358979323846
  39#endif
  40
  41/* -------------------- for debug --------------------- */
  42/* #define OPL_OUTPUT_LOG */
  43#ifdef OPL_OUTPUT_LOG
  44static FILE *opl_dbg_fp = NULL;
  45static FM_OPL *opl_dbg_opl[16];
  46static int opl_dbg_maxchip,opl_dbg_chip;
  47#endif
  48
  49/* -------------------- preliminary define section --------------------- */
  50/* attack/decay rate time rate */
  51#define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
  52#define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
  53
  54#define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
  55
  56#define FREQ_BITS 24                    /* frequency turn          */
  57
  58/* counter bits = 20 , octerve 7 */
  59#define FREQ_RATE   (1<<(FREQ_BITS-20))
  60#define TL_BITS    (FREQ_BITS+2)
  61
  62/* final output shift , limit minimum and maximum */
  63#define OPL_OUTSB   (TL_BITS+3-16)              /* OPL output final shift 16bit */
  64#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
  65#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
  66
  67/* -------------------- quality selection --------------------- */
  68
  69/* sinwave entries */
  70/* used static memory = SIN_ENT * 4 (byte) */
  71#define SIN_ENT 2048
  72
  73/* output level entries (envelope,sinwave) */
  74/* envelope counter lower bits */
  75#define ENV_BITS 16
  76/* envelope output entries */
  77#define EG_ENT   4096
  78/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
  79/* used static  memory = EG_ENT*4 (byte)                     */
  80
  81#define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
  82#define EG_DED   EG_OFF
  83#define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
  84#define EG_AED   EG_DST
  85#define EG_AST   0                       /* ATTACK START */
  86
  87#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
  88
  89/* LFO table entries */
  90#define VIB_ENT 512
  91#define VIB_SHIFT (32-9)
  92#define AMS_ENT 512
  93#define AMS_SHIFT (32-9)
  94
  95#define VIB_RATE 256
  96
  97/* -------------------- local defines , macros --------------------- */
  98
  99/* register number to channel number , slot offset */
 100#define SLOT1 0
 101#define SLOT2 1
 102
 103/* envelope phase */
 104#define ENV_MOD_RR  0x00
 105#define ENV_MOD_DR  0x01
 106#define ENV_MOD_AR  0x02
 107
 108/* -------------------- tables --------------------- */
 109static const int slot_array[32]=
 110{
 111         0, 2, 4, 1, 3, 5,-1,-1,
 112         6, 8,10, 7, 9,11,-1,-1,
 113        12,14,16,13,15,17,-1,-1,
 114        -1,-1,-1,-1,-1,-1,-1,-1
 115};
 116
 117/* key scale level */
 118/* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
 119#define DV (EG_STEP/2)
 120static const uint32_t KSL_TABLE[8*16]=
 121{
 122        /* OCT 0 */
 123         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 124         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 125         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 126         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 127        /* OCT 1 */
 128         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 129         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 130         0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
 131         1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
 132        /* OCT 2 */
 133         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 134         0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
 135         3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
 136         4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
 137        /* OCT 3 */
 138         0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
 139         3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
 140         6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
 141         7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
 142        /* OCT 4 */
 143         0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
 144         6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
 145         9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
 146        10.875/DV,11.250/DV,11.625/DV,12.000/DV,
 147        /* OCT 5 */
 148         0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
 149         9.000/DV,10.125/DV,10.875/DV,11.625/DV,
 150        12.000/DV,12.750/DV,13.125/DV,13.500/DV,
 151        13.875/DV,14.250/DV,14.625/DV,15.000/DV,
 152        /* OCT 6 */
 153         0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
 154        12.000/DV,13.125/DV,13.875/DV,14.625/DV,
 155        15.000/DV,15.750/DV,16.125/DV,16.500/DV,
 156        16.875/DV,17.250/DV,17.625/DV,18.000/DV,
 157        /* OCT 7 */
 158         0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
 159        15.000/DV,16.125/DV,16.875/DV,17.625/DV,
 160        18.000/DV,18.750/DV,19.125/DV,19.500/DV,
 161        19.875/DV,20.250/DV,20.625/DV,21.000/DV
 162};
 163#undef DV
 164
 165/* sustain lebel table (3db per step) */
 166/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
 167#define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
 168static const int32_t SL_TABLE[16]={
 169 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
 170 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
 171};
 172#undef SC
 173
 174#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
 175/* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
 176/* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
 177/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
 178static int32_t *TL_TABLE;
 179
 180/* pointers to TL_TABLE with sinwave output offset */
 181static int32_t **SIN_TABLE;
 182
 183/* LFO table */
 184static int32_t *AMS_TABLE;
 185static int32_t *VIB_TABLE;
 186
 187/* envelope output curve table */
 188/* attack + decay + OFF */
 189static int32_t *ENV_CURVE;
 190
 191/* multiple table */
 192#define ML 2
 193static const uint32_t MUL_TABLE[16]= {
 194/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
 195   0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
 196   8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
 197};
 198#undef ML
 199
 200/* dummy attack / decay rate ( when rate == 0 ) */
 201static int32_t RATE_0[16]=
 202{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
 203
 204/* -------------------- static state --------------------- */
 205
 206/* lock level of common table */
 207static int num_lock = 0;
 208
 209/* work table */
 210static void *cur_chip = NULL;   /* current chip point */
 211/* currenct chip state */
 212/* static OPLSAMPLE  *bufL,*bufR; */
 213static OPL_CH *S_CH;
 214static OPL_CH *E_CH;
 215static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
 216
 217static int32_t outd[1];
 218static int32_t ams;
 219static int32_t vib;
 220static int32_t *ams_table;
 221static int32_t *vib_table;
 222static int32_t amsIncr;
 223static int32_t vibIncr;
 224static int32_t feedback2;               /* connect for SLOT 2 */
 225
 226/* log output level */
 227#define LOG_ERR  3      /* ERROR       */
 228#define LOG_WAR  2      /* WARNING     */
 229#define LOG_INF  1      /* INFORMATION */
 230
 231//#define LOG_LEVEL LOG_INF
 232#define LOG_LEVEL       LOG_ERR
 233
 234//#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
 235#define LOG(n,x)
 236
 237/* --------------------- subroutines  --------------------- */
 238
 239static inline int Limit( int val, int max, int min ) {
 240        if ( val > max )
 241                val = max;
 242        else if ( val < min )
 243                val = min;
 244
 245        return val;
 246}
 247
 248/* status set and IRQ handling */
 249static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
 250{
 251        /* set status flag */
 252        OPL->status |= flag;
 253        if(!(OPL->status & 0x80))
 254        {
 255                if(OPL->status & OPL->statusmask)
 256                {       /* IRQ on */
 257                        OPL->status |= 0x80;
 258                }
 259        }
 260}
 261
 262/* status reset and IRQ handling */
 263static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
 264{
 265        /* reset status flag */
 266        OPL->status &=~flag;
 267        if((OPL->status & 0x80))
 268        {
 269                if (!(OPL->status & OPL->statusmask) )
 270                {
 271                        OPL->status &= 0x7f;
 272                }
 273        }
 274}
 275
 276/* IRQ mask set */
 277static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
 278{
 279        OPL->statusmask = flag;
 280        /* IRQ handling check */
 281        OPL_STATUS_SET(OPL,0);
 282        OPL_STATUS_RESET(OPL,0);
 283}
 284
 285/* ----- key on  ----- */
 286static inline void OPL_KEYON(OPL_SLOT *SLOT)
 287{
 288        /* sin wave restart */
 289        SLOT->Cnt = 0;
 290        /* set attack */
 291        SLOT->evm = ENV_MOD_AR;
 292        SLOT->evs = SLOT->evsa;
 293        SLOT->evc = EG_AST;
 294        SLOT->eve = EG_AED;
 295}
 296/* ----- key off ----- */
 297static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
 298{
 299        if( SLOT->evm > ENV_MOD_RR)
 300        {
 301                /* set envelope counter from envleope output */
 302                SLOT->evm = ENV_MOD_RR;
 303                if( !(SLOT->evc&EG_DST) )
 304                        //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
 305                        SLOT->evc = EG_DST;
 306                SLOT->eve = EG_DED;
 307                SLOT->evs = SLOT->evsr;
 308        }
 309}
 310
 311/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
 312/* return : envelope output */
 313static inline uint32_t OPL_CALC_SLOT( OPL_SLOT *SLOT )
 314{
 315        /* calcrate envelope generator */
 316        if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
 317        {
 318                switch( SLOT->evm ){
 319                case ENV_MOD_AR: /* ATTACK -> DECAY1 */
 320                        /* next DR */
 321                        SLOT->evm = ENV_MOD_DR;
 322                        SLOT->evc = EG_DST;
 323                        SLOT->eve = SLOT->SL;
 324                        SLOT->evs = SLOT->evsd;
 325                        break;
 326                case ENV_MOD_DR: /* DECAY -> SL or RR */
 327                        SLOT->evc = SLOT->SL;
 328                        SLOT->eve = EG_DED;
 329                        if(SLOT->eg_typ)
 330                        {
 331                                SLOT->evs = 0;
 332                        }
 333                        else
 334                        {
 335                                SLOT->evm = ENV_MOD_RR;
 336                                SLOT->evs = SLOT->evsr;
 337                        }
 338                        break;
 339                case ENV_MOD_RR: /* RR -> OFF */
 340                        SLOT->evc = EG_OFF;
 341                        SLOT->eve = EG_OFF+1;
 342                        SLOT->evs = 0;
 343                        break;
 344                }
 345        }
 346        /* calcrate envelope */
 347        return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
 348}
 349
 350/* set algorithm connection */
 351static void set_algorithm( OPL_CH *CH)
 352{
 353        int32_t *carrier = &outd[0];
 354        CH->connect1 = CH->CON ? carrier : &feedback2;
 355        CH->connect2 = carrier;
 356}
 357
 358/* ---------- frequency counter for operater update ---------- */
 359static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
 360{
 361        int ksr;
 362
 363        /* frequency step counter */
 364        SLOT->Incr = CH->fc * SLOT->mul;
 365        ksr = CH->kcode >> SLOT->KSR;
 366
 367        if( SLOT->ksr != ksr )
 368        {
 369                SLOT->ksr = ksr;
 370                /* attack , decay rate recalcration */
 371                SLOT->evsa = SLOT->AR[ksr];
 372                SLOT->evsd = SLOT->DR[ksr];
 373                SLOT->evsr = SLOT->RR[ksr];
 374        }
 375        SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
 376}
 377
 378/* set multi,am,vib,EG-TYP,KSR,mul */
 379static inline void set_mul(FM_OPL *OPL,int slot,int v)
 380{
 381        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 382        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 383
 384        SLOT->mul    = MUL_TABLE[v&0x0f];
 385        SLOT->KSR    = (v&0x10) ? 0 : 2;
 386        SLOT->eg_typ = (v&0x20)>>5;
 387        SLOT->vib    = (v&0x40);
 388        SLOT->ams    = (v&0x80);
 389        CALC_FCSLOT(CH,SLOT);
 390}
 391
 392/* set ksl & tl */
 393static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
 394{
 395        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 396        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 397        int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
 398
 399        SLOT->ksl = ksl ? 3-ksl : 31;
 400        SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
 401
 402        if( !(OPL->mode&0x80) )
 403        {       /* not CSM latch total level */
 404                SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
 405        }
 406}
 407
 408/* set attack rate & decay rate  */
 409static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
 410{
 411        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 412        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 413        int ar = v>>4;
 414        int dr = v&0x0f;
 415
 416        SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
 417        SLOT->evsa = SLOT->AR[SLOT->ksr];
 418        if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
 419
 420        SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
 421        SLOT->evsd = SLOT->DR[SLOT->ksr];
 422        if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
 423}
 424
 425/* set sustain level & release rate */
 426static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
 427{
 428        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 429        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 430        int sl = v>>4;
 431        int rr = v & 0x0f;
 432
 433        SLOT->SL = SL_TABLE[sl];
 434        if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
 435        SLOT->RR = &OPL->DR_TABLE[rr<<2];
 436        SLOT->evsr = SLOT->RR[SLOT->ksr];
 437        if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
 438}
 439
 440/* operator output calcrator */
 441#define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
 442/* ---------- calcrate one of channel ---------- */
 443static inline void OPL_CALC_CH( OPL_CH *CH )
 444{
 445        uint32_t env_out;
 446        OPL_SLOT *SLOT;
 447
 448        feedback2 = 0;
 449        /* SLOT 1 */
 450        SLOT = &CH->SLOT[SLOT1];
 451        env_out=OPL_CALC_SLOT(SLOT);
 452        if( env_out < EG_ENT-1 )
 453        {
 454                /* PG */
 455                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 456                else          SLOT->Cnt += SLOT->Incr;
 457                /* connectoion */
 458                if(CH->FB)
 459                {
 460                        int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
 461                        CH->op1_out[1] = CH->op1_out[0];
 462                        *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
 463                }
 464                else
 465                {
 466                        *CH->connect1 += OP_OUT(SLOT,env_out,0);
 467                }
 468        }else
 469        {
 470                CH->op1_out[1] = CH->op1_out[0];
 471                CH->op1_out[0] = 0;
 472        }
 473        /* SLOT 2 */
 474        SLOT = &CH->SLOT[SLOT2];
 475        env_out=OPL_CALC_SLOT(SLOT);
 476        if( env_out < EG_ENT-1 )
 477        {
 478                /* PG */
 479                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 480                else          SLOT->Cnt += SLOT->Incr;
 481                /* connectoion */
 482                outd[0] += OP_OUT(SLOT,env_out, feedback2);
 483        }
 484}
 485
 486/* ---------- calcrate rhythm block ---------- */
 487#define WHITE_NOISE_db 6.0
 488static inline void OPL_CALC_RH( OPL_CH *CH )
 489{
 490        uint32_t env_tam,env_sd,env_top,env_hh;
 491        int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
 492        int32_t tone8;
 493
 494        OPL_SLOT *SLOT;
 495        int env_out;
 496
 497        /* BD : same as FM serial mode and output level is large */
 498        feedback2 = 0;
 499        /* SLOT 1 */
 500        SLOT = &CH[6].SLOT[SLOT1];
 501        env_out=OPL_CALC_SLOT(SLOT);
 502        if( env_out < EG_ENT-1 )
 503        {
 504                /* PG */
 505                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 506                else          SLOT->Cnt += SLOT->Incr;
 507                /* connectoion */
 508                if(CH[6].FB)
 509                {
 510                        int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
 511                        CH[6].op1_out[1] = CH[6].op1_out[0];
 512                        feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
 513                }
 514                else
 515                {
 516                        feedback2 = OP_OUT(SLOT,env_out,0);
 517                }
 518        }else
 519        {
 520                feedback2 = 0;
 521                CH[6].op1_out[1] = CH[6].op1_out[0];
 522                CH[6].op1_out[0] = 0;
 523        }
 524        /* SLOT 2 */
 525        SLOT = &CH[6].SLOT[SLOT2];
 526        env_out=OPL_CALC_SLOT(SLOT);
 527        if( env_out < EG_ENT-1 )
 528        {
 529                /* PG */
 530                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 531                else          SLOT->Cnt += SLOT->Incr;
 532                /* connectoion */
 533                outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
 534        }
 535
 536        // SD  (17) = mul14[fnum7] + white noise
 537        // TAM (15) = mul15[fnum8]
 538        // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
 539        // HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
 540        env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
 541        env_tam=OPL_CALC_SLOT(SLOT8_1);
 542        env_top=OPL_CALC_SLOT(SLOT8_2);
 543        env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
 544
 545        /* PG */
 546        if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
 547        else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
 548        if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
 549        else             SLOT7_2->Cnt += (CH[7].fc*8);
 550        if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
 551        else             SLOT8_1->Cnt += SLOT8_1->Incr;
 552        if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
 553        else             SLOT8_2->Cnt += (CH[8].fc*48);
 554
 555        tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
 556
 557        /* SD */
 558        if( env_sd < EG_ENT-1 )
 559                outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
 560        /* TAM */
 561        if( env_tam < EG_ENT-1 )
 562                outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
 563        /* TOP-CY */
 564        if( env_top < EG_ENT-1 )
 565                outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
 566        /* HH */
 567        if( env_hh  < EG_ENT-1 )
 568                outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
 569}
 570
 571/* ----------- initialize time tabls ----------- */
 572static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
 573{
 574        int i;
 575        double rate;
 576
 577        /* make attack rate & decay rate tables */
 578        for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
 579        for (i = 4;i <= 60;i++){
 580                rate  = OPL->freqbase;                                          /* frequency rate */
 581                if( i < 60 ) rate *= 1.0+(i&3)*0.25;            /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
 582                rate *= 1<<((i>>2)-1);                                          /* b2-5 : shift bit */
 583                rate *= (double)(EG_ENT<<ENV_BITS);
 584                OPL->AR_TABLE[i] = rate / ARRATE;
 585                OPL->DR_TABLE[i] = rate / DRRATE;
 586        }
 587        for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
 588        {
 589                OPL->AR_TABLE[i] = EG_AED-1;
 590                OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
 591        }
 592#if 0
 593        for (i = 0;i < 64 ;i++){        /* make for overflow area */
 594                LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
 595                        ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
 596                        ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
 597        }
 598#endif
 599}
 600
 601/* ---------- generic table initialize ---------- */
 602static int OPLOpenTable( void )
 603{
 604        int s,t;
 605        double rate;
 606        int i,j;
 607        double pom;
 608
 609        /* allocate dynamic tables */
 610        if( (TL_TABLE = malloc(TL_MAX*2*sizeof(int32_t))) == NULL)
 611                return 0;
 612        if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(int32_t *))) == NULL)
 613        {
 614                free(TL_TABLE);
 615                return 0;
 616        }
 617        if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(int32_t))) == NULL)
 618        {
 619                free(TL_TABLE);
 620                free(SIN_TABLE);
 621                return 0;
 622        }
 623        if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(int32_t))) == NULL)
 624        {
 625                free(TL_TABLE);
 626                free(SIN_TABLE);
 627                free(AMS_TABLE);
 628                return 0;
 629        }
 630    ENV_CURVE = g_new(int32_t, 2 * EG_ENT + 1);
 631        /* make total level table */
 632        for (t = 0;t < EG_ENT-1 ;t++){
 633                rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);   /* dB -> voltage */
 634                TL_TABLE[       t] =  (int)rate;
 635                TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
 636/*              LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
 637        }
 638        /* fill volume off area */
 639        for ( t = EG_ENT-1; t < TL_MAX ;t++){
 640                TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
 641        }
 642
 643        /* make sinwave table (total level offet) */
 644        /* degree 0 = degree 180                   = off */
 645        SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
 646        for (s = 1;s <= SIN_ENT/4;s++){
 647                pom = sin(2*PI*s/SIN_ENT); /* sin     */
 648                pom = 20*log10(1/pom);     /* decibel */
 649                j = pom / EG_STEP;         /* TL_TABLE steps */
 650
 651        /* degree 0   -  90    , degree 180 -  90 : plus section */
 652                SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
 653        /* degree 180 - 270    , degree 360 - 270 : minus section */
 654                SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
 655/*              LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
 656        }
 657        for (s = 0;s < SIN_ENT;s++)
 658        {
 659                SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
 660                SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
 661                SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
 662        }
 663
 664        /* envelope counter -> envelope output table */
 665        for (i=0; i<EG_ENT; i++)
 666        {
 667                /* ATTACK curve */
 668                pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
 669                /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
 670                ENV_CURVE[i] = (int)pom;
 671                /* DECAY ,RELEASE curve */
 672                ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
 673        }
 674        /* off */
 675        ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
 676        /* make LFO ams table */
 677        for (i=0; i<AMS_ENT; i++)
 678        {
 679                pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
 680                AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
 681                AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
 682        }
 683        /* make LFO vibrate table */
 684        for (i=0; i<VIB_ENT; i++)
 685        {
 686                /* 100cent = 1seminote = 6% ?? */
 687                pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
 688                VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
 689                VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
 690                /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
 691        }
 692        return 1;
 693}
 694
 695
 696static void OPLCloseTable( void )
 697{
 698    g_free(ENV_CURVE);
 699        free(TL_TABLE);
 700        free(SIN_TABLE);
 701        free(AMS_TABLE);
 702        free(VIB_TABLE);
 703}
 704
 705/* CSM Key Control */
 706static inline void CSMKeyControll(OPL_CH *CH)
 707{
 708        OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
 709        OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
 710        /* all key off */
 711        OPL_KEYOFF(slot1);
 712        OPL_KEYOFF(slot2);
 713        /* total level latch */
 714        slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
 715        slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
 716        /* key on */
 717        CH->op1_out[0] = CH->op1_out[1] = 0;
 718        OPL_KEYON(slot1);
 719        OPL_KEYON(slot2);
 720}
 721
 722/* ---------- opl initialize ---------- */
 723static void OPL_initialize(FM_OPL *OPL)
 724{
 725        int fn;
 726
 727        /* frequency base */
 728        OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
 729        /* Timer base time */
 730        OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
 731        /* make time tables */
 732        init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
 733        /* make fnumber -> increment counter table */
 734        for( fn=0 ; fn < 1024 ; fn++ )
 735        {
 736                OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
 737        }
 738        /* LFO freq.table */
 739        OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
 740        OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
 741}
 742
 743/* ---------- write a OPL registers ---------- */
 744static void OPLWriteReg(FM_OPL *OPL, int r, int v)
 745{
 746        OPL_CH *CH;
 747        int slot;
 748        int block_fnum;
 749
 750        switch(r&0xe0)
 751        {
 752        case 0x00: /* 00-1f:control */
 753                switch(r&0x1f)
 754                {
 755                case 0x01:
 756                        /* wave selector enable */
 757                        OPL->wavesel = v&0x20;
 758                        if(!OPL->wavesel)
 759                        {
 760                                /* preset compatible mode */
 761                                int c;
 762                                for(c=0;c<OPL->max_ch;c++)
 763                                {
 764                                        OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
 765                                        OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
 766                                }
 767                        }
 768                        return;
 769                case 0x02:      /* Timer 1 */
 770                        OPL->T[0] = (256-v)*4;
 771                        break;
 772                case 0x03:      /* Timer 2 */
 773                        OPL->T[1] = (256-v)*16;
 774                        return;
 775                case 0x04:      /* IRQ clear / mask and Timer enable */
 776                        if(v&0x80)
 777                        {       /* IRQ flag clear */
 778                                OPL_STATUS_RESET(OPL,0x7f);
 779                        }
 780                        else
 781                        {       /* set IRQ mask ,timer enable*/
 782                                uint8_t st1 = v&1;
 783                                uint8_t st2 = (v>>1)&1;
 784                                /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
 785                                OPL_STATUS_RESET(OPL,v&0x78);
 786                                OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
 787                                /* timer 2 */
 788                                if(OPL->st[1] != st2)
 789                                {
 790                                        double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
 791                                        OPL->st[1] = st2;
 792                    if (OPL->TimerHandler) {
 793                        (OPL->TimerHandler)(OPL->TimerParam, 1, interval);
 794                    }
 795                                }
 796                                /* timer 1 */
 797                                if(OPL->st[0] != st1)
 798                                {
 799                                        double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
 800                                        OPL->st[0] = st1;
 801                    if (OPL->TimerHandler) {
 802                        (OPL->TimerHandler)(OPL->TimerParam, 0, interval);
 803                    }
 804                                }
 805                        }
 806                        return;
 807                }
 808                break;
 809        case 0x20:      /* am,vib,ksr,eg type,mul */
 810                slot = slot_array[r&0x1f];
 811                if(slot == -1) return;
 812                set_mul(OPL,slot,v);
 813                return;
 814        case 0x40:
 815                slot = slot_array[r&0x1f];
 816                if(slot == -1) return;
 817                set_ksl_tl(OPL,slot,v);
 818                return;
 819        case 0x60:
 820                slot = slot_array[r&0x1f];
 821                if(slot == -1) return;
 822                set_ar_dr(OPL,slot,v);
 823                return;
 824        case 0x80:
 825                slot = slot_array[r&0x1f];
 826                if(slot == -1) return;
 827                set_sl_rr(OPL,slot,v);
 828                return;
 829        case 0xa0:
 830                switch(r)
 831                {
 832                case 0xbd:
 833                        /* amsep,vibdep,r,bd,sd,tom,tc,hh */
 834                        {
 835                        uint8_t rkey = OPL->rhythm^v;
 836                        OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
 837                        OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
 838                        OPL->rhythm  = v&0x3f;
 839                        if(OPL->rhythm&0x20)
 840                        {
 841#if 0
 842                                usrintf_showmessage("OPL Rhythm mode select");
 843#endif
 844                                /* BD key on/off */
 845                                if(rkey&0x10)
 846                                {
 847                                        if(v&0x10)
 848                                        {
 849                                                OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
 850                                                OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
 851                                                OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
 852                                        }
 853                                        else
 854                                        {
 855                                                OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
 856                                                OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
 857                                        }
 858                                }
 859                                /* SD key on/off */
 860                                if(rkey&0x08)
 861                                {
 862                                        if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
 863                                        else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
 864                                }/* TAM key on/off */
 865                                if(rkey&0x04)
 866                                {
 867                                        if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
 868                                        else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
 869                                }
 870                                /* TOP-CY key on/off */
 871                                if(rkey&0x02)
 872                                {
 873                                        if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
 874                                        else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
 875                                }
 876                                /* HH key on/off */
 877                                if(rkey&0x01)
 878                                {
 879                                        if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
 880                                        else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
 881                                }
 882                        }
 883                        }
 884                        return;
 885                }
 886                /* keyon,block,fnum */
 887                if( (r&0x0f) > 8) return;
 888                CH = &OPL->P_CH[r&0x0f];
 889                if(!(r&0x10))
 890                {       /* a0-a8 */
 891                        block_fnum  = (CH->block_fnum&0x1f00) | v;
 892                }
 893                else
 894                {       /* b0-b8 */
 895                        int keyon = (v>>5)&1;
 896                        block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
 897                        if(CH->keyon != keyon)
 898                        {
 899                                if( (CH->keyon=keyon) )
 900                                {
 901                                        CH->op1_out[0] = CH->op1_out[1] = 0;
 902                                        OPL_KEYON(&CH->SLOT[SLOT1]);
 903                                        OPL_KEYON(&CH->SLOT[SLOT2]);
 904                                }
 905                                else
 906                                {
 907                                        OPL_KEYOFF(&CH->SLOT[SLOT1]);
 908                                        OPL_KEYOFF(&CH->SLOT[SLOT2]);
 909                                }
 910                        }
 911                }
 912                /* update */
 913                if(CH->block_fnum != block_fnum)
 914                {
 915                        int blockRv = 7-(block_fnum>>10);
 916                        int fnum   = block_fnum&0x3ff;
 917                        CH->block_fnum = block_fnum;
 918
 919                        CH->ksl_base = KSL_TABLE[block_fnum>>6];
 920                        CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
 921                        CH->kcode = CH->block_fnum>>9;
 922                        if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
 923                        CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
 924                        CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
 925                }
 926                return;
 927        case 0xc0:
 928                /* FB,C */
 929                if( (r&0x0f) > 8) return;
 930                CH = &OPL->P_CH[r&0x0f];
 931                {
 932                int feedback = (v>>1)&7;
 933                CH->FB   = feedback ? (8+1) - feedback : 0;
 934                CH->CON = v&1;
 935                set_algorithm(CH);
 936                }
 937                return;
 938        case 0xe0: /* wave type */
 939                slot = slot_array[r&0x1f];
 940                if(slot == -1) return;
 941                CH = &OPL->P_CH[slot/2];
 942                if(OPL->wavesel)
 943                {
 944                        /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
 945                        CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
 946                }
 947                return;
 948        }
 949}
 950
 951/* lock/unlock for common table */
 952static int OPL_LockTable(void)
 953{
 954        num_lock++;
 955        if(num_lock>1) return 0;
 956        /* first time */
 957        cur_chip = NULL;
 958        /* allocate total level table (128kb space) */
 959        if( !OPLOpenTable() )
 960        {
 961                num_lock--;
 962                return -1;
 963        }
 964        return 0;
 965}
 966
 967static void OPL_UnLockTable(void)
 968{
 969        if(num_lock) num_lock--;
 970        if(num_lock) return;
 971        /* last time */
 972        cur_chip = NULL;
 973        OPLCloseTable();
 974}
 975
 976/*******************************************************************************/
 977/*              YM3812 local section                                                   */
 978/*******************************************************************************/
 979
 980/* ---------- update one of chip ----------- */
 981void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length)
 982{
 983    int i;
 984        int data;
 985        int16_t *buf = buffer;
 986        uint32_t amsCnt  = OPL->amsCnt;
 987        uint32_t  vibCnt  = OPL->vibCnt;
 988        uint8_t rhythm = OPL->rhythm&0x20;
 989        OPL_CH *CH,*R_CH;
 990
 991        if( (void *)OPL != cur_chip ){
 992                cur_chip = (void *)OPL;
 993                /* channel pointers */
 994                S_CH = OPL->P_CH;
 995                E_CH = &S_CH[9];
 996                /* rhythm slot */
 997                SLOT7_1 = &S_CH[7].SLOT[SLOT1];
 998                SLOT7_2 = &S_CH[7].SLOT[SLOT2];
 999                SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1000                SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1001                /* LFO state */
1002                amsIncr = OPL->amsIncr;
1003                vibIncr = OPL->vibIncr;
1004                ams_table = OPL->ams_table;
1005                vib_table = OPL->vib_table;
1006        }
1007        R_CH = rhythm ? &S_CH[6] : E_CH;
1008    for( i=0; i < length ; i++ )
1009        {
1010                /*            channel A         channel B         channel C      */
1011                /* LFO */
1012                ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1013                vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1014                outd[0] = 0;
1015                /* FM part */
1016                for(CH=S_CH ; CH < R_CH ; CH++)
1017                        OPL_CALC_CH(CH);
1018                /* Rythn part */
1019                if(rhythm)
1020                        OPL_CALC_RH(S_CH);
1021                /* limit check */
1022                data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1023                /* store to sound buffer */
1024                buf[i] = data >> OPL_OUTSB;
1025        }
1026
1027        OPL->amsCnt = amsCnt;
1028        OPL->vibCnt = vibCnt;
1029#ifdef OPL_OUTPUT_LOG
1030        if(opl_dbg_fp)
1031        {
1032                for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1033                        if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1034                fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1035        }
1036#endif
1037}
1038
1039/* ---------- reset one of chip ---------- */
1040static void OPLResetChip(FM_OPL *OPL)
1041{
1042        int c,s;
1043        int i;
1044
1045        /* reset chip */
1046        OPL->mode   = 0;        /* normal mode */
1047        OPL_STATUS_RESET(OPL,0x7f);
1048        /* reset with register write */
1049        OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1050        OPLWriteReg(OPL,0x02,0); /* Timer1 */
1051        OPLWriteReg(OPL,0x03,0); /* Timer2 */
1052        OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1053        for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1054        /* reset operator parameter */
1055        for( c = 0 ; c < OPL->max_ch ; c++ )
1056        {
1057                OPL_CH *CH = &OPL->P_CH[c];
1058                /* OPL->P_CH[c].PAN = OPN_CENTER; */
1059                for(s = 0 ; s < 2 ; s++ )
1060                {
1061                        /* wave table */
1062                        CH->SLOT[s].wavetable = &SIN_TABLE[0];
1063                        /* CH->SLOT[s].evm = ENV_MOD_RR; */
1064                        CH->SLOT[s].evc = EG_OFF;
1065                        CH->SLOT[s].eve = EG_OFF+1;
1066                        CH->SLOT[s].evs = 0;
1067                }
1068        }
1069}
1070
1071/* ----------  Create one of virtual YM3812 ----------       */
1072/* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
1073FM_OPL *OPLCreate(int clock, int rate)
1074{
1075        char *ptr;
1076        FM_OPL *OPL;
1077        int state_size;
1078        int max_ch = 9; /* normaly 9 channels */
1079
1080        if( OPL_LockTable() ==-1) return NULL;
1081        /* allocate OPL state space */
1082        state_size  = sizeof(FM_OPL);
1083        state_size += sizeof(OPL_CH)*max_ch;
1084        /* allocate memory block */
1085        ptr = malloc(state_size);
1086        if(ptr==NULL) return NULL;
1087        /* clear */
1088        memset(ptr,0,state_size);
1089        OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1090        OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1091        /* set channel state pointer */
1092        OPL->clock = clock;
1093        OPL->rate  = rate;
1094        OPL->max_ch = max_ch;
1095        /* init grobal tables */
1096        OPL_initialize(OPL);
1097        /* reset chip */
1098        OPLResetChip(OPL);
1099#ifdef OPL_OUTPUT_LOG
1100        if(!opl_dbg_fp)
1101        {
1102                opl_dbg_fp = fopen("opllog.opl","wb");
1103                opl_dbg_maxchip = 0;
1104        }
1105        if(opl_dbg_fp)
1106        {
1107                opl_dbg_opl[opl_dbg_maxchip] = OPL;
1108                fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1109                        type,
1110                        clock&0xff,
1111                        (clock/0x100)&0xff,
1112                        (clock/0x10000)&0xff,
1113                        (clock/0x1000000)&0xff);
1114                opl_dbg_maxchip++;
1115        }
1116#endif
1117        return OPL;
1118}
1119
1120/* ----------  Destroy one of virtual YM3812 ----------       */
1121void OPLDestroy(FM_OPL *OPL)
1122{
1123#ifdef OPL_OUTPUT_LOG
1124        if(opl_dbg_fp)
1125        {
1126                fclose(opl_dbg_fp);
1127                opl_dbg_fp = NULL;
1128        }
1129#endif
1130        OPL_UnLockTable();
1131        free(OPL);
1132}
1133
1134/* ----------  Option handlers ----------       */
1135
1136void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler,
1137                        void *param)
1138{
1139        OPL->TimerHandler   = TimerHandler;
1140    OPL->TimerParam = param;
1141}
1142
1143/* ---------- YM3812 I/O interface ---------- */
1144int OPLWrite(FM_OPL *OPL,int a,int v)
1145{
1146        if( !(a&1) )
1147        {       /* address port */
1148                OPL->address = v & 0xff;
1149        }
1150        else
1151        {       /* data port */
1152#ifdef OPL_OUTPUT_LOG
1153        if(opl_dbg_fp)
1154        {
1155                for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1156                        if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1157                fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1158        }
1159#endif
1160                OPLWriteReg(OPL,OPL->address,v);
1161        }
1162        return OPL->status>>7;
1163}
1164
1165unsigned char OPLRead(FM_OPL *OPL,int a)
1166{
1167        if( !(a&1) )
1168        {       /* status port */
1169                return OPL->status & (OPL->statusmask|0x80);
1170        }
1171        /* data port */
1172        switch(OPL->address)
1173        {
1174        case 0x05: /* KeyBoard IN */
1175                return 0;
1176#if 0
1177        case 0x0f: /* ADPCM-DATA  */
1178                return 0;
1179#endif
1180        case 0x19: /* I/O DATA    */
1181                return 0;
1182        case 0x1a: /* PCM-DATA    */
1183                return 0;
1184        }
1185        return 0;
1186}
1187
1188int OPLTimerOver(FM_OPL *OPL,int c)
1189{
1190        if( c )
1191        {       /* Timer B */
1192                OPL_STATUS_SET(OPL,0x20);
1193        }
1194        else
1195        {       /* Timer A */
1196                OPL_STATUS_SET(OPL,0x40);
1197                /* CSM mode key,TL control */
1198                if( OPL->mode & 0x80 )
1199                {       /* CSM mode total level latch and auto key on */
1200                        int ch;
1201                        for(ch=0;ch<9;ch++)
1202                                CSMKeyControll( &OPL->P_CH[ch] );
1203                }
1204        }
1205        /* reload timer */
1206    if (OPL->TimerHandler) {
1207        (OPL->TimerHandler)(OPL->TimerParam, c,
1208                            (double)OPL->T[c] * OPL->TimerBase);
1209    }
1210        return OPL->status>>7;
1211}
1212