qemu/hw/mips/boston.c
<<
>>
Prefs
   1/*
   2 * MIPS Boston development board emulation.
   3 *
   4 * Copyright (c) 2016 Imagination Technologies
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/units.h"
  22
  23#include "hw/boards.h"
  24#include "hw/char/serial.h"
  25#include "hw/ide/pci.h"
  26#include "hw/ide/ahci.h"
  27#include "hw/loader.h"
  28#include "hw/loader-fit.h"
  29#include "hw/mips/bootloader.h"
  30#include "hw/mips/cps.h"
  31#include "hw/pci-host/xilinx-pcie.h"
  32#include "hw/qdev-clock.h"
  33#include "hw/qdev-properties.h"
  34#include "qapi/error.h"
  35#include "qemu/error-report.h"
  36#include "qemu/log.h"
  37#include "chardev/char.h"
  38#include "sysemu/device_tree.h"
  39#include "sysemu/sysemu.h"
  40#include "sysemu/qtest.h"
  41#include "sysemu/runstate.h"
  42
  43#include <libfdt.h>
  44#include "qom/object.h"
  45
  46#define TYPE_BOSTON "mips-boston"
  47typedef struct BostonState BostonState;
  48DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
  49                         TYPE_BOSTON)
  50
  51struct BostonState {
  52    SysBusDevice parent_obj;
  53
  54    MachineState *mach;
  55    MIPSCPSState cps;
  56    SerialMM *uart;
  57    Clock *cpuclk;
  58
  59    CharBackend lcd_display;
  60    char lcd_content[8];
  61    bool lcd_inited;
  62
  63    hwaddr kernel_entry;
  64    hwaddr fdt_base;
  65};
  66
  67enum boston_plat_reg {
  68    PLAT_FPGA_BUILD     = 0x00,
  69    PLAT_CORE_CL        = 0x04,
  70    PLAT_WRAPPER_CL     = 0x08,
  71    PLAT_SYSCLK_STATUS  = 0x0c,
  72    PLAT_SOFTRST_CTL    = 0x10,
  73#define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
  74    PLAT_DDR3_STATUS    = 0x14,
  75#define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
  76#define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
  77    PLAT_PCIE_STATUS    = 0x18,
  78#define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
  79#define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
  80#define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
  81    PLAT_FLASH_CTL      = 0x1c,
  82    PLAT_SPARE0         = 0x20,
  83    PLAT_SPARE1         = 0x24,
  84    PLAT_SPARE2         = 0x28,
  85    PLAT_SPARE3         = 0x2c,
  86    PLAT_MMCM_DIV       = 0x30,
  87#define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
  88#define PLAT_MMCM_DIV_INPUT_SHIFT       8
  89#define PLAT_MMCM_DIV_MUL_SHIFT         16
  90#define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
  91    PLAT_BUILD_CFG      = 0x34,
  92#define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
  93#define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
  94#define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
  95#define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
  96    PLAT_DDR_CFG        = 0x38,
  97#define PLAT_DDR_CFG_SIZE               (0xf << 0)
  98#define PLAT_DDR_CFG_MHZ                (0xfff << 4)
  99    PLAT_NOC_PCIE0_ADDR = 0x3c,
 100    PLAT_NOC_PCIE1_ADDR = 0x40,
 101    PLAT_NOC_PCIE2_ADDR = 0x44,
 102    PLAT_SYS_CTL        = 0x48,
 103};
 104
 105static void boston_lcd_event(void *opaque, QEMUChrEvent event)
 106{
 107    BostonState *s = opaque;
 108    if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
 109        qemu_chr_fe_printf(&s->lcd_display, "        ");
 110        s->lcd_inited = true;
 111    }
 112}
 113
 114static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
 115                                unsigned size)
 116{
 117    BostonState *s = opaque;
 118    uint64_t val = 0;
 119
 120    switch (size) {
 121    case 8:
 122        val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
 123        val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
 124        val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
 125        val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
 126        /* fall through */
 127    case 4:
 128        val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
 129        val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
 130        /* fall through */
 131    case 2:
 132        val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
 133        /* fall through */
 134    case 1:
 135        val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
 136        break;
 137    }
 138
 139    return val;
 140}
 141
 142static void boston_lcd_write(void *opaque, hwaddr addr,
 143                             uint64_t val, unsigned size)
 144{
 145    BostonState *s = opaque;
 146
 147    switch (size) {
 148    case 8:
 149        s->lcd_content[(addr + 7) & 0x7] = val >> 56;
 150        s->lcd_content[(addr + 6) & 0x7] = val >> 48;
 151        s->lcd_content[(addr + 5) & 0x7] = val >> 40;
 152        s->lcd_content[(addr + 4) & 0x7] = val >> 32;
 153        /* fall through */
 154    case 4:
 155        s->lcd_content[(addr + 3) & 0x7] = val >> 24;
 156        s->lcd_content[(addr + 2) & 0x7] = val >> 16;
 157        /* fall through */
 158    case 2:
 159        s->lcd_content[(addr + 1) & 0x7] = val >> 8;
 160        /* fall through */
 161    case 1:
 162        s->lcd_content[(addr + 0) & 0x7] = val;
 163        break;
 164    }
 165
 166    qemu_chr_fe_printf(&s->lcd_display,
 167                       "\r%-8.8s", s->lcd_content);
 168}
 169
 170static const MemoryRegionOps boston_lcd_ops = {
 171    .read = boston_lcd_read,
 172    .write = boston_lcd_write,
 173    .endianness = DEVICE_NATIVE_ENDIAN,
 174};
 175
 176static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
 177                                    unsigned size)
 178{
 179    BostonState *s = opaque;
 180    uint32_t gic_freq, val;
 181
 182    if (size != 4) {
 183        qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
 184        return 0;
 185    }
 186
 187    switch (addr & 0xffff) {
 188    case PLAT_FPGA_BUILD:
 189    case PLAT_CORE_CL:
 190    case PLAT_WRAPPER_CL:
 191        return 0;
 192    case PLAT_DDR3_STATUS:
 193        return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
 194    case PLAT_MMCM_DIV:
 195        gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
 196        val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
 197        val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
 198        val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
 199        val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
 200        return val;
 201    case PLAT_BUILD_CFG:
 202        val = PLAT_BUILD_CFG_PCIE0_EN;
 203        val |= PLAT_BUILD_CFG_PCIE1_EN;
 204        val |= PLAT_BUILD_CFG_PCIE2_EN;
 205        return val;
 206    case PLAT_DDR_CFG:
 207        val = s->mach->ram_size / GiB;
 208        assert(!(val & ~PLAT_DDR_CFG_SIZE));
 209        val |= PLAT_DDR_CFG_MHZ;
 210        return val;
 211    default:
 212        qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
 213                      addr & 0xffff);
 214        return 0;
 215    }
 216}
 217
 218static void boston_platreg_write(void *opaque, hwaddr addr,
 219                                 uint64_t val, unsigned size)
 220{
 221    if (size != 4) {
 222        qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
 223        return;
 224    }
 225
 226    switch (addr & 0xffff) {
 227    case PLAT_FPGA_BUILD:
 228    case PLAT_CORE_CL:
 229    case PLAT_WRAPPER_CL:
 230    case PLAT_DDR3_STATUS:
 231    case PLAT_PCIE_STATUS:
 232    case PLAT_MMCM_DIV:
 233    case PLAT_BUILD_CFG:
 234    case PLAT_DDR_CFG:
 235        /* read only */
 236        break;
 237    case PLAT_SOFTRST_CTL:
 238        if (val & PLAT_SOFTRST_CTL_SYSRESET) {
 239            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 240        }
 241        break;
 242    default:
 243        qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
 244                      " = 0x%" PRIx64 "\n", addr & 0xffff, val);
 245        break;
 246    }
 247}
 248
 249static const MemoryRegionOps boston_platreg_ops = {
 250    .read = boston_platreg_read,
 251    .write = boston_platreg_write,
 252    .endianness = DEVICE_NATIVE_ENDIAN,
 253};
 254
 255static void mips_boston_instance_init(Object *obj)
 256{
 257    BostonState *s = BOSTON(obj);
 258
 259    s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
 260    clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
 261}
 262
 263static const TypeInfo boston_device = {
 264    .name          = TYPE_BOSTON,
 265    .parent        = TYPE_SYS_BUS_DEVICE,
 266    .instance_size = sizeof(BostonState),
 267    .instance_init = mips_boston_instance_init,
 268};
 269
 270static void boston_register_types(void)
 271{
 272    type_register_static(&boston_device);
 273}
 274type_init(boston_register_types)
 275
 276static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr)
 277{
 278    const uint32_t cm_base = 0x16100000;
 279    const uint32_t gic_base = 0x16120000;
 280    const uint32_t cpc_base = 0x16200000;
 281
 282    /* Move CM GCRs */
 283    bl_gen_write_ulong(&p,
 284                       cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS),
 285                       cm_base);
 286
 287    /* Move & enable GIC GCRs */
 288    bl_gen_write_ulong(&p,
 289                       cpu_mips_phys_to_kseg1(NULL, cm_base + GCR_GIC_BASE_OFS),
 290                       gic_base | GCR_GIC_BASE_GICEN_MSK);
 291
 292    /* Move & enable CPC GCRs */
 293    bl_gen_write_ulong(&p,
 294                       cpu_mips_phys_to_kseg1(NULL, cm_base + GCR_CPC_BASE_OFS),
 295                       cpc_base | GCR_CPC_BASE_CPCEN_MSK);
 296
 297    /*
 298     * Setup argument registers to follow the UHI boot protocol:
 299     *
 300     * a0/$4 = -2
 301     * a1/$5 = virtual address of FDT
 302     * a2/$6 = 0
 303     * a3/$7 = 0
 304     */
 305    bl_gen_jump_kernel(&p, 0, (int32_t)-2, fdt_addr, 0, 0, kernel_entry);
 306}
 307
 308static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
 309                                     const void *match_data, hwaddr *load_addr)
 310{
 311    BostonState *s = BOSTON(opaque);
 312    MachineState *machine = s->mach;
 313    const char *cmdline;
 314    int err;
 315    size_t ram_low_sz, ram_high_sz;
 316    size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
 317    g_autofree void *fdt = g_malloc0(fdt_sz);
 318
 319    err = fdt_open_into(fdt_orig, fdt, fdt_sz);
 320    if (err) {
 321        fprintf(stderr, "unable to open FDT\n");
 322        return NULL;
 323    }
 324
 325    cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
 326            ? machine->kernel_cmdline : " ";
 327    err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
 328    if (err < 0) {
 329        fprintf(stderr, "couldn't set /chosen/bootargs\n");
 330        return NULL;
 331    }
 332
 333    ram_low_sz = MIN(256 * MiB, machine->ram_size);
 334    ram_high_sz = machine->ram_size - ram_low_sz;
 335    qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
 336                                 1, 0x00000000, 1, ram_low_sz,
 337                                 1, 0x90000000, 1, ram_high_sz);
 338
 339    fdt = g_realloc(fdt, fdt_totalsize(fdt));
 340    qemu_fdt_dumpdtb(fdt, fdt_sz);
 341
 342    s->fdt_base = *load_addr;
 343
 344    return g_steal_pointer(&fdt);
 345}
 346
 347static const void *boston_kernel_filter(void *opaque, const void *kernel,
 348                                        hwaddr *load_addr, hwaddr *entry_addr)
 349{
 350    BostonState *s = BOSTON(opaque);
 351
 352    s->kernel_entry = *entry_addr;
 353
 354    return kernel;
 355}
 356
 357static const struct fit_loader_match boston_matches[] = {
 358    { "img,boston" },
 359    { NULL },
 360};
 361
 362static const struct fit_loader boston_fit_loader = {
 363    .matches = boston_matches,
 364    .addr_to_phys = cpu_mips_kseg0_to_phys,
 365    .fdt_filter = boston_fdt_filter,
 366    .kernel_filter = boston_kernel_filter,
 367};
 368
 369static inline XilinxPCIEHost *
 370xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
 371                 hwaddr cfg_base, uint64_t cfg_size,
 372                 hwaddr mmio_base, uint64_t mmio_size,
 373                 qemu_irq irq, bool link_up)
 374{
 375    DeviceState *dev;
 376    MemoryRegion *cfg, *mmio;
 377
 378    dev = qdev_new(TYPE_XILINX_PCIE_HOST);
 379
 380    qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
 381    qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
 382    qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
 383    qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
 384    qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
 385    qdev_prop_set_bit(dev, "link_up", link_up);
 386
 387    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 388
 389    cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
 390    memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
 391
 392    mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
 393    memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
 394
 395    qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
 396
 397    return XILINX_PCIE_HOST(dev);
 398}
 399
 400static void boston_mach_init(MachineState *machine)
 401{
 402    DeviceState *dev;
 403    BostonState *s;
 404    MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
 405    MemoryRegion *sys_mem = get_system_memory();
 406    XilinxPCIEHost *pcie2;
 407    PCIDevice *ahci;
 408    DriveInfo *hd[6];
 409    Chardev *chr;
 410    int fw_size, fit_err;
 411
 412    if ((machine->ram_size % GiB) ||
 413        (machine->ram_size > (2 * GiB))) {
 414        error_report("Memory size must be 1GB or 2GB");
 415        exit(1);
 416    }
 417
 418    dev = qdev_new(TYPE_BOSTON);
 419    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 420
 421    s = BOSTON(dev);
 422    s->mach = machine;
 423
 424    if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
 425        error_report("Boston requires CPUs which support CPS");
 426        exit(1);
 427    }
 428
 429    object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
 430    object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
 431                            &error_fatal);
 432    object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
 433                            &error_fatal);
 434    qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
 435                          qdev_get_clock_out(dev, "cpu-refclk"));
 436    sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
 437
 438    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
 439
 440    flash =  g_new(MemoryRegion, 1);
 441    memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB,
 442                           &error_fatal);
 443    memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
 444
 445    memory_region_add_subregion_overlap(sys_mem, 0x80000000, machine->ram, 0);
 446
 447    ddr_low_alias = g_new(MemoryRegion, 1);
 448    memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
 449                             machine->ram, 0,
 450                             MIN(machine->ram_size, (256 * MiB)));
 451    memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
 452
 453    xilinx_pcie_init(sys_mem, 0,
 454                     0x10000000, 32 * MiB,
 455                     0x40000000, 1 * GiB,
 456                     get_cps_irq(&s->cps, 2), false);
 457
 458    xilinx_pcie_init(sys_mem, 1,
 459                     0x12000000, 32 * MiB,
 460                     0x20000000, 512 * MiB,
 461                     get_cps_irq(&s->cps, 1), false);
 462
 463    pcie2 = xilinx_pcie_init(sys_mem, 2,
 464                             0x14000000, 32 * MiB,
 465                             0x16000000, 1 * MiB,
 466                             get_cps_irq(&s->cps, 0), true);
 467
 468    platreg = g_new(MemoryRegion, 1);
 469    memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
 470                          "boston-platregs", 0x1000);
 471    memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
 472
 473    s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
 474                             get_cps_irq(&s->cps, 3), 10000000,
 475                             serial_hd(0), DEVICE_NATIVE_ENDIAN);
 476
 477    lcd = g_new(MemoryRegion, 1);
 478    memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
 479    memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
 480
 481    chr = qemu_chr_new("lcd", "vc:320x240", NULL);
 482    qemu_chr_fe_init(&s->lcd_display, chr, NULL);
 483    qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
 484                             boston_lcd_event, NULL, s, NULL, true);
 485
 486    ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
 487                                           PCI_DEVFN(0, 0),
 488                                           true, TYPE_ICH9_AHCI);
 489    g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
 490    ide_drive_get(hd, ahci_get_num_ports(ahci));
 491    ahci_ide_create_devs(ahci, hd);
 492
 493    if (machine->firmware) {
 494        fw_size = load_image_targphys(machine->firmware,
 495                                      0x1fc00000, 4 * MiB);
 496        if (fw_size == -1) {
 497            error_report("unable to load firmware image '%s'",
 498                          machine->firmware);
 499            exit(1);
 500        }
 501    } else if (machine->kernel_filename) {
 502        fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
 503        if (fit_err) {
 504            error_report("unable to load FIT image");
 505            exit(1);
 506        }
 507
 508        gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
 509                     s->kernel_entry, s->fdt_base);
 510    } else if (!qtest_enabled()) {
 511        error_report("Please provide either a -kernel or -bios argument");
 512        exit(1);
 513    }
 514}
 515
 516static void boston_mach_class_init(MachineClass *mc)
 517{
 518    mc->desc = "MIPS Boston";
 519    mc->init = boston_mach_init;
 520    mc->block_default_type = IF_IDE;
 521    mc->default_ram_size = 1 * GiB;
 522    mc->default_ram_id = "boston.ddr";
 523    mc->max_cpus = 16;
 524    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
 525}
 526
 527DEFINE_MACHINE("boston", boston_mach_class_init)
 528