qemu/hw/arm/stellaris.c
<<
>>
Prefs
   1/*
   2 * Luminary Micro Stellaris peripherals
   3 *
   4 * Copyright (c) 2006 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qapi/error.h"
  12#include "hw/sysbus.h"
  13#include "hw/ssi/ssi.h"
  14#include "hw/arm/boot.h"
  15#include "qemu/timer.h"
  16#include "hw/i2c/i2c.h"
  17#include "net/net.h"
  18#include "hw/boards.h"
  19#include "qemu/log.h"
  20#include "exec/address-spaces.h"
  21#include "sysemu/sysemu.h"
  22#include "hw/arm/armv7m.h"
  23#include "hw/char/pl011.h"
  24#include "hw/input/gamepad.h"
  25#include "hw/irq.h"
  26#include "hw/watchdog/cmsdk-apb-watchdog.h"
  27#include "migration/vmstate.h"
  28#include "hw/misc/unimp.h"
  29#include "hw/qdev-clock.h"
  30#include "qom/object.h"
  31
  32#define GPIO_A 0
  33#define GPIO_B 1
  34#define GPIO_C 2
  35#define GPIO_D 3
  36#define GPIO_E 4
  37#define GPIO_F 5
  38#define GPIO_G 6
  39
  40#define BP_OLED_I2C  0x01
  41#define BP_OLED_SSI  0x02
  42#define BP_GAMEPAD   0x04
  43
  44#define NUM_IRQ_LINES 64
  45
  46typedef const struct {
  47    const char *name;
  48    uint32_t did0;
  49    uint32_t did1;
  50    uint32_t dc0;
  51    uint32_t dc1;
  52    uint32_t dc2;
  53    uint32_t dc3;
  54    uint32_t dc4;
  55    uint32_t peripherals;
  56} stellaris_board_info;
  57
  58/* General purpose timer module.  */
  59
  60#define TYPE_STELLARIS_GPTM "stellaris-gptm"
  61OBJECT_DECLARE_SIMPLE_TYPE(gptm_state, STELLARIS_GPTM)
  62
  63struct gptm_state {
  64    SysBusDevice parent_obj;
  65
  66    MemoryRegion iomem;
  67    uint32_t config;
  68    uint32_t mode[2];
  69    uint32_t control;
  70    uint32_t state;
  71    uint32_t mask;
  72    uint32_t load[2];
  73    uint32_t match[2];
  74    uint32_t prescale[2];
  75    uint32_t match_prescale[2];
  76    uint32_t rtc;
  77    int64_t tick[2];
  78    struct gptm_state *opaque[2];
  79    QEMUTimer *timer[2];
  80    /* The timers have an alternate output used to trigger the ADC.  */
  81    qemu_irq trigger;
  82    qemu_irq irq;
  83};
  84
  85static void gptm_update_irq(gptm_state *s)
  86{
  87    int level;
  88    level = (s->state & s->mask) != 0;
  89    qemu_set_irq(s->irq, level);
  90}
  91
  92static void gptm_stop(gptm_state *s, int n)
  93{
  94    timer_del(s->timer[n]);
  95}
  96
  97static void gptm_reload(gptm_state *s, int n, int reset)
  98{
  99    int64_t tick;
 100    if (reset)
 101        tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 102    else
 103        tick = s->tick[n];
 104
 105    if (s->config == 0) {
 106        /* 32-bit CountDown.  */
 107        uint32_t count;
 108        count = s->load[0] | (s->load[1] << 16);
 109        tick += (int64_t)count * system_clock_scale;
 110    } else if (s->config == 1) {
 111        /* 32-bit RTC.  1Hz tick.  */
 112        tick += NANOSECONDS_PER_SECOND;
 113    } else if (s->mode[n] == 0xa) {
 114        /* PWM mode.  Not implemented.  */
 115    } else {
 116        qemu_log_mask(LOG_UNIMP,
 117                      "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
 118                      s->mode[n]);
 119        return;
 120    }
 121    s->tick[n] = tick;
 122    timer_mod(s->timer[n], tick);
 123}
 124
 125static void gptm_tick(void *opaque)
 126{
 127    gptm_state **p = (gptm_state **)opaque;
 128    gptm_state *s;
 129    int n;
 130
 131    s = *p;
 132    n = p - s->opaque;
 133    if (s->config == 0) {
 134        s->state |= 1;
 135        if ((s->control & 0x20)) {
 136            /* Output trigger.  */
 137            qemu_irq_pulse(s->trigger);
 138        }
 139        if (s->mode[0] & 1) {
 140            /* One-shot.  */
 141            s->control &= ~1;
 142        } else {
 143            /* Periodic.  */
 144            gptm_reload(s, 0, 0);
 145        }
 146    } else if (s->config == 1) {
 147        /* RTC.  */
 148        uint32_t match;
 149        s->rtc++;
 150        match = s->match[0] | (s->match[1] << 16);
 151        if (s->rtc > match)
 152            s->rtc = 0;
 153        if (s->rtc == 0) {
 154            s->state |= 8;
 155        }
 156        gptm_reload(s, 0, 0);
 157    } else if (s->mode[n] == 0xa) {
 158        /* PWM mode.  Not implemented.  */
 159    } else {
 160        qemu_log_mask(LOG_UNIMP,
 161                      "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
 162                      s->mode[n]);
 163    }
 164    gptm_update_irq(s);
 165}
 166
 167static uint64_t gptm_read(void *opaque, hwaddr offset,
 168                          unsigned size)
 169{
 170    gptm_state *s = (gptm_state *)opaque;
 171
 172    switch (offset) {
 173    case 0x00: /* CFG */
 174        return s->config;
 175    case 0x04: /* TAMR */
 176        return s->mode[0];
 177    case 0x08: /* TBMR */
 178        return s->mode[1];
 179    case 0x0c: /* CTL */
 180        return s->control;
 181    case 0x18: /* IMR */
 182        return s->mask;
 183    case 0x1c: /* RIS */
 184        return s->state;
 185    case 0x20: /* MIS */
 186        return s->state & s->mask;
 187    case 0x24: /* CR */
 188        return 0;
 189    case 0x28: /* TAILR */
 190        return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
 191    case 0x2c: /* TBILR */
 192        return s->load[1];
 193    case 0x30: /* TAMARCHR */
 194        return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
 195    case 0x34: /* TBMATCHR */
 196        return s->match[1];
 197    case 0x38: /* TAPR */
 198        return s->prescale[0];
 199    case 0x3c: /* TBPR */
 200        return s->prescale[1];
 201    case 0x40: /* TAPMR */
 202        return s->match_prescale[0];
 203    case 0x44: /* TBPMR */
 204        return s->match_prescale[1];
 205    case 0x48: /* TAR */
 206        if (s->config == 1) {
 207            return s->rtc;
 208        }
 209        qemu_log_mask(LOG_UNIMP,
 210                      "GPTM: read of TAR but timer read not supported\n");
 211        return 0;
 212    case 0x4c: /* TBR */
 213        qemu_log_mask(LOG_UNIMP,
 214                      "GPTM: read of TBR but timer read not supported\n");
 215        return 0;
 216    default:
 217        qemu_log_mask(LOG_GUEST_ERROR,
 218                      "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
 219                      offset);
 220        return 0;
 221    }
 222}
 223
 224static void gptm_write(void *opaque, hwaddr offset,
 225                       uint64_t value, unsigned size)
 226{
 227    gptm_state *s = (gptm_state *)opaque;
 228    uint32_t oldval;
 229
 230    /* The timers should be disabled before changing the configuration.
 231       We take advantage of this and defer everything until the timer
 232       is enabled.  */
 233    switch (offset) {
 234    case 0x00: /* CFG */
 235        s->config = value;
 236        break;
 237    case 0x04: /* TAMR */
 238        s->mode[0] = value;
 239        break;
 240    case 0x08: /* TBMR */
 241        s->mode[1] = value;
 242        break;
 243    case 0x0c: /* CTL */
 244        oldval = s->control;
 245        s->control = value;
 246        /* TODO: Implement pause.  */
 247        if ((oldval ^ value) & 1) {
 248            if (value & 1) {
 249                gptm_reload(s, 0, 1);
 250            } else {
 251                gptm_stop(s, 0);
 252            }
 253        }
 254        if (((oldval ^ value) & 0x100) && s->config >= 4) {
 255            if (value & 0x100) {
 256                gptm_reload(s, 1, 1);
 257            } else {
 258                gptm_stop(s, 1);
 259            }
 260        }
 261        break;
 262    case 0x18: /* IMR */
 263        s->mask = value & 0x77;
 264        gptm_update_irq(s);
 265        break;
 266    case 0x24: /* CR */
 267        s->state &= ~value;
 268        break;
 269    case 0x28: /* TAILR */
 270        s->load[0] = value & 0xffff;
 271        if (s->config < 4) {
 272            s->load[1] = value >> 16;
 273        }
 274        break;
 275    case 0x2c: /* TBILR */
 276        s->load[1] = value & 0xffff;
 277        break;
 278    case 0x30: /* TAMARCHR */
 279        s->match[0] = value & 0xffff;
 280        if (s->config < 4) {
 281            s->match[1] = value >> 16;
 282        }
 283        break;
 284    case 0x34: /* TBMATCHR */
 285        s->match[1] = value >> 16;
 286        break;
 287    case 0x38: /* TAPR */
 288        s->prescale[0] = value;
 289        break;
 290    case 0x3c: /* TBPR */
 291        s->prescale[1] = value;
 292        break;
 293    case 0x40: /* TAPMR */
 294        s->match_prescale[0] = value;
 295        break;
 296    case 0x44: /* TBPMR */
 297        s->match_prescale[0] = value;
 298        break;
 299    default:
 300        qemu_log_mask(LOG_GUEST_ERROR,
 301                      "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
 302                      offset);
 303    }
 304    gptm_update_irq(s);
 305}
 306
 307static const MemoryRegionOps gptm_ops = {
 308    .read = gptm_read,
 309    .write = gptm_write,
 310    .endianness = DEVICE_NATIVE_ENDIAN,
 311};
 312
 313static const VMStateDescription vmstate_stellaris_gptm = {
 314    .name = "stellaris_gptm",
 315    .version_id = 1,
 316    .minimum_version_id = 1,
 317    .fields = (VMStateField[]) {
 318        VMSTATE_UINT32(config, gptm_state),
 319        VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
 320        VMSTATE_UINT32(control, gptm_state),
 321        VMSTATE_UINT32(state, gptm_state),
 322        VMSTATE_UINT32(mask, gptm_state),
 323        VMSTATE_UNUSED(8),
 324        VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
 325        VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
 326        VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
 327        VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
 328        VMSTATE_UINT32(rtc, gptm_state),
 329        VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
 330        VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
 331        VMSTATE_END_OF_LIST()
 332    }
 333};
 334
 335static void stellaris_gptm_init(Object *obj)
 336{
 337    DeviceState *dev = DEVICE(obj);
 338    gptm_state *s = STELLARIS_GPTM(obj);
 339    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 340
 341    sysbus_init_irq(sbd, &s->irq);
 342    qdev_init_gpio_out(dev, &s->trigger, 1);
 343
 344    memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
 345                          "gptm", 0x1000);
 346    sysbus_init_mmio(sbd, &s->iomem);
 347
 348    s->opaque[0] = s->opaque[1] = s;
 349}
 350
 351static void stellaris_gptm_realize(DeviceState *dev, Error **errp)
 352{
 353    gptm_state *s = STELLARIS_GPTM(dev);
 354    s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
 355    s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
 356}
 357
 358/* System controller.  */
 359
 360#define TYPE_STELLARIS_SYS "stellaris-sys"
 361OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
 362
 363struct ssys_state {
 364    SysBusDevice parent_obj;
 365
 366    MemoryRegion iomem;
 367    uint32_t pborctl;
 368    uint32_t ldopctl;
 369    uint32_t int_status;
 370    uint32_t int_mask;
 371    uint32_t resc;
 372    uint32_t rcc;
 373    uint32_t rcc2;
 374    uint32_t rcgc[3];
 375    uint32_t scgc[3];
 376    uint32_t dcgc[3];
 377    uint32_t clkvclr;
 378    uint32_t ldoarst;
 379    qemu_irq irq;
 380    Clock *sysclk;
 381    /* Properties (all read-only registers) */
 382    uint32_t user0;
 383    uint32_t user1;
 384    uint32_t did0;
 385    uint32_t did1;
 386    uint32_t dc0;
 387    uint32_t dc1;
 388    uint32_t dc2;
 389    uint32_t dc3;
 390    uint32_t dc4;
 391};
 392
 393static void ssys_update(ssys_state *s)
 394{
 395  qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
 396}
 397
 398static uint32_t pllcfg_sandstorm[16] = {
 399    0x31c0, /* 1 Mhz */
 400    0x1ae0, /* 1.8432 Mhz */
 401    0x18c0, /* 2 Mhz */
 402    0xd573, /* 2.4576 Mhz */
 403    0x37a6, /* 3.57954 Mhz */
 404    0x1ae2, /* 3.6864 Mhz */
 405    0x0c40, /* 4 Mhz */
 406    0x98bc, /* 4.906 Mhz */
 407    0x935b, /* 4.9152 Mhz */
 408    0x09c0, /* 5 Mhz */
 409    0x4dee, /* 5.12 Mhz */
 410    0x0c41, /* 6 Mhz */
 411    0x75db, /* 6.144 Mhz */
 412    0x1ae6, /* 7.3728 Mhz */
 413    0x0600, /* 8 Mhz */
 414    0x585b /* 8.192 Mhz */
 415};
 416
 417static uint32_t pllcfg_fury[16] = {
 418    0x3200, /* 1 Mhz */
 419    0x1b20, /* 1.8432 Mhz */
 420    0x1900, /* 2 Mhz */
 421    0xf42b, /* 2.4576 Mhz */
 422    0x37e3, /* 3.57954 Mhz */
 423    0x1b21, /* 3.6864 Mhz */
 424    0x0c80, /* 4 Mhz */
 425    0x98ee, /* 4.906 Mhz */
 426    0xd5b4, /* 4.9152 Mhz */
 427    0x0a00, /* 5 Mhz */
 428    0x4e27, /* 5.12 Mhz */
 429    0x1902, /* 6 Mhz */
 430    0xec1c, /* 6.144 Mhz */
 431    0x1b23, /* 7.3728 Mhz */
 432    0x0640, /* 8 Mhz */
 433    0xb11c /* 8.192 Mhz */
 434};
 435
 436#define DID0_VER_MASK        0x70000000
 437#define DID0_VER_0           0x00000000
 438#define DID0_VER_1           0x10000000
 439
 440#define DID0_CLASS_MASK      0x00FF0000
 441#define DID0_CLASS_SANDSTORM 0x00000000
 442#define DID0_CLASS_FURY      0x00010000
 443
 444static int ssys_board_class(const ssys_state *s)
 445{
 446    uint32_t did0 = s->did0;
 447    switch (did0 & DID0_VER_MASK) {
 448    case DID0_VER_0:
 449        return DID0_CLASS_SANDSTORM;
 450    case DID0_VER_1:
 451        switch (did0 & DID0_CLASS_MASK) {
 452        case DID0_CLASS_SANDSTORM:
 453        case DID0_CLASS_FURY:
 454            return did0 & DID0_CLASS_MASK;
 455        }
 456        /* for unknown classes, fall through */
 457    default:
 458        /* This can only happen if the hardwired constant did0 value
 459         * in this board's stellaris_board_info struct is wrong.
 460         */
 461        g_assert_not_reached();
 462    }
 463}
 464
 465static uint64_t ssys_read(void *opaque, hwaddr offset,
 466                          unsigned size)
 467{
 468    ssys_state *s = (ssys_state *)opaque;
 469
 470    switch (offset) {
 471    case 0x000: /* DID0 */
 472        return s->did0;
 473    case 0x004: /* DID1 */
 474        return s->did1;
 475    case 0x008: /* DC0 */
 476        return s->dc0;
 477    case 0x010: /* DC1 */
 478        return s->dc1;
 479    case 0x014: /* DC2 */
 480        return s->dc2;
 481    case 0x018: /* DC3 */
 482        return s->dc3;
 483    case 0x01c: /* DC4 */
 484        return s->dc4;
 485    case 0x030: /* PBORCTL */
 486        return s->pborctl;
 487    case 0x034: /* LDOPCTL */
 488        return s->ldopctl;
 489    case 0x040: /* SRCR0 */
 490        return 0;
 491    case 0x044: /* SRCR1 */
 492        return 0;
 493    case 0x048: /* SRCR2 */
 494        return 0;
 495    case 0x050: /* RIS */
 496        return s->int_status;
 497    case 0x054: /* IMC */
 498        return s->int_mask;
 499    case 0x058: /* MISC */
 500        return s->int_status & s->int_mask;
 501    case 0x05c: /* RESC */
 502        return s->resc;
 503    case 0x060: /* RCC */
 504        return s->rcc;
 505    case 0x064: /* PLLCFG */
 506        {
 507            int xtal;
 508            xtal = (s->rcc >> 6) & 0xf;
 509            switch (ssys_board_class(s)) {
 510            case DID0_CLASS_FURY:
 511                return pllcfg_fury[xtal];
 512            case DID0_CLASS_SANDSTORM:
 513                return pllcfg_sandstorm[xtal];
 514            default:
 515                g_assert_not_reached();
 516            }
 517        }
 518    case 0x070: /* RCC2 */
 519        return s->rcc2;
 520    case 0x100: /* RCGC0 */
 521        return s->rcgc[0];
 522    case 0x104: /* RCGC1 */
 523        return s->rcgc[1];
 524    case 0x108: /* RCGC2 */
 525        return s->rcgc[2];
 526    case 0x110: /* SCGC0 */
 527        return s->scgc[0];
 528    case 0x114: /* SCGC1 */
 529        return s->scgc[1];
 530    case 0x118: /* SCGC2 */
 531        return s->scgc[2];
 532    case 0x120: /* DCGC0 */
 533        return s->dcgc[0];
 534    case 0x124: /* DCGC1 */
 535        return s->dcgc[1];
 536    case 0x128: /* DCGC2 */
 537        return s->dcgc[2];
 538    case 0x150: /* CLKVCLR */
 539        return s->clkvclr;
 540    case 0x160: /* LDOARST */
 541        return s->ldoarst;
 542    case 0x1e0: /* USER0 */
 543        return s->user0;
 544    case 0x1e4: /* USER1 */
 545        return s->user1;
 546    default:
 547        qemu_log_mask(LOG_GUEST_ERROR,
 548                      "SSYS: read at bad offset 0x%x\n", (int)offset);
 549        return 0;
 550    }
 551}
 552
 553static bool ssys_use_rcc2(ssys_state *s)
 554{
 555    return (s->rcc2 >> 31) & 0x1;
 556}
 557
 558/*
 559 * Calculate the system clock period. We only want to propagate
 560 * this change to the rest of the system if we're not being called
 561 * from migration post-load.
 562 */
 563static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
 564{
 565    /*
 566     * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
 567     * clock is 200MHz, which is a period of 5 ns. Dividing the clock
 568     * frequency by X is the same as multiplying the period by X.
 569     */
 570    if (ssys_use_rcc2(s)) {
 571        system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
 572    } else {
 573        system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
 574    }
 575    clock_set_ns(s->sysclk, system_clock_scale);
 576    if (propagate_clock) {
 577        clock_propagate(s->sysclk);
 578    }
 579}
 580
 581static void ssys_write(void *opaque, hwaddr offset,
 582                       uint64_t value, unsigned size)
 583{
 584    ssys_state *s = (ssys_state *)opaque;
 585
 586    switch (offset) {
 587    case 0x030: /* PBORCTL */
 588        s->pborctl = value & 0xffff;
 589        break;
 590    case 0x034: /* LDOPCTL */
 591        s->ldopctl = value & 0x1f;
 592        break;
 593    case 0x040: /* SRCR0 */
 594    case 0x044: /* SRCR1 */
 595    case 0x048: /* SRCR2 */
 596        qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
 597        break;
 598    case 0x054: /* IMC */
 599        s->int_mask = value & 0x7f;
 600        break;
 601    case 0x058: /* MISC */
 602        s->int_status &= ~value;
 603        break;
 604    case 0x05c: /* RESC */
 605        s->resc = value & 0x3f;
 606        break;
 607    case 0x060: /* RCC */
 608        if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
 609            /* PLL enable.  */
 610            s->int_status |= (1 << 6);
 611        }
 612        s->rcc = value;
 613        ssys_calculate_system_clock(s, true);
 614        break;
 615    case 0x070: /* RCC2 */
 616        if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
 617            break;
 618        }
 619
 620        if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
 621            /* PLL enable.  */
 622            s->int_status |= (1 << 6);
 623        }
 624        s->rcc2 = value;
 625        ssys_calculate_system_clock(s, true);
 626        break;
 627    case 0x100: /* RCGC0 */
 628        s->rcgc[0] = value;
 629        break;
 630    case 0x104: /* RCGC1 */
 631        s->rcgc[1] = value;
 632        break;
 633    case 0x108: /* RCGC2 */
 634        s->rcgc[2] = value;
 635        break;
 636    case 0x110: /* SCGC0 */
 637        s->scgc[0] = value;
 638        break;
 639    case 0x114: /* SCGC1 */
 640        s->scgc[1] = value;
 641        break;
 642    case 0x118: /* SCGC2 */
 643        s->scgc[2] = value;
 644        break;
 645    case 0x120: /* DCGC0 */
 646        s->dcgc[0] = value;
 647        break;
 648    case 0x124: /* DCGC1 */
 649        s->dcgc[1] = value;
 650        break;
 651    case 0x128: /* DCGC2 */
 652        s->dcgc[2] = value;
 653        break;
 654    case 0x150: /* CLKVCLR */
 655        s->clkvclr = value;
 656        break;
 657    case 0x160: /* LDOARST */
 658        s->ldoarst = value;
 659        break;
 660    default:
 661        qemu_log_mask(LOG_GUEST_ERROR,
 662                      "SSYS: write at bad offset 0x%x\n", (int)offset);
 663    }
 664    ssys_update(s);
 665}
 666
 667static const MemoryRegionOps ssys_ops = {
 668    .read = ssys_read,
 669    .write = ssys_write,
 670    .endianness = DEVICE_NATIVE_ENDIAN,
 671};
 672
 673static void stellaris_sys_reset_enter(Object *obj, ResetType type)
 674{
 675    ssys_state *s = STELLARIS_SYS(obj);
 676
 677    s->pborctl = 0x7ffd;
 678    s->rcc = 0x078e3ac0;
 679
 680    if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
 681        s->rcc2 = 0;
 682    } else {
 683        s->rcc2 = 0x07802810;
 684    }
 685    s->rcgc[0] = 1;
 686    s->scgc[0] = 1;
 687    s->dcgc[0] = 1;
 688}
 689
 690static void stellaris_sys_reset_hold(Object *obj)
 691{
 692    ssys_state *s = STELLARIS_SYS(obj);
 693
 694    /* OK to propagate clocks from the hold phase */
 695    ssys_calculate_system_clock(s, true);
 696}
 697
 698static void stellaris_sys_reset_exit(Object *obj)
 699{
 700}
 701
 702static int stellaris_sys_post_load(void *opaque, int version_id)
 703{
 704    ssys_state *s = opaque;
 705
 706    ssys_calculate_system_clock(s, false);
 707
 708    return 0;
 709}
 710
 711static const VMStateDescription vmstate_stellaris_sys = {
 712    .name = "stellaris_sys",
 713    .version_id = 2,
 714    .minimum_version_id = 1,
 715    .post_load = stellaris_sys_post_load,
 716    .fields = (VMStateField[]) {
 717        VMSTATE_UINT32(pborctl, ssys_state),
 718        VMSTATE_UINT32(ldopctl, ssys_state),
 719        VMSTATE_UINT32(int_mask, ssys_state),
 720        VMSTATE_UINT32(int_status, ssys_state),
 721        VMSTATE_UINT32(resc, ssys_state),
 722        VMSTATE_UINT32(rcc, ssys_state),
 723        VMSTATE_UINT32_V(rcc2, ssys_state, 2),
 724        VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
 725        VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
 726        VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
 727        VMSTATE_UINT32(clkvclr, ssys_state),
 728        VMSTATE_UINT32(ldoarst, ssys_state),
 729        /* No field for sysclk -- handled in post-load instead */
 730        VMSTATE_END_OF_LIST()
 731    }
 732};
 733
 734static Property stellaris_sys_properties[] = {
 735    DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
 736    DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
 737    DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
 738    DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
 739    DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
 740    DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
 741    DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
 742    DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
 743    DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
 744    DEFINE_PROP_END_OF_LIST()
 745};
 746
 747static void stellaris_sys_instance_init(Object *obj)
 748{
 749    ssys_state *s = STELLARIS_SYS(obj);
 750    SysBusDevice *sbd = SYS_BUS_DEVICE(s);
 751
 752    memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
 753    sysbus_init_mmio(sbd, &s->iomem);
 754    sysbus_init_irq(sbd, &s->irq);
 755    s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
 756}
 757
 758static DeviceState *stellaris_sys_init(uint32_t base, qemu_irq irq,
 759                                       stellaris_board_info *board,
 760                                       uint8_t *macaddr)
 761{
 762    DeviceState *dev = qdev_new(TYPE_STELLARIS_SYS);
 763    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 764
 765    /* Most devices come preprogrammed with a MAC address in the user data. */
 766    qdev_prop_set_uint32(dev, "user0",
 767                         macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
 768    qdev_prop_set_uint32(dev, "user1",
 769                         macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
 770    qdev_prop_set_uint32(dev, "did0", board->did0);
 771    qdev_prop_set_uint32(dev, "did1", board->did1);
 772    qdev_prop_set_uint32(dev, "dc0", board->dc0);
 773    qdev_prop_set_uint32(dev, "dc1", board->dc1);
 774    qdev_prop_set_uint32(dev, "dc2", board->dc2);
 775    qdev_prop_set_uint32(dev, "dc3", board->dc3);
 776    qdev_prop_set_uint32(dev, "dc4", board->dc4);
 777
 778    sysbus_realize_and_unref(sbd, &error_fatal);
 779    sysbus_mmio_map(sbd, 0, base);
 780    sysbus_connect_irq(sbd, 0, irq);
 781
 782    return dev;
 783}
 784
 785/* I2C controller.  */
 786
 787#define TYPE_STELLARIS_I2C "stellaris-i2c"
 788OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
 789
 790struct stellaris_i2c_state {
 791    SysBusDevice parent_obj;
 792
 793    I2CBus *bus;
 794    qemu_irq irq;
 795    MemoryRegion iomem;
 796    uint32_t msa;
 797    uint32_t mcs;
 798    uint32_t mdr;
 799    uint32_t mtpr;
 800    uint32_t mimr;
 801    uint32_t mris;
 802    uint32_t mcr;
 803};
 804
 805#define STELLARIS_I2C_MCS_BUSY    0x01
 806#define STELLARIS_I2C_MCS_ERROR   0x02
 807#define STELLARIS_I2C_MCS_ADRACK  0x04
 808#define STELLARIS_I2C_MCS_DATACK  0x08
 809#define STELLARIS_I2C_MCS_ARBLST  0x10
 810#define STELLARIS_I2C_MCS_IDLE    0x20
 811#define STELLARIS_I2C_MCS_BUSBSY  0x40
 812
 813static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
 814                                   unsigned size)
 815{
 816    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
 817
 818    switch (offset) {
 819    case 0x00: /* MSA */
 820        return s->msa;
 821    case 0x04: /* MCS */
 822        /* We don't emulate timing, so the controller is never busy.  */
 823        return s->mcs | STELLARIS_I2C_MCS_IDLE;
 824    case 0x08: /* MDR */
 825        return s->mdr;
 826    case 0x0c: /* MTPR */
 827        return s->mtpr;
 828    case 0x10: /* MIMR */
 829        return s->mimr;
 830    case 0x14: /* MRIS */
 831        return s->mris;
 832    case 0x18: /* MMIS */
 833        return s->mris & s->mimr;
 834    case 0x20: /* MCR */
 835        return s->mcr;
 836    default:
 837        qemu_log_mask(LOG_GUEST_ERROR,
 838                      "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
 839        return 0;
 840    }
 841}
 842
 843static void stellaris_i2c_update(stellaris_i2c_state *s)
 844{
 845    int level;
 846
 847    level = (s->mris & s->mimr) != 0;
 848    qemu_set_irq(s->irq, level);
 849}
 850
 851static void stellaris_i2c_write(void *opaque, hwaddr offset,
 852                                uint64_t value, unsigned size)
 853{
 854    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
 855
 856    switch (offset) {
 857    case 0x00: /* MSA */
 858        s->msa = value & 0xff;
 859        break;
 860    case 0x04: /* MCS */
 861        if ((s->mcr & 0x10) == 0) {
 862            /* Disabled.  Do nothing.  */
 863            break;
 864        }
 865        /* Grab the bus if this is starting a transfer.  */
 866        if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
 867            if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
 868                s->mcs |= STELLARIS_I2C_MCS_ARBLST;
 869            } else {
 870                s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
 871                s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
 872            }
 873        }
 874        /* If we don't have the bus then indicate an error.  */
 875        if (!i2c_bus_busy(s->bus)
 876                || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
 877            s->mcs |= STELLARIS_I2C_MCS_ERROR;
 878            break;
 879        }
 880        s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
 881        if (value & 1) {
 882            /* Transfer a byte.  */
 883            /* TODO: Handle errors.  */
 884            if (s->msa & 1) {
 885                /* Recv */
 886                s->mdr = i2c_recv(s->bus);
 887            } else {
 888                /* Send */
 889                i2c_send(s->bus, s->mdr);
 890            }
 891            /* Raise an interrupt.  */
 892            s->mris |= 1;
 893        }
 894        if (value & 4) {
 895            /* Finish transfer.  */
 896            i2c_end_transfer(s->bus);
 897            s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
 898        }
 899        break;
 900    case 0x08: /* MDR */
 901        s->mdr = value & 0xff;
 902        break;
 903    case 0x0c: /* MTPR */
 904        s->mtpr = value & 0xff;
 905        break;
 906    case 0x10: /* MIMR */
 907        s->mimr = 1;
 908        break;
 909    case 0x1c: /* MICR */
 910        s->mris &= ~value;
 911        break;
 912    case 0x20: /* MCR */
 913        if (value & 1) {
 914            qemu_log_mask(LOG_UNIMP,
 915                          "stellaris_i2c: Loopback not implemented\n");
 916        }
 917        if (value & 0x20) {
 918            qemu_log_mask(LOG_UNIMP,
 919                          "stellaris_i2c: Slave mode not implemented\n");
 920        }
 921        s->mcr = value & 0x31;
 922        break;
 923    default:
 924        qemu_log_mask(LOG_GUEST_ERROR,
 925                      "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
 926    }
 927    stellaris_i2c_update(s);
 928}
 929
 930static void stellaris_i2c_reset(stellaris_i2c_state *s)
 931{
 932    if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
 933        i2c_end_transfer(s->bus);
 934
 935    s->msa = 0;
 936    s->mcs = 0;
 937    s->mdr = 0;
 938    s->mtpr = 1;
 939    s->mimr = 0;
 940    s->mris = 0;
 941    s->mcr = 0;
 942    stellaris_i2c_update(s);
 943}
 944
 945static const MemoryRegionOps stellaris_i2c_ops = {
 946    .read = stellaris_i2c_read,
 947    .write = stellaris_i2c_write,
 948    .endianness = DEVICE_NATIVE_ENDIAN,
 949};
 950
 951static const VMStateDescription vmstate_stellaris_i2c = {
 952    .name = "stellaris_i2c",
 953    .version_id = 1,
 954    .minimum_version_id = 1,
 955    .fields = (VMStateField[]) {
 956        VMSTATE_UINT32(msa, stellaris_i2c_state),
 957        VMSTATE_UINT32(mcs, stellaris_i2c_state),
 958        VMSTATE_UINT32(mdr, stellaris_i2c_state),
 959        VMSTATE_UINT32(mtpr, stellaris_i2c_state),
 960        VMSTATE_UINT32(mimr, stellaris_i2c_state),
 961        VMSTATE_UINT32(mris, stellaris_i2c_state),
 962        VMSTATE_UINT32(mcr, stellaris_i2c_state),
 963        VMSTATE_END_OF_LIST()
 964    }
 965};
 966
 967static void stellaris_i2c_init(Object *obj)
 968{
 969    DeviceState *dev = DEVICE(obj);
 970    stellaris_i2c_state *s = STELLARIS_I2C(obj);
 971    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 972    I2CBus *bus;
 973
 974    sysbus_init_irq(sbd, &s->irq);
 975    bus = i2c_init_bus(dev, "i2c");
 976    s->bus = bus;
 977
 978    memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
 979                          "i2c", 0x1000);
 980    sysbus_init_mmio(sbd, &s->iomem);
 981    /* ??? For now we only implement the master interface.  */
 982    stellaris_i2c_reset(s);
 983}
 984
 985/* Analogue to Digital Converter.  This is only partially implemented,
 986   enough for applications that use a combined ADC and timer tick.  */
 987
 988#define STELLARIS_ADC_EM_CONTROLLER 0
 989#define STELLARIS_ADC_EM_COMP       1
 990#define STELLARIS_ADC_EM_EXTERNAL   4
 991#define STELLARIS_ADC_EM_TIMER      5
 992#define STELLARIS_ADC_EM_PWM0       6
 993#define STELLARIS_ADC_EM_PWM1       7
 994#define STELLARIS_ADC_EM_PWM2       8
 995
 996#define STELLARIS_ADC_FIFO_EMPTY    0x0100
 997#define STELLARIS_ADC_FIFO_FULL     0x1000
 998
 999#define TYPE_STELLARIS_ADC "stellaris-adc"
1000typedef struct StellarisADCState stellaris_adc_state;
1001DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC,
1002                         TYPE_STELLARIS_ADC)
1003
1004struct StellarisADCState {
1005    SysBusDevice parent_obj;
1006
1007    MemoryRegion iomem;
1008    uint32_t actss;
1009    uint32_t ris;
1010    uint32_t im;
1011    uint32_t emux;
1012    uint32_t ostat;
1013    uint32_t ustat;
1014    uint32_t sspri;
1015    uint32_t sac;
1016    struct {
1017        uint32_t state;
1018        uint32_t data[16];
1019    } fifo[4];
1020    uint32_t ssmux[4];
1021    uint32_t ssctl[4];
1022    uint32_t noise;
1023    qemu_irq irq[4];
1024};
1025
1026static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
1027{
1028    int tail;
1029
1030    tail = s->fifo[n].state & 0xf;
1031    if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
1032        s->ustat |= 1 << n;
1033    } else {
1034        s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
1035        s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
1036        if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
1037            s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
1038    }
1039    return s->fifo[n].data[tail];
1040}
1041
1042static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
1043                                     uint32_t value)
1044{
1045    int head;
1046
1047    /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry 
1048       FIFO fir each sequencer.  */
1049    head = (s->fifo[n].state >> 4) & 0xf;
1050    if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
1051        s->ostat |= 1 << n;
1052        return;
1053    }
1054    s->fifo[n].data[head] = value;
1055    head = (head + 1) & 0xf;
1056    s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
1057    s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
1058    if ((s->fifo[n].state & 0xf) == head)
1059        s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
1060}
1061
1062static void stellaris_adc_update(stellaris_adc_state *s)
1063{
1064    int level;
1065    int n;
1066
1067    for (n = 0; n < 4; n++) {
1068        level = (s->ris & s->im & (1 << n)) != 0;
1069        qemu_set_irq(s->irq[n], level);
1070    }
1071}
1072
1073static void stellaris_adc_trigger(void *opaque, int irq, int level)
1074{
1075    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1076    int n;
1077
1078    for (n = 0; n < 4; n++) {
1079        if ((s->actss & (1 << n)) == 0) {
1080            continue;
1081        }
1082
1083        if (((s->emux >> (n * 4)) & 0xff) != 5) {
1084            continue;
1085        }
1086
1087        /* Some applications use the ADC as a random number source, so introduce
1088           some variation into the signal.  */
1089        s->noise = s->noise * 314159 + 1;
1090        /* ??? actual inputs not implemented.  Return an arbitrary value.  */
1091        stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1092        s->ris |= (1 << n);
1093        stellaris_adc_update(s);
1094    }
1095}
1096
1097static void stellaris_adc_reset(stellaris_adc_state *s)
1098{
1099    int n;
1100
1101    for (n = 0; n < 4; n++) {
1102        s->ssmux[n] = 0;
1103        s->ssctl[n] = 0;
1104        s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1105    }
1106}
1107
1108static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1109                                   unsigned size)
1110{
1111    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1112
1113    /* TODO: Implement this.  */
1114    if (offset >= 0x40 && offset < 0xc0) {
1115        int n;
1116        n = (offset - 0x40) >> 5;
1117        switch (offset & 0x1f) {
1118        case 0x00: /* SSMUX */
1119            return s->ssmux[n];
1120        case 0x04: /* SSCTL */
1121            return s->ssctl[n];
1122        case 0x08: /* SSFIFO */
1123            return stellaris_adc_fifo_read(s, n);
1124        case 0x0c: /* SSFSTAT */
1125            return s->fifo[n].state;
1126        default:
1127            break;
1128        }
1129    }
1130    switch (offset) {
1131    case 0x00: /* ACTSS */
1132        return s->actss;
1133    case 0x04: /* RIS */
1134        return s->ris;
1135    case 0x08: /* IM */
1136        return s->im;
1137    case 0x0c: /* ISC */
1138        return s->ris & s->im;
1139    case 0x10: /* OSTAT */
1140        return s->ostat;
1141    case 0x14: /* EMUX */
1142        return s->emux;
1143    case 0x18: /* USTAT */
1144        return s->ustat;
1145    case 0x20: /* SSPRI */
1146        return s->sspri;
1147    case 0x30: /* SAC */
1148        return s->sac;
1149    default:
1150        qemu_log_mask(LOG_GUEST_ERROR,
1151                      "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1152        return 0;
1153    }
1154}
1155
1156static void stellaris_adc_write(void *opaque, hwaddr offset,
1157                                uint64_t value, unsigned size)
1158{
1159    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1160
1161    /* TODO: Implement this.  */
1162    if (offset >= 0x40 && offset < 0xc0) {
1163        int n;
1164        n = (offset - 0x40) >> 5;
1165        switch (offset & 0x1f) {
1166        case 0x00: /* SSMUX */
1167            s->ssmux[n] = value & 0x33333333;
1168            return;
1169        case 0x04: /* SSCTL */
1170            if (value != 6) {
1171                qemu_log_mask(LOG_UNIMP,
1172                              "ADC: Unimplemented sequence %" PRIx64 "\n",
1173                              value);
1174            }
1175            s->ssctl[n] = value;
1176            return;
1177        default:
1178            break;
1179        }
1180    }
1181    switch (offset) {
1182    case 0x00: /* ACTSS */
1183        s->actss = value & 0xf;
1184        break;
1185    case 0x08: /* IM */
1186        s->im = value;
1187        break;
1188    case 0x0c: /* ISC */
1189        s->ris &= ~value;
1190        break;
1191    case 0x10: /* OSTAT */
1192        s->ostat &= ~value;
1193        break;
1194    case 0x14: /* EMUX */
1195        s->emux = value;
1196        break;
1197    case 0x18: /* USTAT */
1198        s->ustat &= ~value;
1199        break;
1200    case 0x20: /* SSPRI */
1201        s->sspri = value;
1202        break;
1203    case 0x28: /* PSSI */
1204        qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
1205        break;
1206    case 0x30: /* SAC */
1207        s->sac = value;
1208        break;
1209    default:
1210        qemu_log_mask(LOG_GUEST_ERROR,
1211                      "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1212    }
1213    stellaris_adc_update(s);
1214}
1215
1216static const MemoryRegionOps stellaris_adc_ops = {
1217    .read = stellaris_adc_read,
1218    .write = stellaris_adc_write,
1219    .endianness = DEVICE_NATIVE_ENDIAN,
1220};
1221
1222static const VMStateDescription vmstate_stellaris_adc = {
1223    .name = "stellaris_adc",
1224    .version_id = 1,
1225    .minimum_version_id = 1,
1226    .fields = (VMStateField[]) {
1227        VMSTATE_UINT32(actss, stellaris_adc_state),
1228        VMSTATE_UINT32(ris, stellaris_adc_state),
1229        VMSTATE_UINT32(im, stellaris_adc_state),
1230        VMSTATE_UINT32(emux, stellaris_adc_state),
1231        VMSTATE_UINT32(ostat, stellaris_adc_state),
1232        VMSTATE_UINT32(ustat, stellaris_adc_state),
1233        VMSTATE_UINT32(sspri, stellaris_adc_state),
1234        VMSTATE_UINT32(sac, stellaris_adc_state),
1235        VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1236        VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1237        VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1238        VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1239        VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1240        VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1241        VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1242        VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1243        VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1244        VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1245        VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1246        VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1247        VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1248        VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1249        VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1250        VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1251        VMSTATE_UINT32(noise, stellaris_adc_state),
1252        VMSTATE_END_OF_LIST()
1253    }
1254};
1255
1256static void stellaris_adc_init(Object *obj)
1257{
1258    DeviceState *dev = DEVICE(obj);
1259    stellaris_adc_state *s = STELLARIS_ADC(obj);
1260    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1261    int n;
1262
1263    for (n = 0; n < 4; n++) {
1264        sysbus_init_irq(sbd, &s->irq[n]);
1265    }
1266
1267    memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1268                          "adc", 0x1000);
1269    sysbus_init_mmio(sbd, &s->iomem);
1270    stellaris_adc_reset(s);
1271    qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1272}
1273
1274/* Board init.  */
1275static stellaris_board_info stellaris_boards[] = {
1276  { "LM3S811EVB",
1277    0,
1278    0x0032000e,
1279    0x001f001f, /* dc0 */
1280    0x001132bf,
1281    0x01071013,
1282    0x3f0f01ff,
1283    0x0000001f,
1284    BP_OLED_I2C
1285  },
1286  { "LM3S6965EVB",
1287    0x10010002,
1288    0x1073402e,
1289    0x00ff007f, /* dc0 */
1290    0x001133ff,
1291    0x030f5317,
1292    0x0f0f87ff,
1293    0x5000007f,
1294    BP_OLED_SSI | BP_GAMEPAD
1295  }
1296};
1297
1298static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1299{
1300    static const int uart_irq[] = {5, 6, 33, 34};
1301    static const int timer_irq[] = {19, 21, 23, 35};
1302    static const uint32_t gpio_addr[7] =
1303      { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1304        0x40024000, 0x40025000, 0x40026000};
1305    static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1306
1307    /* Memory map of SoC devices, from
1308     * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1309     * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1310     *
1311     * 40000000 wdtimer
1312     * 40002000 i2c (unimplemented)
1313     * 40004000 GPIO
1314     * 40005000 GPIO
1315     * 40006000 GPIO
1316     * 40007000 GPIO
1317     * 40008000 SSI
1318     * 4000c000 UART
1319     * 4000d000 UART
1320     * 4000e000 UART
1321     * 40020000 i2c
1322     * 40021000 i2c (unimplemented)
1323     * 40024000 GPIO
1324     * 40025000 GPIO
1325     * 40026000 GPIO
1326     * 40028000 PWM (unimplemented)
1327     * 4002c000 QEI (unimplemented)
1328     * 4002d000 QEI (unimplemented)
1329     * 40030000 gptimer
1330     * 40031000 gptimer
1331     * 40032000 gptimer
1332     * 40033000 gptimer
1333     * 40038000 ADC
1334     * 4003c000 analogue comparator (unimplemented)
1335     * 40048000 ethernet
1336     * 400fc000 hibernation module (unimplemented)
1337     * 400fd000 flash memory control (unimplemented)
1338     * 400fe000 system control
1339     */
1340
1341    DeviceState *gpio_dev[7], *nvic;
1342    qemu_irq gpio_in[7][8];
1343    qemu_irq gpio_out[7][8];
1344    qemu_irq adc;
1345    int sram_size;
1346    int flash_size;
1347    I2CBus *i2c;
1348    DeviceState *dev;
1349    DeviceState *ssys_dev;
1350    int i;
1351    int j;
1352
1353    MemoryRegion *sram = g_new(MemoryRegion, 1);
1354    MemoryRegion *flash = g_new(MemoryRegion, 1);
1355    MemoryRegion *system_memory = get_system_memory();
1356
1357    flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1358    sram_size = ((board->dc0 >> 18) + 1) * 1024;
1359
1360    /* Flash programming is done via the SCU, so pretend it is ROM.  */
1361    memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1362                           &error_fatal);
1363    memory_region_add_subregion(system_memory, 0, flash);
1364
1365    memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1366                           &error_fatal);
1367    memory_region_add_subregion(system_memory, 0x20000000, sram);
1368
1369    nvic = qdev_new(TYPE_ARMV7M);
1370    qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1371    qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1372    qdev_prop_set_bit(nvic, "enable-bitband", true);
1373    object_property_set_link(OBJECT(nvic), "memory",
1374                             OBJECT(get_system_memory()), &error_abort);
1375    /* This will exit with an error if the user passed us a bad cpu_type */
1376    sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1377
1378    if (board->dc1 & (1 << 16)) {
1379        dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1380                                    qdev_get_gpio_in(nvic, 14),
1381                                    qdev_get_gpio_in(nvic, 15),
1382                                    qdev_get_gpio_in(nvic, 16),
1383                                    qdev_get_gpio_in(nvic, 17),
1384                                    NULL);
1385        adc = qdev_get_gpio_in(dev, 0);
1386    } else {
1387        adc = NULL;
1388    }
1389    for (i = 0; i < 4; i++) {
1390        if (board->dc2 & (0x10000 << i)) {
1391            dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1392                                       0x40030000 + i * 0x1000,
1393                                       qdev_get_gpio_in(nvic, timer_irq[i]));
1394            /* TODO: This is incorrect, but we get away with it because
1395               the ADC output is only ever pulsed.  */
1396            qdev_connect_gpio_out(dev, 0, adc);
1397        }
1398    }
1399
1400    ssys_dev = stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1401                                  board, nd_table[0].macaddr.a);
1402
1403
1404    if (board->dc1 & (1 << 3)) { /* watchdog present */
1405        dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1406
1407        qdev_connect_clock_in(dev, "WDOGCLK",
1408                              qdev_get_clock_out(ssys_dev, "SYSCLK"));
1409
1410        sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1411        sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1412                        0,
1413                        0x40000000u);
1414        sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1415                           0,
1416                           qdev_get_gpio_in(nvic, 18));
1417    }
1418
1419
1420    for (i = 0; i < 7; i++) {
1421        if (board->dc4 & (1 << i)) {
1422            gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1423                                               qdev_get_gpio_in(nvic,
1424                                                                gpio_irq[i]));
1425            for (j = 0; j < 8; j++) {
1426                gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1427                gpio_out[i][j] = NULL;
1428            }
1429        }
1430    }
1431
1432    if (board->dc2 & (1 << 12)) {
1433        dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1434                                   qdev_get_gpio_in(nvic, 8));
1435        i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1436        if (board->peripherals & BP_OLED_I2C) {
1437            i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1438        }
1439    }
1440
1441    for (i = 0; i < 4; i++) {
1442        if (board->dc2 & (1 << i)) {
1443            pl011_luminary_create(0x4000c000 + i * 0x1000,
1444                                  qdev_get_gpio_in(nvic, uart_irq[i]),
1445                                  serial_hd(i));
1446        }
1447    }
1448    if (board->dc2 & (1 << 4)) {
1449        dev = sysbus_create_simple("pl022", 0x40008000,
1450                                   qdev_get_gpio_in(nvic, 7));
1451        if (board->peripherals & BP_OLED_SSI) {
1452            void *bus;
1453            DeviceState *sddev;
1454            DeviceState *ssddev;
1455
1456            /*
1457             * Some boards have both an OLED controller and SD card connected to
1458             * the same SSI port, with the SD card chip select connected to a
1459             * GPIO pin.  Technically the OLED chip select is connected to the
1460             * SSI Fss pin.  We do not bother emulating that as both devices
1461             * should never be selected simultaneously, and our OLED controller
1462             * ignores stray 0xff commands that occur when deselecting the SD
1463             * card.
1464             *
1465             * The h/w wiring is:
1466             *  - GPIO pin D0 is wired to the active-low SD card chip select
1467             *  - GPIO pin A3 is wired to the active-low OLED chip select
1468             *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
1469             *    SSI0Fss ("frame signal"), which is an output from the SoC's
1470             *    SSI controller. The SSI controller takes SSI0Fss low when it
1471             *    transmits a frame, so it can work as a chip-select signal.
1472             *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
1473             *    (the OLED never sends data to the CPU, so no wiring needed)
1474             *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
1475             *    and the OLED display-data-in
1476             *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
1477             *    serial-clock input
1478             * So a guest that wants to use the OLED can configure the PL061
1479             * to make pins A2, A3, A5 aux-function, so they are connected
1480             * directly to the SSI controller. When the SSI controller sends
1481             * data it asserts SSI0Fss which selects the OLED.
1482             * A guest that wants to use the SD card configures A2, A4 and A5
1483             * as aux-function, but leaves A3 as a software-controlled GPIO
1484             * line. It asserts the SD card chip-select by using the PL061
1485             * to control pin D0, and lets the SSI controller handle Clk, Tx
1486             * and Rx. (The SSI controller asserts Fss during tx cycles as
1487             * usual, but because A3 is not set to aux-function this is not
1488             * forwarded to the OLED, and so the OLED stays unselected.)
1489             *
1490             * The QEMU implementation instead is:
1491             *  - GPIO pin D0 is wired to the active-low SD card chip select,
1492             *    and also to the OLED chip-select which is implemented
1493             *    as *active-high*
1494             *  - SSI controller signals go to the devices regardless of
1495             *    whether the guest programs A2, A4, A5 as aux-function or not
1496             *
1497             * The problem with this implementation is if the guest doesn't
1498             * care about the SD card and only uses the OLED. In that case it
1499             * may choose never to do anything with D0 (leaving it in its
1500             * default floating state, which reliably leaves the card disabled
1501             * because an SD card has a pullup on CS within the card itself),
1502             * and only set up A2, A3, A5. This for us would mean the OLED
1503             * never gets the chip-select assert it needs. We work around
1504             * this with a manual raise of D0 here (despite board creation
1505             * code being the wrong place to raise IRQ lines) to put the OLED
1506             * into an initially selected state.
1507             *
1508             * In theory the right way to model this would be:
1509             *  - Implement aux-function support in the PL061, with an
1510             *    extra set of AFIN and AFOUT GPIO lines (set up so that
1511             *    if a GPIO line is in auxfn mode the main GPIO in and out
1512             *    track the AFIN and AFOUT lines)
1513             *  - Wire the AFOUT for D0 up to either a line from the
1514             *    SSI controller that's pulled low around every transmit,
1515             *    or at least to an always-0 line here on the board
1516             *  - Make the ssd0323 OLED controller chipselect active-low
1517             */
1518            bus = qdev_get_child_bus(dev, "ssi");
1519
1520            sddev = ssi_create_peripheral(bus, "ssi-sd");
1521            ssddev = ssi_create_peripheral(bus, "ssd0323");
1522            gpio_out[GPIO_D][0] = qemu_irq_split(
1523                    qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1524                    qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1525            gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1526
1527            /* Make sure the select pin is high.  */
1528            qemu_irq_raise(gpio_out[GPIO_D][0]);
1529        }
1530    }
1531    if (board->dc4 & (1 << 28)) {
1532        DeviceState *enet;
1533
1534        qemu_check_nic_model(&nd_table[0], "stellaris");
1535
1536        enet = qdev_new("stellaris_enet");
1537        qdev_set_nic_properties(enet, &nd_table[0]);
1538        sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1539        sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1540        sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1541    }
1542    if (board->peripherals & BP_GAMEPAD) {
1543        qemu_irq gpad_irq[5];
1544        static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1545
1546        gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1547        gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1548        gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1549        gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1550        gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1551
1552        stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1553    }
1554    for (i = 0; i < 7; i++) {
1555        if (board->dc4 & (1 << i)) {
1556            for (j = 0; j < 8; j++) {
1557                if (gpio_out[i][j]) {
1558                    qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1559                }
1560            }
1561        }
1562    }
1563
1564    /* Add dummy regions for the devices we don't implement yet,
1565     * so guest accesses don't cause unlogged crashes.
1566     */
1567    create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1568    create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1569    create_unimplemented_device("PWM", 0x40028000, 0x1000);
1570    create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1571    create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1572    create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1573    create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1574    create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1575
1576    armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1577}
1578
1579/* FIXME: Figure out how to generate these from stellaris_boards.  */
1580static void lm3s811evb_init(MachineState *machine)
1581{
1582    stellaris_init(machine, &stellaris_boards[0]);
1583}
1584
1585static void lm3s6965evb_init(MachineState *machine)
1586{
1587    stellaris_init(machine, &stellaris_boards[1]);
1588}
1589
1590static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1591{
1592    MachineClass *mc = MACHINE_CLASS(oc);
1593
1594    mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
1595    mc->init = lm3s811evb_init;
1596    mc->ignore_memory_transaction_failures = true;
1597    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1598}
1599
1600static const TypeInfo lm3s811evb_type = {
1601    .name = MACHINE_TYPE_NAME("lm3s811evb"),
1602    .parent = TYPE_MACHINE,
1603    .class_init = lm3s811evb_class_init,
1604};
1605
1606static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1607{
1608    MachineClass *mc = MACHINE_CLASS(oc);
1609
1610    mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
1611    mc->init = lm3s6965evb_init;
1612    mc->ignore_memory_transaction_failures = true;
1613    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1614}
1615
1616static const TypeInfo lm3s6965evb_type = {
1617    .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1618    .parent = TYPE_MACHINE,
1619    .class_init = lm3s6965evb_class_init,
1620};
1621
1622static void stellaris_machine_init(void)
1623{
1624    type_register_static(&lm3s811evb_type);
1625    type_register_static(&lm3s6965evb_type);
1626}
1627
1628type_init(stellaris_machine_init)
1629
1630static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1631{
1632    DeviceClass *dc = DEVICE_CLASS(klass);
1633
1634    dc->vmsd = &vmstate_stellaris_i2c;
1635}
1636
1637static const TypeInfo stellaris_i2c_info = {
1638    .name          = TYPE_STELLARIS_I2C,
1639    .parent        = TYPE_SYS_BUS_DEVICE,
1640    .instance_size = sizeof(stellaris_i2c_state),
1641    .instance_init = stellaris_i2c_init,
1642    .class_init    = stellaris_i2c_class_init,
1643};
1644
1645static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1646{
1647    DeviceClass *dc = DEVICE_CLASS(klass);
1648
1649    dc->vmsd = &vmstate_stellaris_gptm;
1650    dc->realize = stellaris_gptm_realize;
1651}
1652
1653static const TypeInfo stellaris_gptm_info = {
1654    .name          = TYPE_STELLARIS_GPTM,
1655    .parent        = TYPE_SYS_BUS_DEVICE,
1656    .instance_size = sizeof(gptm_state),
1657    .instance_init = stellaris_gptm_init,
1658    .class_init    = stellaris_gptm_class_init,
1659};
1660
1661static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1662{
1663    DeviceClass *dc = DEVICE_CLASS(klass);
1664
1665    dc->vmsd = &vmstate_stellaris_adc;
1666}
1667
1668static const TypeInfo stellaris_adc_info = {
1669    .name          = TYPE_STELLARIS_ADC,
1670    .parent        = TYPE_SYS_BUS_DEVICE,
1671    .instance_size = sizeof(stellaris_adc_state),
1672    .instance_init = stellaris_adc_init,
1673    .class_init    = stellaris_adc_class_init,
1674};
1675
1676static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1677{
1678    DeviceClass *dc = DEVICE_CLASS(klass);
1679    ResettableClass *rc = RESETTABLE_CLASS(klass);
1680
1681    dc->vmsd = &vmstate_stellaris_sys;
1682    rc->phases.enter = stellaris_sys_reset_enter;
1683    rc->phases.hold = stellaris_sys_reset_hold;
1684    rc->phases.exit = stellaris_sys_reset_exit;
1685    device_class_set_props(dc, stellaris_sys_properties);
1686}
1687
1688static const TypeInfo stellaris_sys_info = {
1689    .name = TYPE_STELLARIS_SYS,
1690    .parent = TYPE_SYS_BUS_DEVICE,
1691    .instance_size = sizeof(ssys_state),
1692    .instance_init = stellaris_sys_instance_init,
1693    .class_init = stellaris_sys_class_init,
1694};
1695
1696static void stellaris_register_types(void)
1697{
1698    type_register_static(&stellaris_i2c_info);
1699    type_register_static(&stellaris_gptm_info);
1700    type_register_static(&stellaris_adc_info);
1701    type_register_static(&stellaris_sys_info);
1702}
1703
1704type_init(stellaris_register_types)
1705