qemu/hw/ppc/spapr_hcall.c
<<
>>
Prefs
   1#include "qemu/osdep.h"
   2#include "qemu/cutils.h"
   3#include "qapi/error.h"
   4#include "sysemu/hw_accel.h"
   5#include "sysemu/runstate.h"
   6#include "qemu/log.h"
   7#include "qemu/main-loop.h"
   8#include "qemu/module.h"
   9#include "qemu/error-report.h"
  10#include "exec/exec-all.h"
  11#include "helper_regs.h"
  12#include "hw/ppc/spapr.h"
  13#include "hw/ppc/spapr_cpu_core.h"
  14#include "mmu-hash64.h"
  15#include "cpu-models.h"
  16#include "trace.h"
  17#include "kvm_ppc.h"
  18#include "hw/ppc/fdt.h"
  19#include "hw/ppc/spapr_ovec.h"
  20#include "mmu-book3s-v3.h"
  21#include "hw/mem/memory-device.h"
  22
  23bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
  24{
  25    MachineState *machine = MACHINE(spapr);
  26    DeviceMemoryState *dms = machine->device_memory;
  27
  28    if (addr < machine->ram_size) {
  29        return true;
  30    }
  31    if ((addr >= dms->base)
  32        && ((addr - dms->base) < memory_region_size(&dms->mr))) {
  33        return true;
  34    }
  35
  36    return false;
  37}
  38
  39/* Convert a return code from the KVM ioctl()s implementing resize HPT
  40 * into a PAPR hypercall return code */
  41static target_ulong resize_hpt_convert_rc(int ret)
  42{
  43    if (ret >= 100000) {
  44        return H_LONG_BUSY_ORDER_100_SEC;
  45    } else if (ret >= 10000) {
  46        return H_LONG_BUSY_ORDER_10_SEC;
  47    } else if (ret >= 1000) {
  48        return H_LONG_BUSY_ORDER_1_SEC;
  49    } else if (ret >= 100) {
  50        return H_LONG_BUSY_ORDER_100_MSEC;
  51    } else if (ret >= 10) {
  52        return H_LONG_BUSY_ORDER_10_MSEC;
  53    } else if (ret > 0) {
  54        return H_LONG_BUSY_ORDER_1_MSEC;
  55    }
  56
  57    switch (ret) {
  58    case 0:
  59        return H_SUCCESS;
  60    case -EPERM:
  61        return H_AUTHORITY;
  62    case -EINVAL:
  63        return H_PARAMETER;
  64    case -ENXIO:
  65        return H_CLOSED;
  66    case -ENOSPC:
  67        return H_PTEG_FULL;
  68    case -EBUSY:
  69        return H_BUSY;
  70    case -ENOMEM:
  71        return H_NO_MEM;
  72    default:
  73        return H_HARDWARE;
  74    }
  75}
  76
  77static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
  78                                         SpaprMachineState *spapr,
  79                                         target_ulong opcode,
  80                                         target_ulong *args)
  81{
  82    target_ulong flags = args[0];
  83    int shift = args[1];
  84    uint64_t current_ram_size;
  85    int rc;
  86
  87    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
  88        return H_AUTHORITY;
  89    }
  90
  91    if (!spapr->htab_shift) {
  92        /* Radix guest, no HPT */
  93        return H_NOT_AVAILABLE;
  94    }
  95
  96    trace_spapr_h_resize_hpt_prepare(flags, shift);
  97
  98    if (flags != 0) {
  99        return H_PARAMETER;
 100    }
 101
 102    if (shift && ((shift < 18) || (shift > 46))) {
 103        return H_PARAMETER;
 104    }
 105
 106    current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
 107
 108    /* We only allow the guest to allocate an HPT one order above what
 109     * we'd normally give them (to stop a small guest claiming a huge
 110     * chunk of resources in the HPT */
 111    if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
 112        return H_RESOURCE;
 113    }
 114
 115    rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
 116    if (rc != -ENOSYS) {
 117        return resize_hpt_convert_rc(rc);
 118    }
 119
 120    if (kvm_enabled()) {
 121        return H_HARDWARE;
 122    }
 123
 124    return softmmu_resize_hpt_prepare(cpu, spapr, shift);
 125}
 126
 127static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
 128{
 129    int ret;
 130
 131    cpu_synchronize_state(cs);
 132
 133    ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
 134    if (ret < 0) {
 135        error_report("failed to push sregs to KVM: %s", strerror(-ret));
 136        exit(1);
 137    }
 138}
 139
 140void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
 141{
 142    CPUState *cs;
 143
 144    /*
 145     * This is a hack for the benefit of KVM PR - it abuses the SDR1
 146     * slot in kvm_sregs to communicate the userspace address of the
 147     * HPT
 148     */
 149    if (!kvm_enabled() || !spapr->htab) {
 150        return;
 151    }
 152
 153    CPU_FOREACH(cs) {
 154        run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
 155    }
 156}
 157
 158static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
 159                                        SpaprMachineState *spapr,
 160                                        target_ulong opcode,
 161                                        target_ulong *args)
 162{
 163    target_ulong flags = args[0];
 164    target_ulong shift = args[1];
 165    int rc;
 166
 167    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 168        return H_AUTHORITY;
 169    }
 170
 171    if (!spapr->htab_shift) {
 172        /* Radix guest, no HPT */
 173        return H_NOT_AVAILABLE;
 174    }
 175
 176    trace_spapr_h_resize_hpt_commit(flags, shift);
 177
 178    rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
 179    if (rc != -ENOSYS) {
 180        rc = resize_hpt_convert_rc(rc);
 181        if (rc == H_SUCCESS) {
 182            /* Need to set the new htab_shift in the machine state */
 183            spapr->htab_shift = shift;
 184        }
 185        return rc;
 186    }
 187
 188    if (kvm_enabled()) {
 189        return H_HARDWARE;
 190    }
 191
 192    return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
 193}
 194
 195
 196
 197static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
 198                                target_ulong opcode, target_ulong *args)
 199{
 200    cpu_synchronize_state(CPU(cpu));
 201    cpu->env.spr[SPR_SPRG0] = args[0];
 202
 203    return H_SUCCESS;
 204}
 205
 206static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
 207                               target_ulong opcode, target_ulong *args)
 208{
 209    if (!ppc_has_spr(cpu, SPR_DABR)) {
 210        return H_HARDWARE;              /* DABR register not available */
 211    }
 212    cpu_synchronize_state(CPU(cpu));
 213
 214    if (ppc_has_spr(cpu, SPR_DABRX)) {
 215        cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
 216    } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
 217        return H_RESERVED_DABR;
 218    }
 219
 220    cpu->env.spr[SPR_DABR] = args[0];
 221    return H_SUCCESS;
 222}
 223
 224static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
 225                                target_ulong opcode, target_ulong *args)
 226{
 227    target_ulong dabrx = args[1];
 228
 229    if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
 230        return H_HARDWARE;
 231    }
 232
 233    if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
 234        || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
 235        return H_PARAMETER;
 236    }
 237
 238    cpu_synchronize_state(CPU(cpu));
 239    cpu->env.spr[SPR_DABRX] = dabrx;
 240    cpu->env.spr[SPR_DABR] = args[0];
 241
 242    return H_SUCCESS;
 243}
 244
 245static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
 246                                target_ulong opcode, target_ulong *args)
 247{
 248    target_ulong flags = args[0];
 249    hwaddr dst = args[1];
 250    hwaddr src = args[2];
 251    hwaddr len = TARGET_PAGE_SIZE;
 252    uint8_t *pdst, *psrc;
 253    target_long ret = H_SUCCESS;
 254
 255    if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
 256                  | H_COPY_PAGE | H_ZERO_PAGE)) {
 257        qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
 258                      flags);
 259        return H_PARAMETER;
 260    }
 261
 262    /* Map-in destination */
 263    if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
 264        return H_PARAMETER;
 265    }
 266    pdst = cpu_physical_memory_map(dst, &len, true);
 267    if (!pdst || len != TARGET_PAGE_SIZE) {
 268        return H_PARAMETER;
 269    }
 270
 271    if (flags & H_COPY_PAGE) {
 272        /* Map-in source, copy to destination, and unmap source again */
 273        if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
 274            ret = H_PARAMETER;
 275            goto unmap_out;
 276        }
 277        psrc = cpu_physical_memory_map(src, &len, false);
 278        if (!psrc || len != TARGET_PAGE_SIZE) {
 279            ret = H_PARAMETER;
 280            goto unmap_out;
 281        }
 282        memcpy(pdst, psrc, len);
 283        cpu_physical_memory_unmap(psrc, len, 0, len);
 284    } else if (flags & H_ZERO_PAGE) {
 285        memset(pdst, 0, len);          /* Just clear the destination page */
 286    }
 287
 288    if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
 289        kvmppc_dcbst_range(cpu, pdst, len);
 290    }
 291    if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
 292        if (kvm_enabled()) {
 293            kvmppc_icbi_range(cpu, pdst, len);
 294        } else {
 295            tb_flush(CPU(cpu));
 296        }
 297    }
 298
 299unmap_out:
 300    cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
 301    return ret;
 302}
 303
 304#define FLAGS_REGISTER_VPA         0x0000200000000000ULL
 305#define FLAGS_REGISTER_DTL         0x0000400000000000ULL
 306#define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
 307#define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
 308#define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
 309#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
 310
 311static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
 312{
 313    CPUState *cs = CPU(cpu);
 314    CPUPPCState *env = &cpu->env;
 315    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 316    uint16_t size;
 317    uint8_t tmp;
 318
 319    if (vpa == 0) {
 320        hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
 321        return H_HARDWARE;
 322    }
 323
 324    if (vpa % env->dcache_line_size) {
 325        return H_PARAMETER;
 326    }
 327    /* FIXME: bounds check the address */
 328
 329    size = lduw_be_phys(cs->as, vpa + 0x4);
 330
 331    if (size < VPA_MIN_SIZE) {
 332        return H_PARAMETER;
 333    }
 334
 335    /* VPA is not allowed to cross a page boundary */
 336    if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
 337        return H_PARAMETER;
 338    }
 339
 340    spapr_cpu->vpa_addr = vpa;
 341
 342    tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
 343    tmp |= VPA_SHARED_PROC_VAL;
 344    stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
 345
 346    return H_SUCCESS;
 347}
 348
 349static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
 350{
 351    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 352
 353    if (spapr_cpu->slb_shadow_addr) {
 354        return H_RESOURCE;
 355    }
 356
 357    if (spapr_cpu->dtl_addr) {
 358        return H_RESOURCE;
 359    }
 360
 361    spapr_cpu->vpa_addr = 0;
 362    return H_SUCCESS;
 363}
 364
 365static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
 366{
 367    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 368    uint32_t size;
 369
 370    if (addr == 0) {
 371        hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
 372        return H_HARDWARE;
 373    }
 374
 375    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
 376    if (size < 0x8) {
 377        return H_PARAMETER;
 378    }
 379
 380    if ((addr / 4096) != ((addr + size - 1) / 4096)) {
 381        return H_PARAMETER;
 382    }
 383
 384    if (!spapr_cpu->vpa_addr) {
 385        return H_RESOURCE;
 386    }
 387
 388    spapr_cpu->slb_shadow_addr = addr;
 389    spapr_cpu->slb_shadow_size = size;
 390
 391    return H_SUCCESS;
 392}
 393
 394static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
 395{
 396    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 397
 398    spapr_cpu->slb_shadow_addr = 0;
 399    spapr_cpu->slb_shadow_size = 0;
 400    return H_SUCCESS;
 401}
 402
 403static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
 404{
 405    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 406    uint32_t size;
 407
 408    if (addr == 0) {
 409        hcall_dprintf("Can't cope with DTL at logical 0\n");
 410        return H_HARDWARE;
 411    }
 412
 413    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
 414
 415    if (size < 48) {
 416        return H_PARAMETER;
 417    }
 418
 419    if (!spapr_cpu->vpa_addr) {
 420        return H_RESOURCE;
 421    }
 422
 423    spapr_cpu->dtl_addr = addr;
 424    spapr_cpu->dtl_size = size;
 425
 426    return H_SUCCESS;
 427}
 428
 429static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
 430{
 431    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 432
 433    spapr_cpu->dtl_addr = 0;
 434    spapr_cpu->dtl_size = 0;
 435
 436    return H_SUCCESS;
 437}
 438
 439static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
 440                                   target_ulong opcode, target_ulong *args)
 441{
 442    target_ulong flags = args[0];
 443    target_ulong procno = args[1];
 444    target_ulong vpa = args[2];
 445    target_ulong ret = H_PARAMETER;
 446    PowerPCCPU *tcpu;
 447
 448    tcpu = spapr_find_cpu(procno);
 449    if (!tcpu) {
 450        return H_PARAMETER;
 451    }
 452
 453    switch (flags) {
 454    case FLAGS_REGISTER_VPA:
 455        ret = register_vpa(tcpu, vpa);
 456        break;
 457
 458    case FLAGS_DEREGISTER_VPA:
 459        ret = deregister_vpa(tcpu, vpa);
 460        break;
 461
 462    case FLAGS_REGISTER_SLBSHADOW:
 463        ret = register_slb_shadow(tcpu, vpa);
 464        break;
 465
 466    case FLAGS_DEREGISTER_SLBSHADOW:
 467        ret = deregister_slb_shadow(tcpu, vpa);
 468        break;
 469
 470    case FLAGS_REGISTER_DTL:
 471        ret = register_dtl(tcpu, vpa);
 472        break;
 473
 474    case FLAGS_DEREGISTER_DTL:
 475        ret = deregister_dtl(tcpu, vpa);
 476        break;
 477    }
 478
 479    return ret;
 480}
 481
 482static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
 483                           target_ulong opcode, target_ulong *args)
 484{
 485    CPUPPCState *env = &cpu->env;
 486    CPUState *cs = CPU(cpu);
 487    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 488
 489    env->msr |= (1ULL << MSR_EE);
 490    hreg_compute_hflags(env);
 491
 492    if (spapr_cpu->prod) {
 493        spapr_cpu->prod = false;
 494        return H_SUCCESS;
 495    }
 496
 497    if (!cpu_has_work(cs)) {
 498        cs->halted = 1;
 499        cs->exception_index = EXCP_HLT;
 500        cs->exit_request = 1;
 501    }
 502
 503    return H_SUCCESS;
 504}
 505
 506/*
 507 * Confer to self, aka join. Cede could use the same pattern as well, if
 508 * EXCP_HLT can be changed to ECXP_HALTED.
 509 */
 510static target_ulong h_confer_self(PowerPCCPU *cpu)
 511{
 512    CPUState *cs = CPU(cpu);
 513    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 514
 515    if (spapr_cpu->prod) {
 516        spapr_cpu->prod = false;
 517        return H_SUCCESS;
 518    }
 519    cs->halted = 1;
 520    cs->exception_index = EXCP_HALTED;
 521    cs->exit_request = 1;
 522
 523    return H_SUCCESS;
 524}
 525
 526static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
 527                           target_ulong opcode, target_ulong *args)
 528{
 529    CPUPPCState *env = &cpu->env;
 530    CPUState *cs;
 531    bool last_unjoined = true;
 532
 533    if (env->msr & (1ULL << MSR_EE)) {
 534        return H_BAD_MODE;
 535    }
 536
 537    /*
 538     * Must not join the last CPU running. Interestingly, no such restriction
 539     * for H_CONFER-to-self, but that is probably not intended to be used
 540     * when H_JOIN is available.
 541     */
 542    CPU_FOREACH(cs) {
 543        PowerPCCPU *c = POWERPC_CPU(cs);
 544        CPUPPCState *e = &c->env;
 545        if (c == cpu) {
 546            continue;
 547        }
 548
 549        /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
 550        if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
 551            last_unjoined = false;
 552            break;
 553        }
 554    }
 555    if (last_unjoined) {
 556        return H_CONTINUE;
 557    }
 558
 559    return h_confer_self(cpu);
 560}
 561
 562static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
 563                           target_ulong opcode, target_ulong *args)
 564{
 565    target_long target = args[0];
 566    uint32_t dispatch = args[1];
 567    CPUState *cs = CPU(cpu);
 568    SpaprCpuState *spapr_cpu;
 569
 570    /*
 571     * -1 means confer to all other CPUs without dispatch counter check,
 572     *  otherwise it's a targeted confer.
 573     */
 574    if (target != -1) {
 575        PowerPCCPU *target_cpu = spapr_find_cpu(target);
 576        uint32_t target_dispatch;
 577
 578        if (!target_cpu) {
 579            return H_PARAMETER;
 580        }
 581
 582        /*
 583         * target == self is a special case, we wait until prodded, without
 584         * dispatch counter check.
 585         */
 586        if (cpu == target_cpu) {
 587            return h_confer_self(cpu);
 588        }
 589
 590        spapr_cpu = spapr_cpu_state(target_cpu);
 591        if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
 592            return H_SUCCESS;
 593        }
 594
 595        target_dispatch = ldl_be_phys(cs->as,
 596                                  spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
 597        if (target_dispatch != dispatch) {
 598            return H_SUCCESS;
 599        }
 600
 601        /*
 602         * The targeted confer does not do anything special beyond yielding
 603         * the current vCPU, but even this should be better than nothing.
 604         * At least for single-threaded tcg, it gives the target a chance to
 605         * run before we run again. Multi-threaded tcg does not really do
 606         * anything with EXCP_YIELD yet.
 607         */
 608    }
 609
 610    cs->exception_index = EXCP_YIELD;
 611    cs->exit_request = 1;
 612    cpu_loop_exit(cs);
 613
 614    return H_SUCCESS;
 615}
 616
 617static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
 618                           target_ulong opcode, target_ulong *args)
 619{
 620    target_long target = args[0];
 621    PowerPCCPU *tcpu;
 622    CPUState *cs;
 623    SpaprCpuState *spapr_cpu;
 624
 625    tcpu = spapr_find_cpu(target);
 626    cs = CPU(tcpu);
 627    if (!cs) {
 628        return H_PARAMETER;
 629    }
 630
 631    spapr_cpu = spapr_cpu_state(tcpu);
 632    spapr_cpu->prod = true;
 633    cs->halted = 0;
 634    qemu_cpu_kick(cs);
 635
 636    return H_SUCCESS;
 637}
 638
 639static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
 640                           target_ulong opcode, target_ulong *args)
 641{
 642    target_ulong rtas_r3 = args[0];
 643    uint32_t token = rtas_ld(rtas_r3, 0);
 644    uint32_t nargs = rtas_ld(rtas_r3, 1);
 645    uint32_t nret = rtas_ld(rtas_r3, 2);
 646
 647    return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
 648                           nret, rtas_r3 + 12 + 4*nargs);
 649}
 650
 651static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
 652                                   target_ulong opcode, target_ulong *args)
 653{
 654    CPUState *cs = CPU(cpu);
 655    target_ulong size = args[0];
 656    target_ulong addr = args[1];
 657
 658    switch (size) {
 659    case 1:
 660        args[0] = ldub_phys(cs->as, addr);
 661        return H_SUCCESS;
 662    case 2:
 663        args[0] = lduw_phys(cs->as, addr);
 664        return H_SUCCESS;
 665    case 4:
 666        args[0] = ldl_phys(cs->as, addr);
 667        return H_SUCCESS;
 668    case 8:
 669        args[0] = ldq_phys(cs->as, addr);
 670        return H_SUCCESS;
 671    }
 672    return H_PARAMETER;
 673}
 674
 675static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
 676                                    target_ulong opcode, target_ulong *args)
 677{
 678    CPUState *cs = CPU(cpu);
 679
 680    target_ulong size = args[0];
 681    target_ulong addr = args[1];
 682    target_ulong val  = args[2];
 683
 684    switch (size) {
 685    case 1:
 686        stb_phys(cs->as, addr, val);
 687        return H_SUCCESS;
 688    case 2:
 689        stw_phys(cs->as, addr, val);
 690        return H_SUCCESS;
 691    case 4:
 692        stl_phys(cs->as, addr, val);
 693        return H_SUCCESS;
 694    case 8:
 695        stq_phys(cs->as, addr, val);
 696        return H_SUCCESS;
 697    }
 698    return H_PARAMETER;
 699}
 700
 701static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
 702                                    target_ulong opcode, target_ulong *args)
 703{
 704    CPUState *cs = CPU(cpu);
 705
 706    target_ulong dst   = args[0]; /* Destination address */
 707    target_ulong src   = args[1]; /* Source address */
 708    target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
 709    target_ulong count = args[3]; /* Element count */
 710    target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
 711    uint64_t tmp;
 712    unsigned int mask = (1 << esize) - 1;
 713    int step = 1 << esize;
 714
 715    if (count > 0x80000000) {
 716        return H_PARAMETER;
 717    }
 718
 719    if ((dst & mask) || (src & mask) || (op > 1)) {
 720        return H_PARAMETER;
 721    }
 722
 723    if (dst >= src && dst < (src + (count << esize))) {
 724            dst = dst + ((count - 1) << esize);
 725            src = src + ((count - 1) << esize);
 726            step = -step;
 727    }
 728
 729    while (count--) {
 730        switch (esize) {
 731        case 0:
 732            tmp = ldub_phys(cs->as, src);
 733            break;
 734        case 1:
 735            tmp = lduw_phys(cs->as, src);
 736            break;
 737        case 2:
 738            tmp = ldl_phys(cs->as, src);
 739            break;
 740        case 3:
 741            tmp = ldq_phys(cs->as, src);
 742            break;
 743        default:
 744            return H_PARAMETER;
 745        }
 746        if (op == 1) {
 747            tmp = ~tmp;
 748        }
 749        switch (esize) {
 750        case 0:
 751            stb_phys(cs->as, dst, tmp);
 752            break;
 753        case 1:
 754            stw_phys(cs->as, dst, tmp);
 755            break;
 756        case 2:
 757            stl_phys(cs->as, dst, tmp);
 758            break;
 759        case 3:
 760            stq_phys(cs->as, dst, tmp);
 761            break;
 762        }
 763        dst = dst + step;
 764        src = src + step;
 765    }
 766
 767    return H_SUCCESS;
 768}
 769
 770static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
 771                                   target_ulong opcode, target_ulong *args)
 772{
 773    /* Nothing to do on emulation, KVM will trap this in the kernel */
 774    return H_SUCCESS;
 775}
 776
 777static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
 778                                   target_ulong opcode, target_ulong *args)
 779{
 780    /* Nothing to do on emulation, KVM will trap this in the kernel */
 781    return H_SUCCESS;
 782}
 783
 784static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
 785                                           SpaprMachineState *spapr,
 786                                           target_ulong mflags,
 787                                           target_ulong value1,
 788                                           target_ulong value2)
 789{
 790    if (value1) {
 791        return H_P3;
 792    }
 793    if (value2) {
 794        return H_P4;
 795    }
 796
 797    switch (mflags) {
 798    case H_SET_MODE_ENDIAN_BIG:
 799        spapr_set_all_lpcrs(0, LPCR_ILE);
 800        spapr_pci_switch_vga(spapr, true);
 801        return H_SUCCESS;
 802
 803    case H_SET_MODE_ENDIAN_LITTLE:
 804        spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
 805        spapr_pci_switch_vga(spapr, false);
 806        return H_SUCCESS;
 807    }
 808
 809    return H_UNSUPPORTED_FLAG;
 810}
 811
 812static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
 813                                                        target_ulong mflags,
 814                                                        target_ulong value1,
 815                                                        target_ulong value2)
 816{
 817    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
 818
 819    if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
 820        return H_P2;
 821    }
 822    if (value1) {
 823        return H_P3;
 824    }
 825    if (value2) {
 826        return H_P4;
 827    }
 828
 829    if (mflags == 1) {
 830        /* AIL=1 is reserved in POWER8/POWER9/POWER10 */
 831        return H_UNSUPPORTED_FLAG;
 832    }
 833
 834    if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
 835        /* AIL=2 is reserved in POWER10 (ISA v3.1) */
 836        return H_UNSUPPORTED_FLAG;
 837    }
 838
 839    spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
 840
 841    return H_SUCCESS;
 842}
 843
 844static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
 845                               target_ulong opcode, target_ulong *args)
 846{
 847    target_ulong resource = args[1];
 848    target_ulong ret = H_P2;
 849
 850    switch (resource) {
 851    case H_SET_MODE_RESOURCE_LE:
 852        ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
 853        break;
 854    case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
 855        ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
 856                                                  args[2], args[3]);
 857        break;
 858    }
 859
 860    return ret;
 861}
 862
 863static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
 864                                target_ulong opcode, target_ulong *args)
 865{
 866    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
 867                  opcode, " (H_CLEAN_SLB)");
 868    return H_FUNCTION;
 869}
 870
 871static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
 872                                     target_ulong opcode, target_ulong *args)
 873{
 874    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
 875                  opcode, " (H_INVALIDATE_PID)");
 876    return H_FUNCTION;
 877}
 878
 879static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
 880                                       uint64_t patbe_old, uint64_t patbe_new)
 881{
 882    /*
 883     * We have 4 Options:
 884     * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
 885     * HASH->RADIX                                  : Free HPT
 886     * RADIX->HASH                                  : Allocate HPT
 887     * NOTHING->HASH                                : Allocate HPT
 888     * Note: NOTHING implies the case where we said the guest could choose
 889     *       later and so assumed radix and now it's called H_REG_PROC_TBL
 890     */
 891
 892    if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
 893        /* We assume RADIX, so this catches all the "Do Nothing" cases */
 894    } else if (!(patbe_old & PATE1_GR)) {
 895        /* HASH->RADIX : Free HPT */
 896        spapr_free_hpt(spapr);
 897    } else if (!(patbe_new & PATE1_GR)) {
 898        /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
 899        spapr_setup_hpt(spapr);
 900    }
 901    return;
 902}
 903
 904#define FLAGS_MASK              0x01FULL
 905#define FLAG_MODIFY             0x10
 906#define FLAG_REGISTER           0x08
 907#define FLAG_RADIX              0x04
 908#define FLAG_HASH_PROC_TBL      0x02
 909#define FLAG_GTSE               0x01
 910
 911static target_ulong h_register_process_table(PowerPCCPU *cpu,
 912                                             SpaprMachineState *spapr,
 913                                             target_ulong opcode,
 914                                             target_ulong *args)
 915{
 916    target_ulong flags = args[0];
 917    target_ulong proc_tbl = args[1];
 918    target_ulong page_size = args[2];
 919    target_ulong table_size = args[3];
 920    target_ulong update_lpcr = 0;
 921    uint64_t cproc;
 922
 923    if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
 924        return H_PARAMETER;
 925    }
 926    if (flags & FLAG_MODIFY) {
 927        if (flags & FLAG_REGISTER) {
 928            if (flags & FLAG_RADIX) { /* Register new RADIX process table */
 929                if (proc_tbl & 0xfff || proc_tbl >> 60) {
 930                    return H_P2;
 931                } else if (page_size) {
 932                    return H_P3;
 933                } else if (table_size > 24) {
 934                    return H_P4;
 935                }
 936                cproc = PATE1_GR | proc_tbl | table_size;
 937            } else { /* Register new HPT process table */
 938                if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
 939                    /* TODO - Not Supported */
 940                    /* Technically caused by flag bits => H_PARAMETER */
 941                    return H_PARAMETER;
 942                } else { /* Hash with SLB */
 943                    if (proc_tbl >> 38) {
 944                        return H_P2;
 945                    } else if (page_size & ~0x7) {
 946                        return H_P3;
 947                    } else if (table_size > 24) {
 948                        return H_P4;
 949                    }
 950                }
 951                cproc = (proc_tbl << 25) | page_size << 5 | table_size;
 952            }
 953
 954        } else { /* Deregister current process table */
 955            /*
 956             * Set to benign value: (current GR) | 0. This allows
 957             * deregistration in KVM to succeed even if the radix bit
 958             * in flags doesn't match the radix bit in the old PATE.
 959             */
 960            cproc = spapr->patb_entry & PATE1_GR;
 961        }
 962    } else { /* Maintain current registration */
 963        if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
 964            /* Technically caused by flag bits => H_PARAMETER */
 965            return H_PARAMETER; /* Existing Process Table Mismatch */
 966        }
 967        cproc = spapr->patb_entry;
 968    }
 969
 970    /* Check if we need to setup OR free the hpt */
 971    spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
 972
 973    spapr->patb_entry = cproc; /* Save new process table */
 974
 975    /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
 976    if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
 977        update_lpcr |= (LPCR_UPRT | LPCR_HR);
 978    else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
 979        update_lpcr |= LPCR_UPRT;
 980    if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
 981        update_lpcr |= LPCR_GTSE;
 982
 983    spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
 984
 985    if (kvm_enabled()) {
 986        return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
 987                                       flags & FLAG_GTSE, cproc);
 988    }
 989    return H_SUCCESS;
 990}
 991
 992#define H_SIGNAL_SYS_RESET_ALL         -1
 993#define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
 994
 995static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
 996                                       SpaprMachineState *spapr,
 997                                       target_ulong opcode, target_ulong *args)
 998{
 999    target_long target = args[0];
1000    CPUState *cs;
1001
1002    if (target < 0) {
1003        /* Broadcast */
1004        if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1005            return H_PARAMETER;
1006        }
1007
1008        CPU_FOREACH(cs) {
1009            PowerPCCPU *c = POWERPC_CPU(cs);
1010
1011            if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1012                if (c == cpu) {
1013                    continue;
1014                }
1015            }
1016            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1017        }
1018        return H_SUCCESS;
1019
1020    } else {
1021        /* Unicast */
1022        cs = CPU(spapr_find_cpu(target));
1023        if (cs) {
1024            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1025            return H_SUCCESS;
1026        }
1027        return H_PARAMETER;
1028    }
1029}
1030
1031/* Returns either a logical PVR or zero if none was found */
1032static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1033                              target_ulong *addr, bool *raw_mode_supported)
1034{
1035    bool explicit_match = false; /* Matched the CPU's real PVR */
1036    uint32_t best_compat = 0;
1037    int i;
1038
1039    /*
1040     * We scan the supplied table of PVRs looking for two things
1041     *   1. Is our real CPU PVR in the list?
1042     *   2. What's the "best" listed logical PVR
1043     */
1044    for (i = 0; i < 512; ++i) {
1045        uint32_t pvr, pvr_mask;
1046
1047        pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1048        pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1049        *addr += 8;
1050
1051        if (~pvr_mask & pvr) {
1052            break; /* Terminator record */
1053        }
1054
1055        if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1056            explicit_match = true;
1057        } else {
1058            if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1059                best_compat = pvr;
1060            }
1061        }
1062    }
1063
1064    *raw_mode_supported = explicit_match;
1065
1066    /* Parsing finished */
1067    trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1068
1069    return best_compat;
1070}
1071
1072static
1073target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1074                                            SpaprMachineState *spapr,
1075                                            target_ulong vec,
1076                                            target_ulong fdt_bufsize)
1077{
1078    target_ulong ov_table; /* Working address in data buffer */
1079    uint32_t cas_pvr;
1080    SpaprOptionVector *ov1_guest, *ov5_guest;
1081    bool guest_radix;
1082    bool raw_mode_supported = false;
1083    bool guest_xive;
1084    CPUState *cs;
1085    void *fdt;
1086    uint32_t max_compat = spapr->max_compat_pvr;
1087
1088    /* CAS is supposed to be called early when only the boot vCPU is active. */
1089    CPU_FOREACH(cs) {
1090        if (cs == CPU(cpu)) {
1091            continue;
1092        }
1093        if (!cs->halted) {
1094            warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1095            return H_MULTI_THREADS_ACTIVE;
1096        }
1097    }
1098
1099    cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1100    if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1101        /*
1102         * We couldn't find a suitable compatibility mode, and either
1103         * the guest doesn't support "raw" mode for this CPU, or "raw"
1104         * mode is disabled because a maximum compat mode is set.
1105         */
1106        error_report("Couldn't negotiate a suitable PVR during CAS");
1107        return H_HARDWARE;
1108    }
1109
1110    /* Update CPUs */
1111    if (cpu->compat_pvr != cas_pvr) {
1112        Error *local_err = NULL;
1113
1114        if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1115            /* We fail to set compat mode (likely because running with KVM PR),
1116             * but maybe we can fallback to raw mode if the guest supports it.
1117             */
1118            if (!raw_mode_supported) {
1119                error_report_err(local_err);
1120                return H_HARDWARE;
1121            }
1122            error_free(local_err);
1123        }
1124    }
1125
1126    /* For the future use: here @ov_table points to the first option vector */
1127    ov_table = vec;
1128
1129    ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1130    if (!ov1_guest) {
1131        warn_report("guest didn't provide option vector 1");
1132        return H_PARAMETER;
1133    }
1134    ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1135    if (!ov5_guest) {
1136        spapr_ovec_cleanup(ov1_guest);
1137        warn_report("guest didn't provide option vector 5");
1138        return H_PARAMETER;
1139    }
1140    if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1141        error_report("guest requested hash and radix MMU, which is invalid.");
1142        exit(EXIT_FAILURE);
1143    }
1144    if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1145        error_report("guest requested an invalid interrupt mode");
1146        exit(EXIT_FAILURE);
1147    }
1148
1149    guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1150
1151    guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1152
1153    /*
1154     * HPT resizing is a bit of a special case, because when enabled
1155     * we assume an HPT guest will support it until it says it
1156     * doesn't, instead of assuming it won't support it until it says
1157     * it does.  Strictly speaking that approach could break for
1158     * guests which don't make a CAS call, but those are so old we
1159     * don't care about them.  Without that assumption we'd have to
1160     * make at least a temporary allocation of an HPT sized for max
1161     * memory, which could be impossibly difficult under KVM HV if
1162     * maxram is large.
1163     */
1164    if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1165        int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1166
1167        if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1168            error_report(
1169                "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1170            exit(1);
1171        }
1172
1173        if (spapr->htab_shift < maxshift) {
1174            /* Guest doesn't know about HPT resizing, so we
1175             * pre-emptively resize for the maximum permitted RAM.  At
1176             * the point this is called, nothing should have been
1177             * entered into the existing HPT */
1178            spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1179            push_sregs_to_kvm_pr(spapr);
1180        }
1181    }
1182
1183    /* NOTE: there are actually a number of ov5 bits where input from the
1184     * guest is always zero, and the platform/QEMU enables them independently
1185     * of guest input. To model these properly we'd want some sort of mask,
1186     * but since they only currently apply to memory migration as defined
1187     * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1188     * to worry about this for now.
1189     */
1190
1191    /* full range of negotiated ov5 capabilities */
1192    spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1193    spapr_ovec_cleanup(ov5_guest);
1194
1195    spapr_check_mmu_mode(guest_radix);
1196
1197    spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1198    spapr_ovec_cleanup(ov1_guest);
1199
1200    /*
1201     * Ensure the guest asks for an interrupt mode we support;
1202     * otherwise terminate the boot.
1203     */
1204    if (guest_xive) {
1205        if (!spapr->irq->xive) {
1206            error_report(
1207"Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1208            exit(EXIT_FAILURE);
1209        }
1210    } else {
1211        if (!spapr->irq->xics) {
1212            error_report(
1213"Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1214            exit(EXIT_FAILURE);
1215        }
1216    }
1217
1218    spapr_irq_update_active_intc(spapr);
1219
1220    /*
1221     * Process all pending hot-plug/unplug requests now. An updated full
1222     * rendered FDT will be returned to the guest.
1223     */
1224    spapr_drc_reset_all(spapr);
1225    spapr_clear_pending_hotplug_events(spapr);
1226
1227    /*
1228     * If spapr_machine_reset() did not set up a HPT but one is necessary
1229     * (because the guest isn't going to use radix) then set it up here.
1230     */
1231    if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1232        /* legacy hash or new hash: */
1233        spapr_setup_hpt(spapr);
1234    }
1235
1236    fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1237    g_free(spapr->fdt_blob);
1238    spapr->fdt_size = fdt_totalsize(fdt);
1239    spapr->fdt_initial_size = spapr->fdt_size;
1240    spapr->fdt_blob = fdt;
1241
1242    return H_SUCCESS;
1243}
1244
1245static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1246                                                  SpaprMachineState *spapr,
1247                                                  target_ulong opcode,
1248                                                  target_ulong *args)
1249{
1250    target_ulong vec = ppc64_phys_to_real(args[0]);
1251    target_ulong fdt_buf = args[1];
1252    target_ulong fdt_bufsize = args[2];
1253    target_ulong ret;
1254    SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1255
1256    if (fdt_bufsize < sizeof(hdr)) {
1257        error_report("SLOF provided insufficient CAS buffer "
1258                     TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1259        exit(EXIT_FAILURE);
1260    }
1261
1262    fdt_bufsize -= sizeof(hdr);
1263
1264    ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1265    if (ret == H_SUCCESS) {
1266        _FDT((fdt_pack(spapr->fdt_blob)));
1267        spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1268        spapr->fdt_initial_size = spapr->fdt_size;
1269
1270        cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1271        cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1272                                  spapr->fdt_size);
1273        trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1274    }
1275
1276    return ret;
1277}
1278
1279target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1280                                                   CPUState *cs,
1281                                                   target_ulong ovec_addr)
1282{
1283    SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1284
1285    target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1286                                                      ovec_addr, FDT_MAX_SIZE);
1287
1288    /*
1289     * This adds stdout and generates phandles for boottime and CAS FDTs.
1290     * It is alright to update the FDT here as do_client_architecture_support()
1291     * does not pack it.
1292     */
1293    spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1294
1295    return ret;
1296}
1297
1298static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1299                                              SpaprMachineState *spapr,
1300                                              target_ulong opcode,
1301                                              target_ulong *args)
1302{
1303    uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1304                               ~H_CPU_CHAR_THR_RECONF_TRIG;
1305    uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1306    uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1307    uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1308    uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1309    uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1310                                                     SPAPR_CAP_CCF_ASSIST);
1311
1312    switch (safe_cache) {
1313    case SPAPR_CAP_WORKAROUND:
1314        characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1315        characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1316        characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1317        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1318        break;
1319    case SPAPR_CAP_FIXED:
1320        behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1321        behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1322        break;
1323    default: /* broken */
1324        assert(safe_cache == SPAPR_CAP_BROKEN);
1325        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1326        break;
1327    }
1328
1329    switch (safe_bounds_check) {
1330    case SPAPR_CAP_WORKAROUND:
1331        characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1332        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1333        break;
1334    case SPAPR_CAP_FIXED:
1335        break;
1336    default: /* broken */
1337        assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1338        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1339        break;
1340    }
1341
1342    switch (safe_indirect_branch) {
1343    case SPAPR_CAP_FIXED_NA:
1344        break;
1345    case SPAPR_CAP_FIXED_CCD:
1346        characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1347        break;
1348    case SPAPR_CAP_FIXED_IBS:
1349        characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1350        break;
1351    case SPAPR_CAP_WORKAROUND:
1352        behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1353        if (count_cache_flush_assist) {
1354            characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1355        }
1356        break;
1357    default: /* broken */
1358        assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1359        break;
1360    }
1361
1362    args[0] = characteristics;
1363    args[1] = behaviour;
1364    return H_SUCCESS;
1365}
1366
1367static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1368                                target_ulong opcode, target_ulong *args)
1369{
1370    target_ulong dt = ppc64_phys_to_real(args[0]);
1371    struct fdt_header hdr = { 0 };
1372    unsigned cb;
1373    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1374    void *fdt;
1375
1376    cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1377    cb = fdt32_to_cpu(hdr.totalsize);
1378
1379    if (!smc->update_dt_enabled) {
1380        return H_SUCCESS;
1381    }
1382
1383    /* Check that the fdt did not grow out of proportion */
1384    if (cb > spapr->fdt_initial_size * 2) {
1385        trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1386                                          fdt32_to_cpu(hdr.magic));
1387        return H_PARAMETER;
1388    }
1389
1390    fdt = g_malloc0(cb);
1391    cpu_physical_memory_read(dt, fdt, cb);
1392
1393    /* Check the fdt consistency */
1394    if (fdt_check_full(fdt, cb)) {
1395        trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1396                                           fdt32_to_cpu(hdr.magic));
1397        return H_PARAMETER;
1398    }
1399
1400    g_free(spapr->fdt_blob);
1401    spapr->fdt_size = cb;
1402    spapr->fdt_blob = fdt;
1403    trace_spapr_update_dt(cb);
1404
1405    return H_SUCCESS;
1406}
1407
1408static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1409static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1410static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1411
1412void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1413{
1414    spapr_hcall_fn *slot;
1415
1416    if (opcode <= MAX_HCALL_OPCODE) {
1417        assert((opcode & 0x3) == 0);
1418
1419        slot = &papr_hypercall_table[opcode / 4];
1420    } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1421        /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1422        assert((opcode & 0x3) == 0);
1423
1424        slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1425    } else {
1426        assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1427
1428        slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1429    }
1430
1431    assert(!(*slot));
1432    *slot = fn;
1433}
1434
1435target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1436                             target_ulong *args)
1437{
1438    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1439
1440    if ((opcode <= MAX_HCALL_OPCODE)
1441        && ((opcode & 0x3) == 0)) {
1442        spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1443
1444        if (fn) {
1445            return fn(cpu, spapr, opcode, args);
1446        }
1447    } else if ((opcode >= SVM_HCALL_BASE) &&
1448               (opcode <= SVM_HCALL_MAX)) {
1449        spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1450
1451        if (fn) {
1452            return fn(cpu, spapr, opcode, args);
1453        }
1454    } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1455               (opcode <= KVMPPC_HCALL_MAX)) {
1456        spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1457
1458        if (fn) {
1459            return fn(cpu, spapr, opcode, args);
1460        }
1461    }
1462
1463    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1464                  opcode);
1465    return H_FUNCTION;
1466}
1467
1468#ifndef CONFIG_TCG
1469static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1470                            target_ulong opcode, target_ulong *args)
1471{
1472    g_assert_not_reached();
1473}
1474
1475static void hypercall_register_softmmu(void)
1476{
1477    /* hcall-pft */
1478    spapr_register_hypercall(H_ENTER, h_softmmu);
1479    spapr_register_hypercall(H_REMOVE, h_softmmu);
1480    spapr_register_hypercall(H_PROTECT, h_softmmu);
1481    spapr_register_hypercall(H_READ, h_softmmu);
1482
1483    /* hcall-bulk */
1484    spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1485}
1486#else
1487static void hypercall_register_softmmu(void)
1488{
1489    /* DO NOTHING */
1490}
1491#endif
1492
1493static void hypercall_register_types(void)
1494{
1495    hypercall_register_softmmu();
1496
1497    /* hcall-hpt-resize */
1498    spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1499    spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1500
1501    /* hcall-splpar */
1502    spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1503    spapr_register_hypercall(H_CEDE, h_cede);
1504    spapr_register_hypercall(H_CONFER, h_confer);
1505    spapr_register_hypercall(H_PROD, h_prod);
1506
1507    /* hcall-join */
1508    spapr_register_hypercall(H_JOIN, h_join);
1509
1510    spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1511
1512    /* processor register resource access h-calls */
1513    spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1514    spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1515    spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1516    spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1517    spapr_register_hypercall(H_SET_MODE, h_set_mode);
1518
1519    /* In Memory Table MMU h-calls */
1520    spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1521    spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1522    spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1523
1524    /* hcall-get-cpu-characteristics */
1525    spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1526                             h_get_cpu_characteristics);
1527
1528    /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1529     * here between the "CI" and the "CACHE" variants, they will use whatever
1530     * mapping attributes qemu is using. When using KVM, the kernel will
1531     * enforce the attributes more strongly
1532     */
1533    spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1534    spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1535    spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1536    spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1537    spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1538    spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1539    spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1540
1541    /* qemu/KVM-PPC specific hcalls */
1542    spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1543
1544    /* ibm,client-architecture-support support */
1545    spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1546
1547    spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1548}
1549
1550type_init(hypercall_register_types)
1551