qemu/include/fpu/softfloat.h
<<
>>
Prefs
   1/*
   2 * QEMU float support
   3 *
   4 * The code in this source file is derived from release 2a of the SoftFloat
   5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
   6 * some later contributions) are provided under that license, as detailed below.
   7 * It has subsequently been modified by contributors to the QEMU Project,
   8 * so some portions are provided under:
   9 *  the SoftFloat-2a license
  10 *  the BSD license
  11 *  GPL-v2-or-later
  12 *
  13 * Any future contributions to this file after December 1st 2014 will be
  14 * taken to be licensed under the Softfloat-2a license unless specifically
  15 * indicated otherwise.
  16 */
  17
  18/*
  19===============================================================================
  20This C header file is part of the SoftFloat IEC/IEEE Floating-point
  21Arithmetic Package, Release 2a.
  22
  23Written by John R. Hauser.  This work was made possible in part by the
  24International Computer Science Institute, located at Suite 600, 1947 Center
  25Street, Berkeley, California 94704.  Funding was partially provided by the
  26National Science Foundation under grant MIP-9311980.  The original version
  27of this code was written as part of a project to build a fixed-point vector
  28processor in collaboration with the University of California at Berkeley,
  29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
  30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
  31arithmetic/SoftFloat.html'.
  32
  33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
  34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
  35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
  36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
  37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
  38
  39Derivative works are acceptable, even for commercial purposes, so long as
  40(1) they include prominent notice that the work is derivative, and (2) they
  41include prominent notice akin to these four paragraphs for those parts of
  42this code that are retained.
  43
  44===============================================================================
  45*/
  46
  47/* BSD licensing:
  48 * Copyright (c) 2006, Fabrice Bellard
  49 * All rights reserved.
  50 *
  51 * Redistribution and use in source and binary forms, with or without
  52 * modification, are permitted provided that the following conditions are met:
  53 *
  54 * 1. Redistributions of source code must retain the above copyright notice,
  55 * this list of conditions and the following disclaimer.
  56 *
  57 * 2. Redistributions in binary form must reproduce the above copyright notice,
  58 * this list of conditions and the following disclaimer in the documentation
  59 * and/or other materials provided with the distribution.
  60 *
  61 * 3. Neither the name of the copyright holder nor the names of its contributors
  62 * may be used to endorse or promote products derived from this software without
  63 * specific prior written permission.
  64 *
  65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
  69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  75 * THE POSSIBILITY OF SUCH DAMAGE.
  76 */
  77
  78/* Portions of this work are licensed under the terms of the GNU GPL,
  79 * version 2 or later. See the COPYING file in the top-level directory.
  80 */
  81
  82#ifndef SOFTFLOAT_H
  83#define SOFTFLOAT_H
  84
  85/*----------------------------------------------------------------------------
  86| Software IEC/IEEE floating-point ordering relations
  87*----------------------------------------------------------------------------*/
  88
  89typedef enum {
  90    float_relation_less      = -1,
  91    float_relation_equal     =  0,
  92    float_relation_greater   =  1,
  93    float_relation_unordered =  2
  94} FloatRelation;
  95
  96#include "fpu/softfloat-types.h"
  97#include "fpu/softfloat-helpers.h"
  98
  99/*----------------------------------------------------------------------------
 100| Routine to raise any or all of the software IEC/IEEE floating-point
 101| exception flags.
 102*----------------------------------------------------------------------------*/
 103static inline void float_raise(uint8_t flags, float_status *status)
 104{
 105    status->float_exception_flags |= flags;
 106}
 107
 108/*----------------------------------------------------------------------------
 109| If `a' is denormal and we are in flush-to-zero mode then set the
 110| input-denormal exception and return zero. Otherwise just return the value.
 111*----------------------------------------------------------------------------*/
 112float16 float16_squash_input_denormal(float16 a, float_status *status);
 113float32 float32_squash_input_denormal(float32 a, float_status *status);
 114float64 float64_squash_input_denormal(float64 a, float_status *status);
 115bfloat16 bfloat16_squash_input_denormal(bfloat16 a, float_status *status);
 116
 117/*----------------------------------------------------------------------------
 118| Options to indicate which negations to perform in float*_muladd()
 119| Using these differs from negating an input or output before calling
 120| the muladd function in that this means that a NaN doesn't have its
 121| sign bit inverted before it is propagated.
 122| We also support halving the result before rounding, as a special
 123| case to support the ARM fused-sqrt-step instruction FRSQRTS.
 124*----------------------------------------------------------------------------*/
 125enum {
 126    float_muladd_negate_c = 1,
 127    float_muladd_negate_product = 2,
 128    float_muladd_negate_result = 4,
 129    float_muladd_halve_result = 8,
 130};
 131
 132/*----------------------------------------------------------------------------
 133| Software IEC/IEEE integer-to-floating-point conversion routines.
 134*----------------------------------------------------------------------------*/
 135
 136float16 int16_to_float16_scalbn(int16_t a, int, float_status *status);
 137float16 int32_to_float16_scalbn(int32_t a, int, float_status *status);
 138float16 int64_to_float16_scalbn(int64_t a, int, float_status *status);
 139float16 uint16_to_float16_scalbn(uint16_t a, int, float_status *status);
 140float16 uint32_to_float16_scalbn(uint32_t a, int, float_status *status);
 141float16 uint64_to_float16_scalbn(uint64_t a, int, float_status *status);
 142
 143float16 int8_to_float16(int8_t a, float_status *status);
 144float16 int16_to_float16(int16_t a, float_status *status);
 145float16 int32_to_float16(int32_t a, float_status *status);
 146float16 int64_to_float16(int64_t a, float_status *status);
 147float16 uint8_to_float16(uint8_t a, float_status *status);
 148float16 uint16_to_float16(uint16_t a, float_status *status);
 149float16 uint32_to_float16(uint32_t a, float_status *status);
 150float16 uint64_to_float16(uint64_t a, float_status *status);
 151
 152float32 int16_to_float32_scalbn(int16_t, int, float_status *status);
 153float32 int32_to_float32_scalbn(int32_t, int, float_status *status);
 154float32 int64_to_float32_scalbn(int64_t, int, float_status *status);
 155float32 uint16_to_float32_scalbn(uint16_t, int, float_status *status);
 156float32 uint32_to_float32_scalbn(uint32_t, int, float_status *status);
 157float32 uint64_to_float32_scalbn(uint64_t, int, float_status *status);
 158
 159float32 int16_to_float32(int16_t, float_status *status);
 160float32 int32_to_float32(int32_t, float_status *status);
 161float32 int64_to_float32(int64_t, float_status *status);
 162float32 uint16_to_float32(uint16_t, float_status *status);
 163float32 uint32_to_float32(uint32_t, float_status *status);
 164float32 uint64_to_float32(uint64_t, float_status *status);
 165
 166float64 int16_to_float64_scalbn(int16_t, int, float_status *status);
 167float64 int32_to_float64_scalbn(int32_t, int, float_status *status);
 168float64 int64_to_float64_scalbn(int64_t, int, float_status *status);
 169float64 uint16_to_float64_scalbn(uint16_t, int, float_status *status);
 170float64 uint32_to_float64_scalbn(uint32_t, int, float_status *status);
 171float64 uint64_to_float64_scalbn(uint64_t, int, float_status *status);
 172
 173float64 int16_to_float64(int16_t, float_status *status);
 174float64 int32_to_float64(int32_t, float_status *status);
 175float64 int64_to_float64(int64_t, float_status *status);
 176float64 uint16_to_float64(uint16_t, float_status *status);
 177float64 uint32_to_float64(uint32_t, float_status *status);
 178float64 uint64_to_float64(uint64_t, float_status *status);
 179
 180floatx80 int32_to_floatx80(int32_t, float_status *status);
 181floatx80 int64_to_floatx80(int64_t, float_status *status);
 182
 183float128 int32_to_float128(int32_t, float_status *status);
 184float128 int64_to_float128(int64_t, float_status *status);
 185float128 uint64_to_float128(uint64_t, float_status *status);
 186
 187/*----------------------------------------------------------------------------
 188| Software half-precision conversion routines.
 189*----------------------------------------------------------------------------*/
 190
 191float16 float32_to_float16(float32, bool ieee, float_status *status);
 192float32 float16_to_float32(float16, bool ieee, float_status *status);
 193float16 float64_to_float16(float64 a, bool ieee, float_status *status);
 194float64 float16_to_float64(float16 a, bool ieee, float_status *status);
 195
 196int8_t  float16_to_int8_scalbn(float16, FloatRoundMode, int,
 197                               float_status *status);
 198int16_t float16_to_int16_scalbn(float16, FloatRoundMode, int, float_status *);
 199int32_t float16_to_int32_scalbn(float16, FloatRoundMode, int, float_status *);
 200int64_t float16_to_int64_scalbn(float16, FloatRoundMode, int, float_status *);
 201
 202int8_t  float16_to_int8(float16, float_status *status);
 203int16_t float16_to_int16(float16, float_status *status);
 204int32_t float16_to_int32(float16, float_status *status);
 205int64_t float16_to_int64(float16, float_status *status);
 206
 207int16_t float16_to_int16_round_to_zero(float16, float_status *status);
 208int32_t float16_to_int32_round_to_zero(float16, float_status *status);
 209int64_t float16_to_int64_round_to_zero(float16, float_status *status);
 210
 211uint8_t float16_to_uint8_scalbn(float16 a, FloatRoundMode,
 212                                int, float_status *status);
 213uint16_t float16_to_uint16_scalbn(float16 a, FloatRoundMode,
 214                                  int, float_status *status);
 215uint32_t float16_to_uint32_scalbn(float16 a, FloatRoundMode,
 216                                  int, float_status *status);
 217uint64_t float16_to_uint64_scalbn(float16 a, FloatRoundMode,
 218                                  int, float_status *status);
 219
 220uint8_t  float16_to_uint8(float16 a, float_status *status);
 221uint16_t float16_to_uint16(float16 a, float_status *status);
 222uint32_t float16_to_uint32(float16 a, float_status *status);
 223uint64_t float16_to_uint64(float16 a, float_status *status);
 224
 225uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *status);
 226uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *status);
 227uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *status);
 228
 229/*----------------------------------------------------------------------------
 230| Software half-precision operations.
 231*----------------------------------------------------------------------------*/
 232
 233float16 float16_round_to_int(float16, float_status *status);
 234float16 float16_add(float16, float16, float_status *status);
 235float16 float16_sub(float16, float16, float_status *status);
 236float16 float16_mul(float16, float16, float_status *status);
 237float16 float16_muladd(float16, float16, float16, int, float_status *status);
 238float16 float16_div(float16, float16, float_status *status);
 239float16 float16_scalbn(float16, int, float_status *status);
 240float16 float16_min(float16, float16, float_status *status);
 241float16 float16_max(float16, float16, float_status *status);
 242float16 float16_minnum(float16, float16, float_status *status);
 243float16 float16_maxnum(float16, float16, float_status *status);
 244float16 float16_minnummag(float16, float16, float_status *status);
 245float16 float16_maxnummag(float16, float16, float_status *status);
 246float16 float16_sqrt(float16, float_status *status);
 247FloatRelation float16_compare(float16, float16, float_status *status);
 248FloatRelation float16_compare_quiet(float16, float16, float_status *status);
 249
 250bool float16_is_quiet_nan(float16, float_status *status);
 251bool float16_is_signaling_nan(float16, float_status *status);
 252float16 float16_silence_nan(float16, float_status *status);
 253
 254static inline bool float16_is_any_nan(float16 a)
 255{
 256    return ((float16_val(a) & ~0x8000) > 0x7c00);
 257}
 258
 259static inline bool float16_is_neg(float16 a)
 260{
 261    return float16_val(a) >> 15;
 262}
 263
 264static inline bool float16_is_infinity(float16 a)
 265{
 266    return (float16_val(a) & 0x7fff) == 0x7c00;
 267}
 268
 269static inline bool float16_is_zero(float16 a)
 270{
 271    return (float16_val(a) & 0x7fff) == 0;
 272}
 273
 274static inline bool float16_is_zero_or_denormal(float16 a)
 275{
 276    return (float16_val(a) & 0x7c00) == 0;
 277}
 278
 279static inline bool float16_is_normal(float16 a)
 280{
 281    return (((float16_val(a) >> 10) + 1) & 0x1f) >= 2;
 282}
 283
 284static inline float16 float16_abs(float16 a)
 285{
 286    /* Note that abs does *not* handle NaN specially, nor does
 287     * it flush denormal inputs to zero.
 288     */
 289    return make_float16(float16_val(a) & 0x7fff);
 290}
 291
 292static inline float16 float16_chs(float16 a)
 293{
 294    /* Note that chs does *not* handle NaN specially, nor does
 295     * it flush denormal inputs to zero.
 296     */
 297    return make_float16(float16_val(a) ^ 0x8000);
 298}
 299
 300static inline float16 float16_set_sign(float16 a, int sign)
 301{
 302    return make_float16((float16_val(a) & 0x7fff) | (sign << 15));
 303}
 304
 305static inline bool float16_eq(float16 a, float16 b, float_status *s)
 306{
 307    return float16_compare(a, b, s) == float_relation_equal;
 308}
 309
 310static inline bool float16_le(float16 a, float16 b, float_status *s)
 311{
 312    return float16_compare(a, b, s) <= float_relation_equal;
 313}
 314
 315static inline bool float16_lt(float16 a, float16 b, float_status *s)
 316{
 317    return float16_compare(a, b, s) < float_relation_equal;
 318}
 319
 320static inline bool float16_unordered(float16 a, float16 b, float_status *s)
 321{
 322    return float16_compare(a, b, s) == float_relation_unordered;
 323}
 324
 325static inline bool float16_eq_quiet(float16 a, float16 b, float_status *s)
 326{
 327    return float16_compare_quiet(a, b, s) == float_relation_equal;
 328}
 329
 330static inline bool float16_le_quiet(float16 a, float16 b, float_status *s)
 331{
 332    return float16_compare_quiet(a, b, s) <= float_relation_equal;
 333}
 334
 335static inline bool float16_lt_quiet(float16 a, float16 b, float_status *s)
 336{
 337    return float16_compare_quiet(a, b, s) < float_relation_equal;
 338}
 339
 340static inline bool float16_unordered_quiet(float16 a, float16 b,
 341                                           float_status *s)
 342{
 343    return float16_compare_quiet(a, b, s) == float_relation_unordered;
 344}
 345
 346#define float16_zero make_float16(0)
 347#define float16_half make_float16(0x3800)
 348#define float16_one make_float16(0x3c00)
 349#define float16_one_point_five make_float16(0x3e00)
 350#define float16_two make_float16(0x4000)
 351#define float16_three make_float16(0x4200)
 352#define float16_infinity make_float16(0x7c00)
 353
 354/*----------------------------------------------------------------------------
 355| Software bfloat16 conversion routines.
 356*----------------------------------------------------------------------------*/
 357
 358bfloat16 bfloat16_round_to_int(bfloat16, float_status *status);
 359bfloat16 float32_to_bfloat16(float32, float_status *status);
 360float32 bfloat16_to_float32(bfloat16, float_status *status);
 361bfloat16 float64_to_bfloat16(float64 a, float_status *status);
 362float64 bfloat16_to_float64(bfloat16 a, float_status *status);
 363
 364int16_t bfloat16_to_int16_scalbn(bfloat16, FloatRoundMode,
 365                                 int, float_status *status);
 366int32_t bfloat16_to_int32_scalbn(bfloat16, FloatRoundMode,
 367                                 int, float_status *status);
 368int64_t bfloat16_to_int64_scalbn(bfloat16, FloatRoundMode,
 369                                 int, float_status *status);
 370
 371int16_t bfloat16_to_int16(bfloat16, float_status *status);
 372int32_t bfloat16_to_int32(bfloat16, float_status *status);
 373int64_t bfloat16_to_int64(bfloat16, float_status *status);
 374
 375int16_t bfloat16_to_int16_round_to_zero(bfloat16, float_status *status);
 376int32_t bfloat16_to_int32_round_to_zero(bfloat16, float_status *status);
 377int64_t bfloat16_to_int64_round_to_zero(bfloat16, float_status *status);
 378
 379uint16_t bfloat16_to_uint16_scalbn(bfloat16 a, FloatRoundMode,
 380                                   int, float_status *status);
 381uint32_t bfloat16_to_uint32_scalbn(bfloat16 a, FloatRoundMode,
 382                                   int, float_status *status);
 383uint64_t bfloat16_to_uint64_scalbn(bfloat16 a, FloatRoundMode,
 384                                   int, float_status *status);
 385
 386uint16_t bfloat16_to_uint16(bfloat16 a, float_status *status);
 387uint32_t bfloat16_to_uint32(bfloat16 a, float_status *status);
 388uint64_t bfloat16_to_uint64(bfloat16 a, float_status *status);
 389
 390uint16_t bfloat16_to_uint16_round_to_zero(bfloat16 a, float_status *status);
 391uint32_t bfloat16_to_uint32_round_to_zero(bfloat16 a, float_status *status);
 392uint64_t bfloat16_to_uint64_round_to_zero(bfloat16 a, float_status *status);
 393
 394bfloat16 int16_to_bfloat16_scalbn(int16_t a, int, float_status *status);
 395bfloat16 int32_to_bfloat16_scalbn(int32_t a, int, float_status *status);
 396bfloat16 int64_to_bfloat16_scalbn(int64_t a, int, float_status *status);
 397bfloat16 uint16_to_bfloat16_scalbn(uint16_t a, int, float_status *status);
 398bfloat16 uint32_to_bfloat16_scalbn(uint32_t a, int, float_status *status);
 399bfloat16 uint64_to_bfloat16_scalbn(uint64_t a, int, float_status *status);
 400
 401bfloat16 int16_to_bfloat16(int16_t a, float_status *status);
 402bfloat16 int32_to_bfloat16(int32_t a, float_status *status);
 403bfloat16 int64_to_bfloat16(int64_t a, float_status *status);
 404bfloat16 uint16_to_bfloat16(uint16_t a, float_status *status);
 405bfloat16 uint32_to_bfloat16(uint32_t a, float_status *status);
 406bfloat16 uint64_to_bfloat16(uint64_t a, float_status *status);
 407
 408/*----------------------------------------------------------------------------
 409| Software bfloat16 operations.
 410*----------------------------------------------------------------------------*/
 411
 412bfloat16 bfloat16_add(bfloat16, bfloat16, float_status *status);
 413bfloat16 bfloat16_sub(bfloat16, bfloat16, float_status *status);
 414bfloat16 bfloat16_mul(bfloat16, bfloat16, float_status *status);
 415bfloat16 bfloat16_div(bfloat16, bfloat16, float_status *status);
 416bfloat16 bfloat16_muladd(bfloat16, bfloat16, bfloat16, int,
 417                         float_status *status);
 418float16 bfloat16_scalbn(bfloat16, int, float_status *status);
 419bfloat16 bfloat16_min(bfloat16, bfloat16, float_status *status);
 420bfloat16 bfloat16_max(bfloat16, bfloat16, float_status *status);
 421bfloat16 bfloat16_minnum(bfloat16, bfloat16, float_status *status);
 422bfloat16 bfloat16_maxnum(bfloat16, bfloat16, float_status *status);
 423bfloat16 bfloat16_minnummag(bfloat16, bfloat16, float_status *status);
 424bfloat16 bfloat16_maxnummag(bfloat16, bfloat16, float_status *status);
 425bfloat16 bfloat16_sqrt(bfloat16, float_status *status);
 426FloatRelation bfloat16_compare(bfloat16, bfloat16, float_status *status);
 427FloatRelation bfloat16_compare_quiet(bfloat16, bfloat16, float_status *status);
 428
 429bool bfloat16_is_quiet_nan(bfloat16, float_status *status);
 430bool bfloat16_is_signaling_nan(bfloat16, float_status *status);
 431bfloat16 bfloat16_silence_nan(bfloat16, float_status *status);
 432bfloat16 bfloat16_default_nan(float_status *status);
 433
 434static inline bool bfloat16_is_any_nan(bfloat16 a)
 435{
 436    return ((a & ~0x8000) > 0x7F80);
 437}
 438
 439static inline bool bfloat16_is_neg(bfloat16 a)
 440{
 441    return a >> 15;
 442}
 443
 444static inline bool bfloat16_is_infinity(bfloat16 a)
 445{
 446    return (a & 0x7fff) == 0x7F80;
 447}
 448
 449static inline bool bfloat16_is_zero(bfloat16 a)
 450{
 451    return (a & 0x7fff) == 0;
 452}
 453
 454static inline bool bfloat16_is_zero_or_denormal(bfloat16 a)
 455{
 456    return (a & 0x7F80) == 0;
 457}
 458
 459static inline bool bfloat16_is_normal(bfloat16 a)
 460{
 461    return (((a >> 7) + 1) & 0xff) >= 2;
 462}
 463
 464static inline bfloat16 bfloat16_abs(bfloat16 a)
 465{
 466    /* Note that abs does *not* handle NaN specially, nor does
 467     * it flush denormal inputs to zero.
 468     */
 469    return a & 0x7fff;
 470}
 471
 472static inline bfloat16 bfloat16_chs(bfloat16 a)
 473{
 474    /* Note that chs does *not* handle NaN specially, nor does
 475     * it flush denormal inputs to zero.
 476     */
 477    return a ^ 0x8000;
 478}
 479
 480static inline bfloat16 bfloat16_set_sign(bfloat16 a, int sign)
 481{
 482    return (a & 0x7fff) | (sign << 15);
 483}
 484
 485static inline bool bfloat16_eq(bfloat16 a, bfloat16 b, float_status *s)
 486{
 487    return bfloat16_compare(a, b, s) == float_relation_equal;
 488}
 489
 490static inline bool bfloat16_le(bfloat16 a, bfloat16 b, float_status *s)
 491{
 492    return bfloat16_compare(a, b, s) <= float_relation_equal;
 493}
 494
 495static inline bool bfloat16_lt(bfloat16 a, bfloat16 b, float_status *s)
 496{
 497    return bfloat16_compare(a, b, s) < float_relation_equal;
 498}
 499
 500static inline bool bfloat16_unordered(bfloat16 a, bfloat16 b, float_status *s)
 501{
 502    return bfloat16_compare(a, b, s) == float_relation_unordered;
 503}
 504
 505static inline bool bfloat16_eq_quiet(bfloat16 a, bfloat16 b, float_status *s)
 506{
 507    return bfloat16_compare_quiet(a, b, s) == float_relation_equal;
 508}
 509
 510static inline bool bfloat16_le_quiet(bfloat16 a, bfloat16 b, float_status *s)
 511{
 512    return bfloat16_compare_quiet(a, b, s) <= float_relation_equal;
 513}
 514
 515static inline bool bfloat16_lt_quiet(bfloat16 a, bfloat16 b, float_status *s)
 516{
 517    return bfloat16_compare_quiet(a, b, s) < float_relation_equal;
 518}
 519
 520static inline bool bfloat16_unordered_quiet(bfloat16 a, bfloat16 b,
 521                                           float_status *s)
 522{
 523    return bfloat16_compare_quiet(a, b, s) == float_relation_unordered;
 524}
 525
 526#define bfloat16_zero 0
 527#define bfloat16_half 0x3f00
 528#define bfloat16_one 0x3f80
 529#define bfloat16_one_point_five 0x3fc0
 530#define bfloat16_two 0x4000
 531#define bfloat16_three 0x4040
 532#define bfloat16_infinity 0x7f80
 533
 534/*----------------------------------------------------------------------------
 535| The pattern for a default generated half-precision NaN.
 536*----------------------------------------------------------------------------*/
 537float16 float16_default_nan(float_status *status);
 538
 539/*----------------------------------------------------------------------------
 540| Software IEC/IEEE single-precision conversion routines.
 541*----------------------------------------------------------------------------*/
 542
 543int16_t float32_to_int16_scalbn(float32, FloatRoundMode, int, float_status *);
 544int32_t float32_to_int32_scalbn(float32, FloatRoundMode, int, float_status *);
 545int64_t float32_to_int64_scalbn(float32, FloatRoundMode, int, float_status *);
 546
 547int16_t float32_to_int16(float32, float_status *status);
 548int32_t float32_to_int32(float32, float_status *status);
 549int64_t float32_to_int64(float32, float_status *status);
 550
 551int16_t float32_to_int16_round_to_zero(float32, float_status *status);
 552int32_t float32_to_int32_round_to_zero(float32, float_status *status);
 553int64_t float32_to_int64_round_to_zero(float32, float_status *status);
 554
 555uint16_t float32_to_uint16_scalbn(float32, FloatRoundMode, int, float_status *);
 556uint32_t float32_to_uint32_scalbn(float32, FloatRoundMode, int, float_status *);
 557uint64_t float32_to_uint64_scalbn(float32, FloatRoundMode, int, float_status *);
 558
 559uint16_t float32_to_uint16(float32, float_status *status);
 560uint32_t float32_to_uint32(float32, float_status *status);
 561uint64_t float32_to_uint64(float32, float_status *status);
 562
 563uint16_t float32_to_uint16_round_to_zero(float32, float_status *status);
 564uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
 565uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
 566
 567float64 float32_to_float64(float32, float_status *status);
 568floatx80 float32_to_floatx80(float32, float_status *status);
 569float128 float32_to_float128(float32, float_status *status);
 570
 571/*----------------------------------------------------------------------------
 572| Software IEC/IEEE single-precision operations.
 573*----------------------------------------------------------------------------*/
 574float32 float32_round_to_int(float32, float_status *status);
 575float32 float32_add(float32, float32, float_status *status);
 576float32 float32_sub(float32, float32, float_status *status);
 577float32 float32_mul(float32, float32, float_status *status);
 578float32 float32_div(float32, float32, float_status *status);
 579float32 float32_rem(float32, float32, float_status *status);
 580float32 float32_muladd(float32, float32, float32, int, float_status *status);
 581float32 float32_sqrt(float32, float_status *status);
 582float32 float32_exp2(float32, float_status *status);
 583float32 float32_log2(float32, float_status *status);
 584FloatRelation float32_compare(float32, float32, float_status *status);
 585FloatRelation float32_compare_quiet(float32, float32, float_status *status);
 586float32 float32_min(float32, float32, float_status *status);
 587float32 float32_max(float32, float32, float_status *status);
 588float32 float32_minnum(float32, float32, float_status *status);
 589float32 float32_maxnum(float32, float32, float_status *status);
 590float32 float32_minnummag(float32, float32, float_status *status);
 591float32 float32_maxnummag(float32, float32, float_status *status);
 592bool float32_is_quiet_nan(float32, float_status *status);
 593bool float32_is_signaling_nan(float32, float_status *status);
 594float32 float32_silence_nan(float32, float_status *status);
 595float32 float32_scalbn(float32, int, float_status *status);
 596
 597static inline float32 float32_abs(float32 a)
 598{
 599    /* Note that abs does *not* handle NaN specially, nor does
 600     * it flush denormal inputs to zero.
 601     */
 602    return make_float32(float32_val(a) & 0x7fffffff);
 603}
 604
 605static inline float32 float32_chs(float32 a)
 606{
 607    /* Note that chs does *not* handle NaN specially, nor does
 608     * it flush denormal inputs to zero.
 609     */
 610    return make_float32(float32_val(a) ^ 0x80000000);
 611}
 612
 613static inline bool float32_is_infinity(float32 a)
 614{
 615    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
 616}
 617
 618static inline bool float32_is_neg(float32 a)
 619{
 620    return float32_val(a) >> 31;
 621}
 622
 623static inline bool float32_is_zero(float32 a)
 624{
 625    return (float32_val(a) & 0x7fffffff) == 0;
 626}
 627
 628static inline bool float32_is_any_nan(float32 a)
 629{
 630    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
 631}
 632
 633static inline bool float32_is_zero_or_denormal(float32 a)
 634{
 635    return (float32_val(a) & 0x7f800000) == 0;
 636}
 637
 638static inline bool float32_is_normal(float32 a)
 639{
 640    return (((float32_val(a) >> 23) + 1) & 0xff) >= 2;
 641}
 642
 643static inline bool float32_is_denormal(float32 a)
 644{
 645    return float32_is_zero_or_denormal(a) && !float32_is_zero(a);
 646}
 647
 648static inline bool float32_is_zero_or_normal(float32 a)
 649{
 650    return float32_is_normal(a) || float32_is_zero(a);
 651}
 652
 653static inline float32 float32_set_sign(float32 a, int sign)
 654{
 655    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
 656}
 657
 658static inline bool float32_eq(float32 a, float32 b, float_status *s)
 659{
 660    return float32_compare(a, b, s) == float_relation_equal;
 661}
 662
 663static inline bool float32_le(float32 a, float32 b, float_status *s)
 664{
 665    return float32_compare(a, b, s) <= float_relation_equal;
 666}
 667
 668static inline bool float32_lt(float32 a, float32 b, float_status *s)
 669{
 670    return float32_compare(a, b, s) < float_relation_equal;
 671}
 672
 673static inline bool float32_unordered(float32 a, float32 b, float_status *s)
 674{
 675    return float32_compare(a, b, s) == float_relation_unordered;
 676}
 677
 678static inline bool float32_eq_quiet(float32 a, float32 b, float_status *s)
 679{
 680    return float32_compare_quiet(a, b, s) == float_relation_equal;
 681}
 682
 683static inline bool float32_le_quiet(float32 a, float32 b, float_status *s)
 684{
 685    return float32_compare_quiet(a, b, s) <= float_relation_equal;
 686}
 687
 688static inline bool float32_lt_quiet(float32 a, float32 b, float_status *s)
 689{
 690    return float32_compare_quiet(a, b, s) < float_relation_equal;
 691}
 692
 693static inline bool float32_unordered_quiet(float32 a, float32 b,
 694                                           float_status *s)
 695{
 696    return float32_compare_quiet(a, b, s) == float_relation_unordered;
 697}
 698
 699#define float32_zero make_float32(0)
 700#define float32_half make_float32(0x3f000000)
 701#define float32_one make_float32(0x3f800000)
 702#define float32_one_point_five make_float32(0x3fc00000)
 703#define float32_two make_float32(0x40000000)
 704#define float32_three make_float32(0x40400000)
 705#define float32_infinity make_float32(0x7f800000)
 706
 707/*----------------------------------------------------------------------------
 708| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 709| single-precision floating-point value, returning the result.  After being
 710| shifted into the proper positions, the three fields are simply added
 711| together to form the result.  This means that any integer portion of `zSig'
 712| will be added into the exponent.  Since a properly normalized significand
 713| will have an integer portion equal to 1, the `zExp' input should be 1 less
 714| than the desired result exponent whenever `zSig' is a complete, normalized
 715| significand.
 716*----------------------------------------------------------------------------*/
 717
 718static inline float32 packFloat32(bool zSign, int zExp, uint32_t zSig)
 719{
 720    return make_float32(
 721          (((uint32_t)zSign) << 31) + (((uint32_t)zExp) << 23) + zSig);
 722}
 723
 724/*----------------------------------------------------------------------------
 725| The pattern for a default generated single-precision NaN.
 726*----------------------------------------------------------------------------*/
 727float32 float32_default_nan(float_status *status);
 728
 729/*----------------------------------------------------------------------------
 730| Software IEC/IEEE double-precision conversion routines.
 731*----------------------------------------------------------------------------*/
 732
 733int16_t float64_to_int16_scalbn(float64, FloatRoundMode, int, float_status *);
 734int32_t float64_to_int32_scalbn(float64, FloatRoundMode, int, float_status *);
 735int64_t float64_to_int64_scalbn(float64, FloatRoundMode, int, float_status *);
 736
 737int16_t float64_to_int16(float64, float_status *status);
 738int32_t float64_to_int32(float64, float_status *status);
 739int64_t float64_to_int64(float64, float_status *status);
 740
 741int16_t float64_to_int16_round_to_zero(float64, float_status *status);
 742int32_t float64_to_int32_round_to_zero(float64, float_status *status);
 743int64_t float64_to_int64_round_to_zero(float64, float_status *status);
 744
 745uint16_t float64_to_uint16_scalbn(float64, FloatRoundMode, int, float_status *);
 746uint32_t float64_to_uint32_scalbn(float64, FloatRoundMode, int, float_status *);
 747uint64_t float64_to_uint64_scalbn(float64, FloatRoundMode, int, float_status *);
 748
 749uint16_t float64_to_uint16(float64, float_status *status);
 750uint32_t float64_to_uint32(float64, float_status *status);
 751uint64_t float64_to_uint64(float64, float_status *status);
 752
 753uint16_t float64_to_uint16_round_to_zero(float64, float_status *status);
 754uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
 755uint64_t float64_to_uint64_round_to_zero(float64, float_status *status);
 756
 757float32 float64_to_float32(float64, float_status *status);
 758floatx80 float64_to_floatx80(float64, float_status *status);
 759float128 float64_to_float128(float64, float_status *status);
 760
 761/*----------------------------------------------------------------------------
 762| Software IEC/IEEE double-precision operations.
 763*----------------------------------------------------------------------------*/
 764float64 float64_round_to_int(float64, float_status *status);
 765float64 float64_add(float64, float64, float_status *status);
 766float64 float64_sub(float64, float64, float_status *status);
 767float64 float64_mul(float64, float64, float_status *status);
 768float64 float64_div(float64, float64, float_status *status);
 769float64 float64_rem(float64, float64, float_status *status);
 770float64 float64_muladd(float64, float64, float64, int, float_status *status);
 771float64 float64_sqrt(float64, float_status *status);
 772float64 float64_log2(float64, float_status *status);
 773FloatRelation float64_compare(float64, float64, float_status *status);
 774FloatRelation float64_compare_quiet(float64, float64, float_status *status);
 775float64 float64_min(float64, float64, float_status *status);
 776float64 float64_max(float64, float64, float_status *status);
 777float64 float64_minnum(float64, float64, float_status *status);
 778float64 float64_maxnum(float64, float64, float_status *status);
 779float64 float64_minnummag(float64, float64, float_status *status);
 780float64 float64_maxnummag(float64, float64, float_status *status);
 781bool float64_is_quiet_nan(float64 a, float_status *status);
 782bool float64_is_signaling_nan(float64, float_status *status);
 783float64 float64_silence_nan(float64, float_status *status);
 784float64 float64_scalbn(float64, int, float_status *status);
 785
 786static inline float64 float64_abs(float64 a)
 787{
 788    /* Note that abs does *not* handle NaN specially, nor does
 789     * it flush denormal inputs to zero.
 790     */
 791    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
 792}
 793
 794static inline float64 float64_chs(float64 a)
 795{
 796    /* Note that chs does *not* handle NaN specially, nor does
 797     * it flush denormal inputs to zero.
 798     */
 799    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
 800}
 801
 802static inline bool float64_is_infinity(float64 a)
 803{
 804    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
 805}
 806
 807static inline bool float64_is_neg(float64 a)
 808{
 809    return float64_val(a) >> 63;
 810}
 811
 812static inline bool float64_is_zero(float64 a)
 813{
 814    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
 815}
 816
 817static inline bool float64_is_any_nan(float64 a)
 818{
 819    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
 820}
 821
 822static inline bool float64_is_zero_or_denormal(float64 a)
 823{
 824    return (float64_val(a) & 0x7ff0000000000000LL) == 0;
 825}
 826
 827static inline bool float64_is_normal(float64 a)
 828{
 829    return (((float64_val(a) >> 52) + 1) & 0x7ff) >= 2;
 830}
 831
 832static inline bool float64_is_denormal(float64 a)
 833{
 834    return float64_is_zero_or_denormal(a) && !float64_is_zero(a);
 835}
 836
 837static inline bool float64_is_zero_or_normal(float64 a)
 838{
 839    return float64_is_normal(a) || float64_is_zero(a);
 840}
 841
 842static inline float64 float64_set_sign(float64 a, int sign)
 843{
 844    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
 845                        | ((int64_t)sign << 63));
 846}
 847
 848static inline bool float64_eq(float64 a, float64 b, float_status *s)
 849{
 850    return float64_compare(a, b, s) == float_relation_equal;
 851}
 852
 853static inline bool float64_le(float64 a, float64 b, float_status *s)
 854{
 855    return float64_compare(a, b, s) <= float_relation_equal;
 856}
 857
 858static inline bool float64_lt(float64 a, float64 b, float_status *s)
 859{
 860    return float64_compare(a, b, s) < float_relation_equal;
 861}
 862
 863static inline bool float64_unordered(float64 a, float64 b, float_status *s)
 864{
 865    return float64_compare(a, b, s) == float_relation_unordered;
 866}
 867
 868static inline bool float64_eq_quiet(float64 a, float64 b, float_status *s)
 869{
 870    return float64_compare_quiet(a, b, s) == float_relation_equal;
 871}
 872
 873static inline bool float64_le_quiet(float64 a, float64 b, float_status *s)
 874{
 875    return float64_compare_quiet(a, b, s) <= float_relation_equal;
 876}
 877
 878static inline bool float64_lt_quiet(float64 a, float64 b, float_status *s)
 879{
 880    return float64_compare_quiet(a, b, s) < float_relation_equal;
 881}
 882
 883static inline bool float64_unordered_quiet(float64 a, float64 b,
 884                                           float_status *s)
 885{
 886    return float64_compare_quiet(a, b, s) == float_relation_unordered;
 887}
 888
 889#define float64_zero make_float64(0)
 890#define float64_half make_float64(0x3fe0000000000000LL)
 891#define float64_one make_float64(0x3ff0000000000000LL)
 892#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
 893#define float64_two make_float64(0x4000000000000000ULL)
 894#define float64_three make_float64(0x4008000000000000ULL)
 895#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
 896#define float64_infinity make_float64(0x7ff0000000000000LL)
 897
 898/*----------------------------------------------------------------------------
 899| The pattern for a default generated double-precision NaN.
 900*----------------------------------------------------------------------------*/
 901float64 float64_default_nan(float_status *status);
 902
 903/*----------------------------------------------------------------------------
 904| Software IEC/IEEE extended double-precision conversion routines.
 905*----------------------------------------------------------------------------*/
 906int32_t floatx80_to_int32(floatx80, float_status *status);
 907int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
 908int64_t floatx80_to_int64(floatx80, float_status *status);
 909int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
 910float32 floatx80_to_float32(floatx80, float_status *status);
 911float64 floatx80_to_float64(floatx80, float_status *status);
 912float128 floatx80_to_float128(floatx80, float_status *status);
 913
 914/*----------------------------------------------------------------------------
 915| The pattern for an extended double-precision inf.
 916*----------------------------------------------------------------------------*/
 917extern const floatx80 floatx80_infinity;
 918
 919/*----------------------------------------------------------------------------
 920| Software IEC/IEEE extended double-precision operations.
 921*----------------------------------------------------------------------------*/
 922floatx80 floatx80_round(floatx80 a, float_status *status);
 923floatx80 floatx80_round_to_int(floatx80, float_status *status);
 924floatx80 floatx80_add(floatx80, floatx80, float_status *status);
 925floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
 926floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
 927floatx80 floatx80_div(floatx80, floatx80, float_status *status);
 928floatx80 floatx80_modrem(floatx80, floatx80, bool, uint64_t *,
 929                         float_status *status);
 930floatx80 floatx80_mod(floatx80, floatx80, float_status *status);
 931floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
 932floatx80 floatx80_sqrt(floatx80, float_status *status);
 933FloatRelation floatx80_compare(floatx80, floatx80, float_status *status);
 934FloatRelation floatx80_compare_quiet(floatx80, floatx80, float_status *status);
 935int floatx80_is_quiet_nan(floatx80, float_status *status);
 936int floatx80_is_signaling_nan(floatx80, float_status *status);
 937floatx80 floatx80_silence_nan(floatx80, float_status *status);
 938floatx80 floatx80_scalbn(floatx80, int, float_status *status);
 939
 940static inline floatx80 floatx80_abs(floatx80 a)
 941{
 942    a.high &= 0x7fff;
 943    return a;
 944}
 945
 946static inline floatx80 floatx80_chs(floatx80 a)
 947{
 948    a.high ^= 0x8000;
 949    return a;
 950}
 951
 952static inline bool floatx80_is_infinity(floatx80 a)
 953{
 954#if defined(TARGET_M68K)
 955    return (a.high & 0x7fff) == floatx80_infinity.high && !(a.low << 1);
 956#else
 957    return (a.high & 0x7fff) == floatx80_infinity.high &&
 958                       a.low == floatx80_infinity.low;
 959#endif
 960}
 961
 962static inline bool floatx80_is_neg(floatx80 a)
 963{
 964    return a.high >> 15;
 965}
 966
 967static inline bool floatx80_is_zero(floatx80 a)
 968{
 969    return (a.high & 0x7fff) == 0 && a.low == 0;
 970}
 971
 972static inline bool floatx80_is_zero_or_denormal(floatx80 a)
 973{
 974    return (a.high & 0x7fff) == 0;
 975}
 976
 977static inline bool floatx80_is_any_nan(floatx80 a)
 978{
 979    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
 980}
 981
 982static inline bool floatx80_eq(floatx80 a, floatx80 b, float_status *s)
 983{
 984    return floatx80_compare(a, b, s) == float_relation_equal;
 985}
 986
 987static inline bool floatx80_le(floatx80 a, floatx80 b, float_status *s)
 988{
 989    return floatx80_compare(a, b, s) <= float_relation_equal;
 990}
 991
 992static inline bool floatx80_lt(floatx80 a, floatx80 b, float_status *s)
 993{
 994    return floatx80_compare(a, b, s) < float_relation_equal;
 995}
 996
 997static inline bool floatx80_unordered(floatx80 a, floatx80 b, float_status *s)
 998{
 999    return floatx80_compare(a, b, s) == float_relation_unordered;
1000}
1001
1002static inline bool floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *s)
1003{
1004    return floatx80_compare_quiet(a, b, s) == float_relation_equal;
1005}
1006
1007static inline bool floatx80_le_quiet(floatx80 a, floatx80 b, float_status *s)
1008{
1009    return floatx80_compare_quiet(a, b, s) <= float_relation_equal;
1010}
1011
1012static inline bool floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *s)
1013{
1014    return floatx80_compare_quiet(a, b, s) < float_relation_equal;
1015}
1016
1017static inline bool floatx80_unordered_quiet(floatx80 a, floatx80 b,
1018                                           float_status *s)
1019{
1020    return floatx80_compare_quiet(a, b, s) == float_relation_unordered;
1021}
1022
1023/*----------------------------------------------------------------------------
1024| Return whether the given value is an invalid floatx80 encoding.
1025| Invalid floatx80 encodings arise when the integer bit is not set, but
1026| the exponent is not zero. The only times the integer bit is permitted to
1027| be zero is in subnormal numbers and the value zero.
1028| This includes what the Intel software developer's manual calls pseudo-NaNs,
1029| pseudo-infinities and un-normal numbers. It does not include
1030| pseudo-denormals, which must still be correctly handled as inputs even
1031| if they are never generated as outputs.
1032*----------------------------------------------------------------------------*/
1033static inline bool floatx80_invalid_encoding(floatx80 a)
1034{
1035#if defined(TARGET_M68K)
1036    /*-------------------------------------------------------------------------
1037    | With m68k, the explicit integer bit can be zero in the case of:
1038    | - zeros                (exp == 0, mantissa == 0)
1039    | - denormalized numbers (exp == 0, mantissa != 0)
1040    | - unnormalized numbers (exp != 0, exp < 0x7FFF)
1041    | - infinities           (exp == 0x7FFF, mantissa == 0)
1042    | - not-a-numbers        (exp == 0x7FFF, mantissa != 0)
1043    |
1044    | For infinities and NaNs, the explicit integer bit can be either one or
1045    | zero.
1046    |
1047    | The IEEE 754 standard does not define a zero integer bit. Such a number
1048    | is an unnormalized number. Hardware does not directly support
1049    | denormalized and unnormalized numbers, but implicitly supports them by
1050    | trapping them as unimplemented data types, allowing efficient conversion
1051    | in software.
1052    |
1053    | See "M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL",
1054    |     "1.6 FLOATING-POINT DATA TYPES"
1055    *------------------------------------------------------------------------*/
1056    return false;
1057#else
1058    return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0;
1059#endif
1060}
1061
1062#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
1063#define floatx80_zero_init make_floatx80_init(0x0000, 0x0000000000000000LL)
1064#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
1065#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
1066#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
1067#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
1068
1069/*----------------------------------------------------------------------------
1070| Returns the fraction bits of the extended double-precision floating-point
1071| value `a'.
1072*----------------------------------------------------------------------------*/
1073
1074static inline uint64_t extractFloatx80Frac(floatx80 a)
1075{
1076    return a.low;
1077}
1078
1079/*----------------------------------------------------------------------------
1080| Returns the exponent bits of the extended double-precision floating-point
1081| value `a'.
1082*----------------------------------------------------------------------------*/
1083
1084static inline int32_t extractFloatx80Exp(floatx80 a)
1085{
1086    return a.high & 0x7FFF;
1087}
1088
1089/*----------------------------------------------------------------------------
1090| Returns the sign bit of the extended double-precision floating-point value
1091| `a'.
1092*----------------------------------------------------------------------------*/
1093
1094static inline bool extractFloatx80Sign(floatx80 a)
1095{
1096    return a.high >> 15;
1097}
1098
1099/*----------------------------------------------------------------------------
1100| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
1101| extended double-precision floating-point value, returning the result.
1102*----------------------------------------------------------------------------*/
1103
1104static inline floatx80 packFloatx80(bool zSign, int32_t zExp, uint64_t zSig)
1105{
1106    floatx80 z;
1107
1108    z.low = zSig;
1109    z.high = (((uint16_t)zSign) << 15) + zExp;
1110    return z;
1111}
1112
1113/*----------------------------------------------------------------------------
1114| Normalizes the subnormal extended double-precision floating-point value
1115| represented by the denormalized significand `aSig'.  The normalized exponent
1116| and significand are stored at the locations pointed to by `zExpPtr' and
1117| `zSigPtr', respectively.
1118*----------------------------------------------------------------------------*/
1119
1120void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
1121                                uint64_t *zSigPtr);
1122
1123/*----------------------------------------------------------------------------
1124| Takes two extended double-precision floating-point values `a' and `b', one
1125| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
1126| `b' is a signaling NaN, the invalid exception is raised.
1127*----------------------------------------------------------------------------*/
1128
1129floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status);
1130
1131/*----------------------------------------------------------------------------
1132| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
1133| and extended significand formed by the concatenation of `zSig0' and `zSig1',
1134| and returns the proper extended double-precision floating-point value
1135| corresponding to the abstract input.  Ordinarily, the abstract value is
1136| rounded and packed into the extended double-precision format, with the
1137| inexact exception raised if the abstract input cannot be represented
1138| exactly.  However, if the abstract value is too large, the overflow and
1139| inexact exceptions are raised and an infinity or maximal finite value is
1140| returned.  If the abstract value is too small, the input value is rounded to
1141| a subnormal number, and the underflow and inexact exceptions are raised if
1142| the abstract input cannot be represented exactly as a subnormal extended
1143| double-precision floating-point number.
1144|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
1145| number of bits as single or double precision, respectively.  Otherwise, the
1146| result is rounded to the full precision of the extended double-precision
1147| format.
1148|     The input significand must be normalized or smaller.  If the input
1149| significand is not normalized, `zExp' must be 0; in that case, the result
1150| returned is a subnormal number, and it must not require rounding.  The
1151| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
1152| Floating-Point Arithmetic.
1153*----------------------------------------------------------------------------*/
1154
1155floatx80 roundAndPackFloatx80(FloatX80RoundPrec roundingPrecision, bool zSign,
1156                              int32_t zExp, uint64_t zSig0, uint64_t zSig1,
1157                              float_status *status);
1158
1159/*----------------------------------------------------------------------------
1160| Takes an abstract floating-point value having sign `zSign', exponent
1161| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
1162| and returns the proper extended double-precision floating-point value
1163| corresponding to the abstract input.  This routine is just like
1164| `roundAndPackFloatx80' except that the input significand does not have to be
1165| normalized.
1166*----------------------------------------------------------------------------*/
1167
1168floatx80 normalizeRoundAndPackFloatx80(FloatX80RoundPrec roundingPrecision,
1169                                       bool zSign, int32_t zExp,
1170                                       uint64_t zSig0, uint64_t zSig1,
1171                                       float_status *status);
1172
1173/*----------------------------------------------------------------------------
1174| The pattern for a default generated extended double-precision NaN.
1175*----------------------------------------------------------------------------*/
1176floatx80 floatx80_default_nan(float_status *status);
1177
1178/*----------------------------------------------------------------------------
1179| Software IEC/IEEE quadruple-precision conversion routines.
1180*----------------------------------------------------------------------------*/
1181int32_t float128_to_int32(float128, float_status *status);
1182int32_t float128_to_int32_round_to_zero(float128, float_status *status);
1183int64_t float128_to_int64(float128, float_status *status);
1184int64_t float128_to_int64_round_to_zero(float128, float_status *status);
1185uint64_t float128_to_uint64(float128, float_status *status);
1186uint64_t float128_to_uint64_round_to_zero(float128, float_status *status);
1187uint32_t float128_to_uint32(float128, float_status *status);
1188uint32_t float128_to_uint32_round_to_zero(float128, float_status *status);
1189float32 float128_to_float32(float128, float_status *status);
1190float64 float128_to_float64(float128, float_status *status);
1191floatx80 float128_to_floatx80(float128, float_status *status);
1192
1193/*----------------------------------------------------------------------------
1194| Software IEC/IEEE quadruple-precision operations.
1195*----------------------------------------------------------------------------*/
1196float128 float128_round_to_int(float128, float_status *status);
1197float128 float128_add(float128, float128, float_status *status);
1198float128 float128_sub(float128, float128, float_status *status);
1199float128 float128_mul(float128, float128, float_status *status);
1200float128 float128_muladd(float128, float128, float128, int,
1201                         float_status *status);
1202float128 float128_div(float128, float128, float_status *status);
1203float128 float128_rem(float128, float128, float_status *status);
1204float128 float128_sqrt(float128, float_status *status);
1205FloatRelation float128_compare(float128, float128, float_status *status);
1206FloatRelation float128_compare_quiet(float128, float128, float_status *status);
1207float128 float128_min(float128, float128, float_status *status);
1208float128 float128_max(float128, float128, float_status *status);
1209float128 float128_minnum(float128, float128, float_status *status);
1210float128 float128_maxnum(float128, float128, float_status *status);
1211float128 float128_minnummag(float128, float128, float_status *status);
1212float128 float128_maxnummag(float128, float128, float_status *status);
1213bool float128_is_quiet_nan(float128, float_status *status);
1214bool float128_is_signaling_nan(float128, float_status *status);
1215float128 float128_silence_nan(float128, float_status *status);
1216float128 float128_scalbn(float128, int, float_status *status);
1217
1218static inline float128 float128_abs(float128 a)
1219{
1220    a.high &= 0x7fffffffffffffffLL;
1221    return a;
1222}
1223
1224static inline float128 float128_chs(float128 a)
1225{
1226    a.high ^= 0x8000000000000000LL;
1227    return a;
1228}
1229
1230static inline bool float128_is_infinity(float128 a)
1231{
1232    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
1233}
1234
1235static inline bool float128_is_neg(float128 a)
1236{
1237    return a.high >> 63;
1238}
1239
1240static inline bool float128_is_zero(float128 a)
1241{
1242    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
1243}
1244
1245static inline bool float128_is_zero_or_denormal(float128 a)
1246{
1247    return (a.high & 0x7fff000000000000LL) == 0;
1248}
1249
1250static inline bool float128_is_normal(float128 a)
1251{
1252    return (((a.high >> 48) + 1) & 0x7fff) >= 2;
1253}
1254
1255static inline bool float128_is_denormal(float128 a)
1256{
1257    return float128_is_zero_or_denormal(a) && !float128_is_zero(a);
1258}
1259
1260static inline bool float128_is_any_nan(float128 a)
1261{
1262    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
1263        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
1264}
1265
1266static inline bool float128_eq(float128 a, float128 b, float_status *s)
1267{
1268    return float128_compare(a, b, s) == float_relation_equal;
1269}
1270
1271static inline bool float128_le(float128 a, float128 b, float_status *s)
1272{
1273    return float128_compare(a, b, s) <= float_relation_equal;
1274}
1275
1276static inline bool float128_lt(float128 a, float128 b, float_status *s)
1277{
1278    return float128_compare(a, b, s) < float_relation_equal;
1279}
1280
1281static inline bool float128_unordered(float128 a, float128 b, float_status *s)
1282{
1283    return float128_compare(a, b, s) == float_relation_unordered;
1284}
1285
1286static inline bool float128_eq_quiet(float128 a, float128 b, float_status *s)
1287{
1288    return float128_compare_quiet(a, b, s) == float_relation_equal;
1289}
1290
1291static inline bool float128_le_quiet(float128 a, float128 b, float_status *s)
1292{
1293    return float128_compare_quiet(a, b, s) <= float_relation_equal;
1294}
1295
1296static inline bool float128_lt_quiet(float128 a, float128 b, float_status *s)
1297{
1298    return float128_compare_quiet(a, b, s) < float_relation_equal;
1299}
1300
1301static inline bool float128_unordered_quiet(float128 a, float128 b,
1302                                           float_status *s)
1303{
1304    return float128_compare_quiet(a, b, s) == float_relation_unordered;
1305}
1306
1307#define float128_zero make_float128(0, 0)
1308
1309/*----------------------------------------------------------------------------
1310| The pattern for a default generated quadruple-precision NaN.
1311*----------------------------------------------------------------------------*/
1312float128 float128_default_nan(float_status *status);
1313
1314#endif /* SOFTFLOAT_H */
1315