qemu/target/arm/cpu.c
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/qemu-print.h"
  23#include "qemu-common.h"
  24#include "target/arm/idau.h"
  25#include "qemu/module.h"
  26#include "qapi/error.h"
  27#include "qapi/visitor.h"
  28#include "cpu.h"
  29#ifdef CONFIG_TCG
  30#include "hw/core/tcg-cpu-ops.h"
  31#endif /* CONFIG_TCG */
  32#include "internals.h"
  33#include "exec/exec-all.h"
  34#include "hw/qdev-properties.h"
  35#if !defined(CONFIG_USER_ONLY)
  36#include "hw/loader.h"
  37#include "hw/boards.h"
  38#endif
  39#include "sysemu/runstate.h"
  40#include "sysemu/tcg.h"
  41#include "sysemu/hw_accel.h"
  42#include "kvm_arm.h"
  43#include "disas/capstone.h"
  44#include "fpu/softfloat.h"
  45
  46#include "hw/core/cpu-exec-gpio.h"
  47#include "hw/fdt_generic_util.h"
  48
  49#if !defined(CONFIG_USER_ONLY)
  50static void arm_cpu_set_irq(void *opaque, int irq, int level);
  51#endif
  52
  53static void arm_cpu_set_pc(CPUState *cs, vaddr value)
  54{
  55    ARMCPU *cpu = ARM_CPU(cs);
  56    CPUARMState *env = &cpu->env;
  57
  58    if (is_a64(env)) {
  59        env->pc = value;
  60        env->thumb = 0;
  61    } else {
  62        env->regs[15] = value & ~1;
  63        env->thumb = value & 1;
  64    }
  65}
  66
  67static vaddr arm_cpu_get_pc(CPUState *cs)
  68{
  69    ARMCPU *cpu = ARM_CPU(cs);
  70    CPUARMState *env = &cpu->env;
  71
  72   return is_a64(env) ? env->pc : env->regs[15];
  73}
  74
  75#ifdef CONFIG_TCG
  76void arm_cpu_synchronize_from_tb(CPUState *cs,
  77                                 const TranslationBlock *tb)
  78{
  79    ARMCPU *cpu = ARM_CPU(cs);
  80    CPUARMState *env = &cpu->env;
  81
  82    /*
  83     * It's OK to look at env for the current mode here, because it's
  84     * never possible for an AArch64 TB to chain to an AArch32 TB.
  85     */
  86    if (is_a64(env)) {
  87        env->pc = tb->pc;
  88    } else {
  89        env->regs[15] = tb->pc;
  90    }
  91}
  92#endif /* CONFIG_TCG */
  93
  94enum {
  95    ARM_DEBUG_CURRENT_EL,
  96    ARM_DEBUG_PHYS
  97};
  98
  99static const char *arm_debug_ctx[] = {
 100    [ARM_DEBUG_CURRENT_EL] = "current-el",
 101    [ARM_DEBUG_PHYS] = "phys",
 102    NULL
 103};
 104
 105static bool arm_cpu_has_work(CPUState *cs)
 106{
 107    ARMCPU *cpu = ARM_CPU(cs);
 108
 109    return (cpu->power_state != PSCI_OFF)
 110        && cs->interrupt_request &
 111        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
 112         | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
 113         | CPU_INTERRUPT_EXITTB);
 114}
 115
 116void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
 117                                 void *opaque)
 118{
 119    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
 120
 121    entry->hook = hook;
 122    entry->opaque = opaque;
 123
 124    QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
 125}
 126
 127void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
 128                                 void *opaque)
 129{
 130    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
 131
 132    entry->hook = hook;
 133    entry->opaque = opaque;
 134
 135    QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
 136}
 137
 138static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
 139{
 140    /* Reset a single ARMCPRegInfo register */
 141    ARMCPRegInfo *ri = value;
 142    ARMCPU *cpu = opaque;
 143
 144    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
 145        return;
 146    }
 147
 148    if (ri->resetfn) {
 149        ri->resetfn(&cpu->env, ri);
 150        return;
 151    }
 152
 153    /* A zero offset is never possible as it would be regs[0]
 154     * so we use it to indicate that reset is being handled elsewhere.
 155     * This is basically only used for fields in non-core coprocessors
 156     * (like the pxa2xx ones).
 157     */
 158    if (!ri->fieldoffset) {
 159        return;
 160    }
 161
 162    if (cpreg_field_is_64bit(ri)) {
 163        CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
 164    } else {
 165        CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
 166    }
 167}
 168
 169static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
 170{
 171    /* Purely an assertion check: we've already done reset once,
 172     * so now check that running the reset for the cpreg doesn't
 173     * change its value. This traps bugs where two different cpregs
 174     * both try to reset the same state field but to different values.
 175     */
 176    ARMCPRegInfo *ri = value;
 177    ARMCPU *cpu = opaque;
 178    uint64_t oldvalue, newvalue;
 179
 180    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
 181        return;
 182    }
 183
 184    oldvalue = read_raw_cp_reg(&cpu->env, ri);
 185    cp_reg_reset(key, value, opaque);
 186    newvalue = read_raw_cp_reg(&cpu->env, ri);
 187    assert(oldvalue == newvalue);
 188}
 189
 190static void arm_cpu_reset(DeviceState *dev)
 191{
 192    CPUState *s = CPU(dev);
 193    ARMCPU *cpu = ARM_CPU(s);
 194    ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
 195    CPUARMState *env = &cpu->env;
 196#ifndef CONFIG_USER_ONLY
 197    CPUClass *cc = CPU_GET_CLASS(s);
 198    vaddr old_pc = is_a64(&cpu->env) ? cpu->env.pc : cpu->env.regs[15];
 199    int i;
 200#endif
 201
 202    acc->parent_reset(dev);
 203
 204    memset(env, 0, offsetof(CPUARMState, end_reset_fields));
 205
 206    g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
 207    g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
 208
 209    env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
 210    env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
 211    env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
 212    env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
 213
 214    cpu->power_state = s->start_powered_off || s->halt_pin || s->arch_halt_pin ?
 215                           PSCI_OFF : PSCI_ON;
 216
 217    /* Reset value of SCTLR_V is controlled by input signal VINITHI.  */
 218    env->cp15.sctlr_ns &= ~SCTLR_V;
 219    env->cp15.sctlr_s &= ~SCTLR_V;
 220    env->cp15.sctlr_ns |= env->vinithi ? SCTLR_V : 0;
 221    env->cp15.sctlr_s |= env->vinithi ? SCTLR_V : 0;
 222
 223    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 224        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 225    }
 226
 227    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 228        /* 64 bit CPUs always start in 64 bit mode */
 229        env->aarch64 = 1;
 230#if defined(CONFIG_USER_ONLY)
 231        env->pstate = PSTATE_MODE_EL0t;
 232        /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
 233        env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
 234        /* Enable all PAC keys.  */
 235        env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
 236                                  SCTLR_EnDA | SCTLR_EnDB);
 237        /* and to the FP/Neon instructions */
 238        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
 239        /* and to the SVE instructions */
 240        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
 241        /* with reasonable vector length */
 242        if (cpu_isar_feature(aa64_sve, cpu)) {
 243            env->vfp.zcr_el[1] =
 244                aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
 245        }
 246        /*
 247         * Enable TBI0 but not TBI1.
 248         * Note that this must match useronly_clean_ptr.
 249         */
 250        env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
 251
 252        /* Enable MTE */
 253        if (cpu_isar_feature(aa64_mte, cpu)) {
 254            /* Enable tag access, but leave TCF0 as No Effect (0). */
 255            env->cp15.sctlr_el[1] |= SCTLR_ATA0;
 256            /*
 257             * Exclude all tags, so that tag 0 is always used.
 258             * This corresponds to Linux current->thread.gcr_incl = 0.
 259             *
 260             * Set RRND, so that helper_irg() will generate a seed later.
 261             * Here in cpu_reset(), the crypto subsystem has not yet been
 262             * initialized.
 263             */
 264            env->cp15.gcr_el1 = 0x1ffff;
 265        }
 266#else
 267        /* Reset into the highest available EL */
 268        if (arm_feature(env, ARM_FEATURE_EL3)) {
 269            env->pstate = PSTATE_MODE_EL3h;
 270        } else if (arm_feature(env, ARM_FEATURE_EL2)) {
 271            env->pstate = PSTATE_MODE_EL2h;
 272        } else {
 273            env->pstate = PSTATE_MODE_EL1h;
 274        }
 275#endif
 276    } else {
 277#if defined(CONFIG_USER_ONLY)
 278        /* Userspace expects access to cp10 and cp11 for FP/Neon */
 279        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
 280#endif
 281    }
 282
 283#ifndef CONFIG_USER_ONLY
 284    if (arm_feature(env, ARM_FEATURE_V8)) {
 285        cc->set_pc(s, cpu->rvbar);
 286    }
 287#endif
 288
 289#if defined(CONFIG_USER_ONLY)
 290    env->uncached_cpsr = ARM_CPU_MODE_USR;
 291    /* For user mode we must enable access to coprocessors */
 292    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 293    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 294        env->cp15.c15_cpar = 3;
 295    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 296        env->cp15.c15_cpar = 1;
 297    }
 298#else
 299
 300    /*
 301     * If the highest available EL is EL2, AArch32 will start in Hyp
 302     * mode; otherwise it starts in SVC. Note that if we start in
 303     * AArch64 then these values in the uncached_cpsr will be ignored.
 304     */
 305    if (arm_feature(env, ARM_FEATURE_EL2) &&
 306        !arm_feature(env, ARM_FEATURE_EL3)) {
 307        env->uncached_cpsr = ARM_CPU_MODE_HYP;
 308    } else {
 309        env->uncached_cpsr = ARM_CPU_MODE_SVC;
 310    }
 311    env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
 312
 313    if (arm_feature(env, ARM_FEATURE_M)) {
 314        uint32_t initial_msp; /* Loaded from 0x0 */
 315        uint32_t initial_pc; /* Loaded from 0x4 */
 316        uint8_t *rom;
 317        uint32_t vecbase;
 318
 319        if (cpu_isar_feature(aa32_lob, cpu)) {
 320            /*
 321             * LTPSIZE is constant 4 if MVE not implemented, and resets
 322             * to an UNKNOWN value if MVE is implemented. We choose to
 323             * always reset to 4.
 324             */
 325            env->v7m.ltpsize = 4;
 326            /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
 327            env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
 328            env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
 329        }
 330
 331        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 332            env->v7m.secure = true;
 333        } else {
 334            /* This bit resets to 0 if security is supported, but 1 if
 335             * it is not. The bit is not present in v7M, but we set it
 336             * here so we can avoid having to make checks on it conditional
 337             * on ARM_FEATURE_V8 (we don't let the guest see the bit).
 338             */
 339            env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
 340            /*
 341             * Set NSACR to indicate "NS access permitted to everything";
 342             * this avoids having to have all the tests of it being
 343             * conditional on ARM_FEATURE_M_SECURITY. Note also that from
 344             * v8.1M the guest-visible value of NSACR in a CPU without the
 345             * Security Extension is 0xcff.
 346             */
 347            env->v7m.nsacr = 0xcff;
 348        }
 349
 350        /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
 351         * that it resets to 1, so QEMU always does that rather than making
 352         * it dependent on CPU model. In v8M it is RES1.
 353         */
 354        env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
 355        env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
 356        if (arm_feature(env, ARM_FEATURE_V8)) {
 357            /* in v8M the NONBASETHRDENA bit [0] is RES1 */
 358            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 359            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 360        }
 361        if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
 362            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 363            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 364        }
 365
 366        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
 367            env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
 368            env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
 369                R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
 370        }
 371        /* Unlike A/R profile, M profile defines the reset LR value */
 372        env->regs[14] = 0xffffffff;
 373
 374        env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
 375        env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
 376
 377        /* Load the initial SP and PC from offset 0 and 4 in the vector table */
 378        vecbase = env->v7m.vecbase[env->v7m.secure];
 379        rom = rom_ptr_for_as(s->as, vecbase, 8);
 380        if (rom) {
 381            /* Address zero is covered by ROM which hasn't yet been
 382             * copied into physical memory.
 383             */
 384            initial_msp = ldl_p(rom);
 385            initial_pc = ldl_p(rom + 4);
 386        } else {
 387            /* Address zero not covered by a ROM blob, or the ROM blob
 388             * is in non-modifiable memory and this is a second reset after
 389             * it got copied into memory. In the latter case, rom_ptr
 390             * will return a NULL pointer and we should use ldl_phys instead.
 391             */
 392            initial_msp = ldl_phys(s->as, vecbase);
 393            initial_pc = ldl_phys(s->as, vecbase + 4);
 394        }
 395
 396        env->regs[13] = initial_msp & 0xFFFFFFFC;
 397        env->regs[15] = initial_pc & ~1;
 398        env->thumb = initial_pc & 1;
 399    }
 400
 401    /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
 402     * executing as AArch32 then check if highvecs are enabled and
 403     * adjust the PC accordingly.
 404     */
 405    if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 406        env->regs[15] = 0xFFFF0000;
 407    }
 408
 409    /* M profile requires that reset clears the exclusive monitor;
 410     * A profile does not, but clearing it makes more sense than having it
 411     * set with an exclusive access on address zero.
 412     */
 413    arm_clear_exclusive(env);
 414
 415    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 416#endif
 417
 418    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 419        if (cpu->pmsav7_dregion > 0) {
 420            if (arm_feature(env, ARM_FEATURE_V8)) {
 421                memset(env->pmsav8.rbar[M_REG_NS], 0,
 422                       sizeof(*env->pmsav8.rbar[M_REG_NS])
 423                       * cpu->pmsav7_dregion);
 424                memset(env->pmsav8.rlar[M_REG_NS], 0,
 425                       sizeof(*env->pmsav8.rlar[M_REG_NS])
 426                       * cpu->pmsav7_dregion);
 427                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 428                    memset(env->pmsav8.rbar[M_REG_S], 0,
 429                           sizeof(*env->pmsav8.rbar[M_REG_S])
 430                           * cpu->pmsav7_dregion);
 431                    memset(env->pmsav8.rlar[M_REG_S], 0,
 432                           sizeof(*env->pmsav8.rlar[M_REG_S])
 433                           * cpu->pmsav7_dregion);
 434                }
 435            } else if (arm_feature(env, ARM_FEATURE_V7)) {
 436                memset(env->pmsav7.drbar, 0,
 437                       sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
 438                memset(env->pmsav7.drsr, 0,
 439                       sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
 440                memset(env->pmsav7.dracr, 0,
 441                       sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
 442            }
 443        }
 444        env->pmsav7.rnr[M_REG_NS] = 0;
 445        env->pmsav7.rnr[M_REG_S] = 0;
 446        env->pmsav8.mair0[M_REG_NS] = 0;
 447        env->pmsav8.mair0[M_REG_S] = 0;
 448        env->pmsav8.mair1[M_REG_NS] = 0;
 449        env->pmsav8.mair1[M_REG_S] = 0;
 450    }
 451
 452    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 453        if (cpu->sau_sregion > 0) {
 454            memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
 455            memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
 456        }
 457        env->sau.rnr = 0;
 458        /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
 459         * the Cortex-M33 does.
 460         */
 461        env->sau.ctrl = 0;
 462    }
 463
 464    set_flush_to_zero(1, &env->vfp.standard_fp_status);
 465    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 466    set_default_nan_mode(1, &env->vfp.standard_fp_status);
 467    set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
 468    set_float_detect_tininess(float_tininess_before_rounding,
 469                              &env->vfp.fp_status);
 470    set_float_detect_tininess(float_tininess_before_rounding,
 471                              &env->vfp.standard_fp_status);
 472    set_float_detect_tininess(float_tininess_before_rounding,
 473                              &env->vfp.fp_status_f16);
 474    set_float_detect_tininess(float_tininess_before_rounding,
 475                              &env->vfp.standard_fp_status_f16);
 476#ifndef CONFIG_USER_ONLY
 477    if (kvm_enabled()) {
 478        kvm_arm_reset_vcpu(cpu);
 479    }
 480
 481    if (!runstate_is_running() && !arm_feature(env, ARM_FEATURE_M)) {
 482        /* FIXME: This should be done differently.  */
 483        cc->set_pc(s, old_pc);
 484    }
 485#endif
 486
 487    cpu->is_in_wfi = false;
 488    qemu_set_irq(cpu->wfi, cpu->is_in_wfi);
 489
 490    hw_breakpoint_update_all(cpu);
 491    hw_watchpoint_update_all(cpu);
 492
 493#ifndef CONFIG_USER_ONLY
 494    if (cpu->env.memattr_ns) {
 495        env_tlb(&cpu->env)->memattr[MEM_ATTR_NS].attrs = *cpu->env.memattr_ns;
 496    }
 497
 498    if (cpu->env.memattr_s) {
 499        env_tlb(&cpu->env)->memattr[MEM_ATTR_SEC].attrs = *cpu->env.memattr_s;
 500    } else if (arm_feature(env, ARM_FEATURE_EL3)) {
 501            /* Only set secure mode if the CPU support EL3 */
 502            env_tlb(&cpu->env)->memattr[MEM_ATTR_SEC].attrs.secure = true;
 503    }
 504
 505    for (i = 0; i < ARRAY_SIZE(cpu->env.irq_wires); i++) {
 506        if (!arm_feature(env, ARM_FEATURE_EL2) && i >= ARM_CPU_VIRQ) {
 507            break;
 508        }
 509        arm_cpu_set_irq(cpu, i, cpu->env.irq_wires[i]);
 510    }
 511#endif
 512
 513    arm_rebuild_hflags(env);
 514}
 515
 516static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
 517                                     unsigned int target_el,
 518                                     unsigned int cur_el, bool secure,
 519                                     uint64_t hcr_el2)
 520{
 521    CPUARMState *env = cs->env_ptr;
 522    bool pstate_unmasked;
 523    bool unmasked = false;
 524
 525    /*
 526     * Don't take exceptions if they target a lower EL.
 527     * This check should catch any exceptions that would not be taken
 528     * but left pending.
 529     */
 530    if (cur_el > target_el) {
 531        return false;
 532    }
 533
 534    switch (excp_idx) {
 535    case EXCP_FIQ:
 536        pstate_unmasked = !(env->daif & PSTATE_F);
 537        break;
 538
 539    case EXCP_IRQ:
 540        pstate_unmasked = !(env->daif & PSTATE_I);
 541        break;
 542
 543    case EXCP_VFIQ:
 544        if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
 545            /* VFIQs are only taken when hypervized.  */
 546            return false;
 547        }
 548        return !(env->daif & PSTATE_F);
 549    case EXCP_VIRQ:
 550        if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
 551            /* VIRQs are only taken when hypervized.  */
 552            return false;
 553        }
 554        return !(env->daif & PSTATE_I);
 555    default:
 556        g_assert_not_reached();
 557    }
 558
 559    /*
 560     * Use the target EL, current execution state and SCR/HCR settings to
 561     * determine whether the corresponding CPSR bit is used to mask the
 562     * interrupt.
 563     */
 564    if ((target_el > cur_el) && (target_el != 1)) {
 565        /* Exceptions targeting a higher EL may not be maskable */
 566        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 567            /*
 568             * 64-bit masking rules are simple: exceptions to EL3
 569             * can't be masked, and exceptions to EL2 can only be
 570             * masked from Secure state. The HCR and SCR settings
 571             * don't affect the masking logic, only the interrupt routing.
 572             */
 573            if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
 574                unmasked = true;
 575            }
 576        } else {
 577            /*
 578             * The old 32-bit-only environment has a more complicated
 579             * masking setup. HCR and SCR bits not only affect interrupt
 580             * routing but also change the behaviour of masking.
 581             */
 582            bool hcr, scr;
 583
 584            switch (excp_idx) {
 585            case EXCP_FIQ:
 586                /*
 587                 * If FIQs are routed to EL3 or EL2 then there are cases where
 588                 * we override the CPSR.F in determining if the exception is
 589                 * masked or not. If neither of these are set then we fall back
 590                 * to the CPSR.F setting otherwise we further assess the state
 591                 * below.
 592                 */
 593                hcr = hcr_el2 & HCR_FMO;
 594                scr = (env->cp15.scr_el3 & SCR_FIQ);
 595
 596                /*
 597                 * When EL3 is 32-bit, the SCR.FW bit controls whether the
 598                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
 599                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
 600                 * when non-secure but only when FIQs are only routed to EL3.
 601                 */
 602                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
 603                break;
 604            case EXCP_IRQ:
 605                /*
 606                 * When EL3 execution state is 32-bit, if HCR.IMO is set then
 607                 * we may override the CPSR.I masking when in non-secure state.
 608                 * The SCR.IRQ setting has already been taken into consideration
 609                 * when setting the target EL, so it does not have a further
 610                 * affect here.
 611                 */
 612                hcr = hcr_el2 & HCR_IMO;
 613                scr = false;
 614                break;
 615            default:
 616                g_assert_not_reached();
 617            }
 618
 619            if ((scr || hcr) && !secure) {
 620                unmasked = true;
 621            }
 622        }
 623    }
 624
 625    /*
 626     * The PSTATE bits only mask the interrupt if we have not overriden the
 627     * ability above.
 628     */
 629    return unmasked || pstate_unmasked;
 630}
 631
 632bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 633{
 634    CPUClass *cc = CPU_GET_CLASS(cs);
 635    CPUARMState *env = cs->env_ptr;
 636    uint32_t cur_el = arm_current_el(env);
 637    bool secure = arm_is_secure(env);
 638    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
 639    uint32_t target_el;
 640    uint32_t excp_idx;
 641
 642    /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
 643
 644    if (interrupt_request & CPU_INTERRUPT_FIQ) {
 645        excp_idx = EXCP_FIQ;
 646        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 647        if (arm_excp_unmasked(cs, excp_idx, target_el,
 648                              cur_el, secure, hcr_el2)) {
 649            goto found;
 650        }
 651    }
 652    if (interrupt_request & CPU_INTERRUPT_HARD) {
 653        excp_idx = EXCP_IRQ;
 654        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 655        if (arm_excp_unmasked(cs, excp_idx, target_el,
 656                              cur_el, secure, hcr_el2)) {
 657            goto found;
 658        }
 659    }
 660    if (interrupt_request & CPU_INTERRUPT_VIRQ) {
 661        excp_idx = EXCP_VIRQ;
 662        target_el = 1;
 663        if (arm_excp_unmasked(cs, excp_idx, target_el,
 664                              cur_el, secure, hcr_el2)) {
 665            goto found;
 666        }
 667    }
 668    if (interrupt_request & CPU_INTERRUPT_VFIQ) {
 669        excp_idx = EXCP_VFIQ;
 670        target_el = 1;
 671        if (arm_excp_unmasked(cs, excp_idx, target_el,
 672                              cur_el, secure, hcr_el2)) {
 673            goto found;
 674        }
 675    }
 676    return false;
 677
 678 found:
 679    cs->exception_index = excp_idx;
 680    env->exception.target_el = target_el;
 681    cc->tcg_ops->do_interrupt(cs);
 682    return true;
 683}
 684
 685void arm_cpu_update_virq(ARMCPU *cpu)
 686{
 687    /*
 688     * Update the interrupt level for VIRQ, which is the logical OR of
 689     * the HCR_EL2.VI bit and the input line level from the GIC.
 690     */
 691    CPUARMState *env = &cpu->env;
 692    CPUState *cs = CPU(cpu);
 693
 694    bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
 695        (env->irq_line_state & CPU_INTERRUPT_VIRQ);
 696
 697    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
 698        if (new_state) {
 699            cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
 700        } else {
 701            cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
 702        }
 703    }
 704}
 705
 706void arm_cpu_update_vfiq(ARMCPU *cpu)
 707{
 708    /*
 709     * Update the interrupt level for VFIQ, which is the logical OR of
 710     * the HCR_EL2.VF bit and the input line level from the GIC.
 711     */
 712    CPUARMState *env = &cpu->env;
 713    CPUState *cs = CPU(cpu);
 714
 715    bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
 716        (env->irq_line_state & CPU_INTERRUPT_VFIQ);
 717
 718    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
 719        if (new_state) {
 720            cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
 721        } else {
 722            cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
 723        }
 724    }
 725}
 726
 727#ifndef CONFIG_USER_ONLY
 728static void arm_cpu_set_irq(void *opaque, int irq, int level)
 729{
 730    ARMCPU *cpu = opaque;
 731    CPUARMState *env = &cpu->env;
 732    CPUState *cs = CPU(cpu);
 733    static const int mask[] = {
 734        [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
 735        [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
 736        [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
 737        [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
 738    };
 739
 740    env->irq_wires[irq] = level;
 741
 742    if (level) {
 743        env->irq_line_state |= mask[irq];
 744    } else {
 745        env->irq_line_state &= ~mask[irq];
 746    }
 747
 748    switch (irq) {
 749    case ARM_CPU_VIRQ:
 750        assert(arm_feature(env, ARM_FEATURE_EL2));
 751        arm_cpu_update_virq(cpu);
 752        break;
 753    case ARM_CPU_VFIQ:
 754        assert(arm_feature(env, ARM_FEATURE_EL2));
 755        arm_cpu_update_vfiq(cpu);
 756        break;
 757    case ARM_CPU_IRQ:
 758    case ARM_CPU_FIQ:
 759        if (level) {
 760            cpu_interrupt(cs, mask[irq]);
 761        } else {
 762            cpu_reset_interrupt(cs, mask[irq]);
 763        }
 764        break;
 765    default:
 766        g_assert_not_reached();
 767    }
 768}
 769
 770static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
 771{
 772#ifdef CONFIG_KVM
 773    ARMCPU *cpu = opaque;
 774    CPUARMState *env = &cpu->env;
 775    CPUState *cs = CPU(cpu);
 776    uint32_t linestate_bit;
 777    int irq_id;
 778
 779    switch (irq) {
 780    case ARM_CPU_IRQ:
 781        irq_id = KVM_ARM_IRQ_CPU_IRQ;
 782        linestate_bit = CPU_INTERRUPT_HARD;
 783        break;
 784    case ARM_CPU_FIQ:
 785        irq_id = KVM_ARM_IRQ_CPU_FIQ;
 786        linestate_bit = CPU_INTERRUPT_FIQ;
 787        break;
 788    default:
 789        g_assert_not_reached();
 790    }
 791
 792    if (level) {
 793        env->irq_line_state |= linestate_bit;
 794    } else {
 795        env->irq_line_state &= ~linestate_bit;
 796    }
 797    kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
 798#endif
 799}
 800
 801static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
 802{
 803    ARMCPU *cpu = ARM_CPU(cs);
 804    CPUARMState *env = &cpu->env;
 805
 806    cpu_synchronize_state(cs);
 807    return arm_cpu_data_is_big_endian(env);
 808}
 809
 810#endif
 811
 812#ifndef CONFIG_USER_ONLY
 813static void arm_cpu_set_ncpuhalt(void *opaque, int irq, int level)
 814{
 815    CPUState *cs = opaque;
 816    ARMCPU *cpu = ARM_CPU(cs);
 817    int old_value = cs->arch_halt_pin;
 818
 819    /* FIXME: This code should be active in order to implement the semantic
 820     * where an already running CPU cannot be halted. This doesn't work though,
 821     * as QEMU can not make any guarantees on initial ordering of setting the
 822     * halt/reset GPIOs on machine init. So just make nCPUHALT a regular halt
 823     * for the moment.
 824     */
 825#if 0
 826    if (!cs->reset_pin) {
 827        return;
 828    }
 829#endif
 830    cs->arch_halt_pin = level;
 831    /* As we set the powered_off status on CPU reset we need to make sure that
 832     * we unset it as well.
 833     */
 834    cpu->power_state = level ? PSCI_OFF : PSCI_ON;
 835    cpu_halt_update(cs);
 836
 837    if (cs->arch_halt_pin != old_value && !cs->arch_halt_pin) {
 838        cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
 839    }
 840}
 841
 842static void arm_cpu_set_vinithi(void *opaque, int irq, int level)
 843{
 844    CPUState *cs = opaque;
 845    ARMCPU *cpu = ARM_CPU(cs);
 846    CPUClass *cc = CPU_GET_CLASS(cs);
 847
 848    cpu->env.vinithi = level;
 849    if (cs->arch_halt_pin) {
 850        cc->set_pc(cs, level ? 0xFFFF0000: 0x0);
 851    }
 852}
 853#endif
 854
 855static int
 856print_insn_thumb1(bfd_vma pc, disassemble_info *info)
 857{
 858  return print_insn_arm(pc | 1, info);
 859}
 860
 861static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
 862{
 863    ARMCPU *ac = ARM_CPU(cpu);
 864    CPUARMState *env = &ac->env;
 865    bool sctlr_b;
 866
 867    if (is_a64(env)) {
 868        /* We might not be compiled with the A64 disassembler
 869         * because it needs a C++ compiler. Leave print_insn
 870         * unset in this case to use the caller default behaviour.
 871         */
 872#if defined(CONFIG_ARM_A64_DIS)
 873        info->print_insn = print_insn_arm_a64;
 874#endif
 875        info->cap_arch = CS_ARCH_ARM64;
 876        info->cap_insn_unit = 4;
 877        info->cap_insn_split = 4;
 878    } else {
 879        int cap_mode;
 880        if (env->thumb) {
 881            info->print_insn = print_insn_thumb1;
 882            info->cap_insn_unit = 2;
 883            info->cap_insn_split = 4;
 884            cap_mode = CS_MODE_THUMB;
 885        } else {
 886            info->print_insn = print_insn_arm;
 887            info->cap_insn_unit = 4;
 888            info->cap_insn_split = 4;
 889            cap_mode = CS_MODE_ARM;
 890        }
 891        if (arm_feature(env, ARM_FEATURE_V8)) {
 892            cap_mode |= CS_MODE_V8;
 893        }
 894        if (arm_feature(env, ARM_FEATURE_M)) {
 895            cap_mode |= CS_MODE_MCLASS;
 896        }
 897        info->cap_arch = CS_ARCH_ARM;
 898        info->cap_mode = cap_mode;
 899    }
 900
 901    sctlr_b = arm_sctlr_b(env);
 902    if (bswap_code(sctlr_b)) {
 903#ifdef TARGET_WORDS_BIGENDIAN
 904        info->endian = BFD_ENDIAN_LITTLE;
 905#else
 906        info->endian = BFD_ENDIAN_BIG;
 907#endif
 908    }
 909    info->flags &= ~INSN_ARM_BE32;
 910#ifndef CONFIG_USER_ONLY
 911    if (sctlr_b) {
 912        info->flags |= INSN_ARM_BE32;
 913    }
 914#endif
 915}
 916
 917#ifdef TARGET_AARCH64
 918
 919static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 920{
 921    ARMCPU *cpu = ARM_CPU(cs);
 922    CPUARMState *env = &cpu->env;
 923    uint32_t psr = pstate_read(env);
 924    int i;
 925    int el = arm_current_el(env);
 926    const char *ns_status;
 927
 928    qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
 929    for (i = 0; i < 32; i++) {
 930        if (i == 31) {
 931            qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
 932        } else {
 933            qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
 934                         (i + 2) % 3 ? " " : "\n");
 935        }
 936    }
 937
 938    if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
 939        ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 940    } else {
 941        ns_status = "";
 942    }
 943    qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
 944                 psr,
 945                 psr & PSTATE_N ? 'N' : '-',
 946                 psr & PSTATE_Z ? 'Z' : '-',
 947                 psr & PSTATE_C ? 'C' : '-',
 948                 psr & PSTATE_V ? 'V' : '-',
 949                 ns_status,
 950                 el,
 951                 psr & PSTATE_SP ? 'h' : 't');
 952
 953    if (cpu_isar_feature(aa64_bti, cpu)) {
 954        qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
 955    }
 956    if (!(flags & CPU_DUMP_FPU)) {
 957        qemu_fprintf(f, "\n");
 958        return;
 959    }
 960    if (fp_exception_el(env, el) != 0) {
 961        qemu_fprintf(f, "    FPU disabled\n");
 962        return;
 963    }
 964    qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
 965                 vfp_get_fpcr(env), vfp_get_fpsr(env));
 966
 967    if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
 968        int j, zcr_len = sve_zcr_len_for_el(env, el);
 969
 970        for (i = 0; i <= FFR_PRED_NUM; i++) {
 971            bool eol;
 972            if (i == FFR_PRED_NUM) {
 973                qemu_fprintf(f, "FFR=");
 974                /* It's last, so end the line.  */
 975                eol = true;
 976            } else {
 977                qemu_fprintf(f, "P%02d=", i);
 978                switch (zcr_len) {
 979                case 0:
 980                    eol = i % 8 == 7;
 981                    break;
 982                case 1:
 983                    eol = i % 6 == 5;
 984                    break;
 985                case 2:
 986                case 3:
 987                    eol = i % 3 == 2;
 988                    break;
 989                default:
 990                    /* More than one quadword per predicate.  */
 991                    eol = true;
 992                    break;
 993                }
 994            }
 995            for (j = zcr_len / 4; j >= 0; j--) {
 996                int digits;
 997                if (j * 4 + 4 <= zcr_len + 1) {
 998                    digits = 16;
 999                } else {
1000                    digits = (zcr_len % 4 + 1) * 4;
1001                }
1002                qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1003                             env->vfp.pregs[i].p[j],
1004                             j ? ":" : eol ? "\n" : " ");
1005            }
1006        }
1007
1008        for (i = 0; i < 32; i++) {
1009            if (zcr_len == 0) {
1010                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1011                             i, env->vfp.zregs[i].d[1],
1012                             env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1013            } else if (zcr_len == 1) {
1014                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
1015                             ":%016" PRIx64 ":%016" PRIx64 "\n",
1016                             i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
1017                             env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
1018            } else {
1019                for (j = zcr_len; j >= 0; j--) {
1020                    bool odd = (zcr_len - j) % 2 != 0;
1021                    if (j == zcr_len) {
1022                        qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
1023                    } else if (!odd) {
1024                        if (j > 0) {
1025                            qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
1026                        } else {
1027                            qemu_fprintf(f, "     [%x]=", j);
1028                        }
1029                    }
1030                    qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1031                                 env->vfp.zregs[i].d[j * 2 + 1],
1032                                 env->vfp.zregs[i].d[j * 2],
1033                                 odd || j == 0 ? "\n" : ":");
1034                }
1035            }
1036        }
1037    } else {
1038        for (i = 0; i < 32; i++) {
1039            uint64_t *q = aa64_vfp_qreg(env, i);
1040            qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1041                         i, q[1], q[0], (i & 1 ? "\n" : " "));
1042        }
1043    }
1044}
1045
1046#else
1047
1048static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1049{
1050    g_assert_not_reached();
1051}
1052
1053#endif
1054
1055static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1056{
1057    ARMCPU *cpu = ARM_CPU(cs);
1058    CPUARMState *env = &cpu->env;
1059    int i;
1060
1061    if (is_a64(env)) {
1062        aarch64_cpu_dump_state(cs, f, flags);
1063        return;
1064    }
1065
1066    for (i = 0; i < 16; i++) {
1067        qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1068        if ((i % 4) == 3) {
1069            qemu_fprintf(f, "\n");
1070        } else {
1071            qemu_fprintf(f, " ");
1072        }
1073    }
1074
1075    if (arm_feature(env, ARM_FEATURE_M)) {
1076        uint32_t xpsr = xpsr_read(env);
1077        const char *mode;
1078        const char *ns_status = "";
1079
1080        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1081            ns_status = env->v7m.secure ? "S " : "NS ";
1082        }
1083
1084        if (xpsr & XPSR_EXCP) {
1085            mode = "handler";
1086        } else {
1087            if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1088                mode = "unpriv-thread";
1089            } else {
1090                mode = "priv-thread";
1091            }
1092        }
1093
1094        qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1095                     xpsr,
1096                     xpsr & XPSR_N ? 'N' : '-',
1097                     xpsr & XPSR_Z ? 'Z' : '-',
1098                     xpsr & XPSR_C ? 'C' : '-',
1099                     xpsr & XPSR_V ? 'V' : '-',
1100                     xpsr & XPSR_T ? 'T' : 'A',
1101                     ns_status,
1102                     mode);
1103    } else {
1104        uint32_t psr = cpsr_read(env);
1105        const char *ns_status = "";
1106
1107        if (arm_feature(env, ARM_FEATURE_EL3) &&
1108            (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1109            ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1110        }
1111
1112        qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1113                     psr,
1114                     psr & CPSR_N ? 'N' : '-',
1115                     psr & CPSR_Z ? 'Z' : '-',
1116                     psr & CPSR_C ? 'C' : '-',
1117                     psr & CPSR_V ? 'V' : '-',
1118                     psr & CPSR_T ? 'T' : 'A',
1119                     ns_status,
1120                     aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1121    }
1122
1123    if (flags & CPU_DUMP_FPU) {
1124        int numvfpregs = 0;
1125        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1126            numvfpregs = 32;
1127        } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1128            numvfpregs = 16;
1129        }
1130        for (i = 0; i < numvfpregs; i++) {
1131            uint64_t v = *aa32_vfp_dreg(env, i);
1132            qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1133                         i * 2, (uint32_t)v,
1134                         i * 2 + 1, (uint32_t)(v >> 32),
1135                         i, v);
1136        }
1137        qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1138    }
1139}
1140
1141uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1142{
1143    uint32_t Aff1 = idx / clustersz;
1144    uint32_t Aff0 = idx % clustersz;
1145    return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1146}
1147
1148static void cpreg_hashtable_data_destroy(gpointer data)
1149{
1150    /*
1151     * Destroy function for cpu->cp_regs hashtable data entries.
1152     * We must free the name string because it was g_strdup()ed in
1153     * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1154     * from r->name because we know we definitely allocated it.
1155     */
1156    ARMCPRegInfo *r = data;
1157
1158    g_free((void *)r->name);
1159    g_free(r);
1160}
1161
1162static void arm_cpu_initfn(Object *obj)
1163{
1164    ARMCPU *cpu = ARM_CPU(obj);
1165
1166    cpu_set_cpustate_pointers(cpu);
1167    cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1168                                         g_free, cpreg_hashtable_data_destroy);
1169
1170    QLIST_INIT(&cpu->pre_el_change_hooks);
1171    QLIST_INIT(&cpu->el_change_hooks);
1172
1173#ifdef CONFIG_USER_ONLY
1174# ifdef TARGET_AARCH64
1175    /*
1176     * The linux kernel defaults to 512-bit vectors, when sve is supported.
1177     * See documentation for /proc/sys/abi/sve_default_vector_length, and
1178     * our corresponding sve-default-vector-length cpu property.
1179     */
1180    cpu->sve_default_vq = 4;
1181# endif
1182#else
1183    /* Our inbound IRQ and FIQ lines */
1184    if (kvm_enabled()) {
1185        /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1186         * the same interface as non-KVM CPUs.
1187         */
1188        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1189    } else {
1190        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1191    }
1192
1193    qdev_init_gpio_in_named(DEVICE(cpu), arm_cpu_set_ncpuhalt, "ncpuhalt", 1);
1194    qdev_init_gpio_in_named(DEVICE(cpu), arm_cpu_set_vinithi, "vinithi", 1);
1195
1196    qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1197                       ARRAY_SIZE(cpu->gt_timer_outputs));
1198
1199    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->wfi, "wfi", 1);
1200
1201    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1202                             "gicv3-maintenance-interrupt", 1);
1203    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1204                             "pmu-interrupt", 1);
1205#endif
1206
1207    /* DTB consumers generally don't in fact care what the 'compatible'
1208     * string is, so always provide some string and trust that a hypothetical
1209     * picky DTB consumer will also provide a helpful error message.
1210     */
1211    cpu->dtb_compatible = "qemu,unknown";
1212    cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1213    cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1214
1215    if (tcg_enabled()) {
1216        cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1217    }
1218
1219#ifndef CONFIG_USER_ONLY
1220    object_property_add_link(obj, "memattr_ns", TYPE_MEMORY_TRANSACTION_ATTR,
1221                             (Object **)&cpu->env.memattr_ns,
1222                             qdev_prop_allow_set_link_before_realize,
1223                             OBJ_PROP_LINK_STRONG);
1224
1225    object_property_add_link(obj, "memattr_s", TYPE_MEMORY_TRANSACTION_ATTR,
1226                             (Object **)&cpu->env.memattr_s,
1227                             qdev_prop_allow_set_link_before_realize,
1228                             OBJ_PROP_LINK_STRONG);
1229#endif
1230}
1231
1232static Property arm_cpu_gt_cntfrq_property =
1233            DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1234                               NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1235
1236static Property arm_cpu_gt_cntfrq_property_alias =
1237            DEFINE_PROP_UINT64("generic-timer-frequency", ARMCPU, gt_cntfrq_hz,
1238                               NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1239
1240static Property arm_cpu_reset_cbar_property =
1241            DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1242
1243static Property arm_cpu_reset_hivecs_property =
1244            DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1245
1246static void arm_cpu_get_rvbar(Object *obj, Visitor *v,
1247                              const char *name, void *opaque,
1248                              Error **errp)
1249{
1250    ARMCPU *cpu = ARM_CPU(obj);
1251    Error *local_err = NULL;
1252
1253    visit_type_uint64(v, name, &cpu->rvbar, &local_err);
1254    if (local_err) {
1255        error_propagate(errp, local_err);
1256    }
1257}
1258
1259static void arm_cpu_set_rvbar(Object *obj, Visitor *v,
1260                              const char *name, void *opaque,
1261                              Error **errp)
1262{
1263    ARMCPU *cpu = ARM_CPU(obj);
1264    Error *local_err = NULL;
1265
1266    visit_type_uint64(v, name, &cpu->rvbar, &local_err);
1267    if (local_err) {
1268        error_propagate(errp, local_err);
1269    }
1270}
1271
1272#ifndef CONFIG_USER_ONLY
1273static void arm_cpu_set_memattr_secure(Object *obj, Visitor *v,
1274                                          const char *name, void *opaque,
1275                                          Error **errp)
1276{
1277    ARMCPU *cpu = ARM_CPU(obj);
1278    bool secure;
1279    visit_type_bool(v, name, &secure,
1280                    errp);
1281    env_tlb(&cpu->env)->memattr[MEM_ATTR_NS].attrs.secure = secure;
1282}
1283#endif
1284
1285#ifndef CONFIG_USER_ONLY
1286static Property arm_cpu_has_el2_property =
1287            DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1288
1289static Property arm_cpu_has_el3_property =
1290            DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1291#endif
1292
1293static Property arm_cpu_cfgend_property =
1294            DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1295
1296static Property arm_cpu_has_vfp_property =
1297            DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1298
1299static Property arm_cpu_has_neon_property =
1300            DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1301
1302static Property arm_cpu_has_dsp_property =
1303            DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1304
1305static Property arm_cpu_has_mpu_property =
1306            DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1307
1308/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1309 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1310 * the right value for that particular CPU type, and we don't want
1311 * to override that with an incorrect constant value.
1312 */
1313static Property arm_cpu_pmsav7_dregion_property =
1314            DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1315                                           pmsav7_dregion,
1316                                           qdev_prop_uint32, uint32_t);
1317
1318static bool arm_get_pmu(Object *obj, Error **errp)
1319{
1320    ARMCPU *cpu = ARM_CPU(obj);
1321
1322    return cpu->has_pmu;
1323}
1324
1325static void arm_set_pmu(Object *obj, bool value, Error **errp)
1326{
1327    ARMCPU *cpu = ARM_CPU(obj);
1328
1329    if (value) {
1330        if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1331            error_setg(errp, "'pmu' feature not supported by KVM on this host");
1332            return;
1333        }
1334        set_feature(&cpu->env, ARM_FEATURE_PMU);
1335    } else {
1336        unset_feature(&cpu->env, ARM_FEATURE_PMU);
1337    }
1338    cpu->has_pmu = value;
1339}
1340
1341unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1342{
1343    /*
1344     * The exact approach to calculating guest ticks is:
1345     *
1346     *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1347     *              NANOSECONDS_PER_SECOND);
1348     *
1349     * We don't do that. Rather we intentionally use integer division
1350     * truncation below and in the caller for the conversion of host monotonic
1351     * time to guest ticks to provide the exact inverse for the semantics of
1352     * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1353     * it loses precision when representing frequencies where
1354     * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1355     * provide an exact inverse leads to scheduling timers with negative
1356     * periods, which in turn leads to sticky behaviour in the guest.
1357     *
1358     * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1359     * cannot become zero.
1360     */
1361    return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1362      NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1363}
1364
1365void arm_cpu_post_init(Object *obj)
1366{
1367    ARMCPU *cpu = ARM_CPU(obj);
1368
1369    /* M profile implies PMSA. We have to do this here rather than
1370     * in realize with the other feature-implication checks because
1371     * we look at the PMSA bit to see if we should add some properties.
1372     */
1373    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1374        set_feature(&cpu->env, ARM_FEATURE_PMSA);
1375    }
1376
1377    if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1378        arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1379        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1380    }
1381
1382    if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1383        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1384    }
1385
1386    if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1387        object_property_add(obj, "rvbar", "uint64",
1388                            arm_cpu_get_rvbar,
1389                            arm_cpu_set_rvbar,
1390                            NULL, NULL);
1391    }
1392
1393#ifndef CONFIG_USER_ONLY
1394    object_property_add(obj, "memattr-secure", "bool",
1395                        NULL, arm_cpu_set_memattr_secure,
1396                        NULL, NULL);
1397#endif
1398
1399#ifndef CONFIG_USER_ONLY
1400    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1401        /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1402         * prevent "has_el3" from existing on CPUs which cannot support EL3.
1403         */
1404        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1405
1406        object_property_add_link(obj, "secure-memory",
1407                                 TYPE_MEMORY_REGION,
1408                                 (Object **)&cpu->secure_memory,
1409                                 qdev_prop_allow_set_link_before_realize,
1410                                 OBJ_PROP_LINK_STRONG);
1411    }
1412
1413    if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1414        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1415    }
1416#endif
1417
1418    if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1419        cpu->has_pmu = true;
1420        object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1421    }
1422
1423    /*
1424     * Allow user to turn off VFP and Neon support, but only for TCG --
1425     * KVM does not currently allow us to lie to the guest about its
1426     * ID/feature registers, so the guest always sees what the host has.
1427     */
1428    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1429        ? cpu_isar_feature(aa64_fp_simd, cpu)
1430        : cpu_isar_feature(aa32_vfp, cpu)) {
1431        cpu->has_vfp = true;
1432        if (!kvm_enabled()) {
1433            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1434        }
1435    }
1436
1437    if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1438        cpu->has_neon = true;
1439        if (!kvm_enabled()) {
1440            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1441        }
1442    }
1443
1444    if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1445        arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1446        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1447    }
1448
1449    if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1450        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1451        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1452            qdev_property_add_static(DEVICE(obj),
1453                                     &arm_cpu_pmsav7_dregion_property);
1454        }
1455    }
1456
1457    if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1458        object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1459                                 qdev_prop_allow_set_link_before_realize,
1460                                 OBJ_PROP_LINK_STRONG);
1461        /*
1462         * M profile: initial value of the Secure VTOR. We can't just use
1463         * a simple DEFINE_PROP_UINT32 for this because we want to permit
1464         * the property to be set after realize.
1465         */
1466        object_property_add_uint32_ptr(obj, "init-svtor",
1467                                       &cpu->init_svtor,
1468                                       OBJ_PROP_FLAG_READWRITE);
1469    }
1470    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1471        /*
1472         * Initial value of the NS VTOR (for cores without the Security
1473         * extension, this is the only VTOR)
1474         */
1475        object_property_add_uint32_ptr(obj, "init-nsvtor",
1476                                       &cpu->init_nsvtor,
1477                                       OBJ_PROP_FLAG_READWRITE);
1478    }
1479
1480    qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1481
1482    if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1483        qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1484        qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property_alias);
1485    }
1486
1487    if (kvm_enabled()) {
1488        kvm_arm_add_vcpu_properties(obj);
1489    }
1490
1491#ifndef CONFIG_USER_ONLY
1492    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1493        cpu_isar_feature(aa64_mte, cpu)) {
1494        object_property_add_link(obj, "tag-memory",
1495                                 TYPE_MEMORY_REGION,
1496                                 (Object **)&cpu->tag_memory,
1497                                 qdev_prop_allow_set_link_before_realize,
1498                                 OBJ_PROP_LINK_STRONG);
1499
1500        if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1501            object_property_add_link(obj, "secure-tag-memory",
1502                                     TYPE_MEMORY_REGION,
1503                                     (Object **)&cpu->secure_tag_memory,
1504                                     qdev_prop_allow_set_link_before_realize,
1505                                     OBJ_PROP_LINK_STRONG);
1506        }
1507    }
1508#endif
1509}
1510
1511static void arm_cpu_finalizefn(Object *obj)
1512{
1513    ARMCPU *cpu = ARM_CPU(obj);
1514    ARMELChangeHook *hook, *next;
1515
1516    g_hash_table_destroy(cpu->cp_regs);
1517
1518    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1519        QLIST_REMOVE(hook, node);
1520        g_free(hook);
1521    }
1522    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1523        QLIST_REMOVE(hook, node);
1524        g_free(hook);
1525    }
1526#ifndef CONFIG_USER_ONLY
1527    if (cpu->pmu_timer) {
1528        timer_free(cpu->pmu_timer);
1529    }
1530#endif
1531}
1532
1533void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1534{
1535    Error *local_err = NULL;
1536
1537    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1538        arm_cpu_sve_finalize(cpu, &local_err);
1539        if (local_err != NULL) {
1540            error_propagate(errp, local_err);
1541            return;
1542        }
1543
1544        /*
1545         * KVM does not support modifications to this feature.
1546         * We have not registered the cpu properties when KVM
1547         * is in use, so the user will not be able to set them.
1548         */
1549        if (!kvm_enabled()) {
1550            arm_cpu_pauth_finalize(cpu, &local_err);
1551            if (local_err != NULL) {
1552                error_propagate(errp, local_err);
1553                return;
1554            }
1555        }
1556    }
1557
1558    if (kvm_enabled()) {
1559        kvm_arm_steal_time_finalize(cpu, &local_err);
1560        if (local_err != NULL) {
1561            error_propagate(errp, local_err);
1562            return;
1563        }
1564    }
1565}
1566
1567static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1568{
1569    CPUState *cs = CPU(dev);
1570    ARMCPU *cpu = ARM_CPU(dev);
1571    ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1572    CPUARMState *env = &cpu->env;
1573    int pagebits;
1574    Error *local_err = NULL;
1575    bool no_aa32 = false;
1576
1577    /* If we needed to query the host kernel for the CPU features
1578     * then it's possible that might have failed in the initfn, but
1579     * this is the first point where we can report it.
1580     */
1581    if (cpu->host_cpu_probe_failed) {
1582        if (!kvm_enabled()) {
1583            error_setg(errp, "The 'host' CPU type can only be used with KVM");
1584        } else {
1585            error_setg(errp, "Failed to retrieve host CPU features");
1586        }
1587        return;
1588    }
1589
1590#ifndef CONFIG_USER_ONLY
1591    /* The NVIC and M-profile CPU are two halves of a single piece of
1592     * hardware; trying to use one without the other is a command line
1593     * error and will result in segfaults if not caught here.
1594     */
1595    if (arm_feature(env, ARM_FEATURE_M)) {
1596        if (!env->nvic) {
1597            error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1598            return;
1599        }
1600    } else {
1601        if (env->nvic) {
1602            error_setg(errp, "This board can only be used with Cortex-M CPUs");
1603            return;
1604        }
1605    }
1606
1607    {
1608        uint64_t scale;
1609
1610        if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1611            if (!cpu->gt_cntfrq_hz) {
1612                error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1613                           cpu->gt_cntfrq_hz);
1614                return;
1615            }
1616            scale = gt_cntfrq_period_ns(cpu);
1617        } else {
1618            scale = GTIMER_SCALE;
1619        }
1620
1621        cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1622                                               arm_gt_ptimer_cb, cpu);
1623        cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1624                                               arm_gt_vtimer_cb, cpu);
1625        cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1626                                              arm_gt_htimer_cb, cpu);
1627        cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1628                                              arm_gt_stimer_cb, cpu);
1629        cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1630                                                  arm_gt_hvtimer_cb, cpu);
1631    }
1632#endif
1633
1634    cpu_exec_realizefn(cs, &local_err);
1635    if (local_err != NULL) {
1636        error_propagate(errp, local_err);
1637        return;
1638    }
1639
1640    arm_cpu_finalize_features(cpu, &local_err);
1641    if (local_err != NULL) {
1642        error_propagate(errp, local_err);
1643        return;
1644    }
1645
1646    if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1647        cpu->has_vfp != cpu->has_neon) {
1648        /*
1649         * This is an architectural requirement for AArch64; AArch32 is
1650         * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1651         */
1652        error_setg(errp,
1653                   "AArch64 CPUs must have both VFP and Neon or neither");
1654        return;
1655    }
1656
1657    if (!cpu->has_vfp) {
1658        uint64_t t;
1659        uint32_t u;
1660
1661        t = cpu->isar.id_aa64isar1;
1662        t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1663        cpu->isar.id_aa64isar1 = t;
1664
1665        t = cpu->isar.id_aa64pfr0;
1666        t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1667        cpu->isar.id_aa64pfr0 = t;
1668
1669        u = cpu->isar.id_isar6;
1670        u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1671        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1672        cpu->isar.id_isar6 = u;
1673
1674        u = cpu->isar.mvfr0;
1675        u = FIELD_DP32(u, MVFR0, FPSP, 0);
1676        u = FIELD_DP32(u, MVFR0, FPDP, 0);
1677        u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1678        u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1679        u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1680        if (!arm_feature(env, ARM_FEATURE_M)) {
1681            u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1682            u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1683        }
1684        cpu->isar.mvfr0 = u;
1685
1686        u = cpu->isar.mvfr1;
1687        u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1688        u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1689        u = FIELD_DP32(u, MVFR1, FPHP, 0);
1690        if (arm_feature(env, ARM_FEATURE_M)) {
1691            u = FIELD_DP32(u, MVFR1, FP16, 0);
1692        }
1693        cpu->isar.mvfr1 = u;
1694
1695        u = cpu->isar.mvfr2;
1696        u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1697        cpu->isar.mvfr2 = u;
1698    }
1699
1700    if (!cpu->has_neon) {
1701        uint64_t t;
1702        uint32_t u;
1703
1704        unset_feature(env, ARM_FEATURE_NEON);
1705
1706        t = cpu->isar.id_aa64isar0;
1707        t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1708        cpu->isar.id_aa64isar0 = t;
1709
1710        t = cpu->isar.id_aa64isar1;
1711        t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1712        t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1713        t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1714        cpu->isar.id_aa64isar1 = t;
1715
1716        t = cpu->isar.id_aa64pfr0;
1717        t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1718        cpu->isar.id_aa64pfr0 = t;
1719
1720        u = cpu->isar.id_isar5;
1721        u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1722        u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1723        cpu->isar.id_isar5 = u;
1724
1725        u = cpu->isar.id_isar6;
1726        u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1727        u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1728        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1729        u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1730        cpu->isar.id_isar6 = u;
1731
1732        if (!arm_feature(env, ARM_FEATURE_M)) {
1733            u = cpu->isar.mvfr1;
1734            u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1735            u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1736            u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1737            u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1738            cpu->isar.mvfr1 = u;
1739
1740            u = cpu->isar.mvfr2;
1741            u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1742            cpu->isar.mvfr2 = u;
1743        }
1744    }
1745
1746    if (!cpu->has_neon && !cpu->has_vfp) {
1747        uint64_t t;
1748        uint32_t u;
1749
1750        t = cpu->isar.id_aa64isar0;
1751        t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1752        cpu->isar.id_aa64isar0 = t;
1753
1754        t = cpu->isar.id_aa64isar1;
1755        t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1756        cpu->isar.id_aa64isar1 = t;
1757
1758        u = cpu->isar.mvfr0;
1759        u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1760        cpu->isar.mvfr0 = u;
1761
1762        /* Despite the name, this field covers both VFP and Neon */
1763        u = cpu->isar.mvfr1;
1764        u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1765        cpu->isar.mvfr1 = u;
1766    }
1767
1768    if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1769        uint32_t u;
1770
1771        unset_feature(env, ARM_FEATURE_THUMB_DSP);
1772
1773        u = cpu->isar.id_isar1;
1774        u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1775        cpu->isar.id_isar1 = u;
1776
1777        u = cpu->isar.id_isar2;
1778        u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1779        u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1780        cpu->isar.id_isar2 = u;
1781
1782        u = cpu->isar.id_isar3;
1783        u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1784        u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1785        cpu->isar.id_isar3 = u;
1786    }
1787
1788    /* Some features automatically imply others: */
1789    if (arm_feature(env, ARM_FEATURE_V8)) {
1790        if (arm_feature(env, ARM_FEATURE_M)) {
1791            set_feature(env, ARM_FEATURE_V7);
1792        } else {
1793            set_feature(env, ARM_FEATURE_V7VE);
1794        }
1795    }
1796
1797    /*
1798     * There exist AArch64 cpus without AArch32 support.  When KVM
1799     * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1800     * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1801     * As a general principle, we also do not make ID register
1802     * consistency checks anywhere unless using TCG, because only
1803     * for TCG would a consistency-check failure be a QEMU bug.
1804     */
1805    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1806        no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1807    }
1808
1809    if (arm_feature(env, ARM_FEATURE_V7VE)) {
1810        /* v7 Virtualization Extensions. In real hardware this implies
1811         * EL2 and also the presence of the Security Extensions.
1812         * For QEMU, for backwards-compatibility we implement some
1813         * CPUs or CPU configs which have no actual EL2 or EL3 but do
1814         * include the various other features that V7VE implies.
1815         * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1816         * Security Extensions is ARM_FEATURE_EL3.
1817         */
1818        assert(!tcg_enabled() || no_aa32 ||
1819               cpu_isar_feature(aa32_arm_div, cpu));
1820        set_feature(env, ARM_FEATURE_LPAE);
1821        set_feature(env, ARM_FEATURE_V7);
1822    }
1823    if (arm_feature(env, ARM_FEATURE_V7)) {
1824        set_feature(env, ARM_FEATURE_VAPA);
1825        set_feature(env, ARM_FEATURE_THUMB2);
1826        set_feature(env, ARM_FEATURE_MPIDR);
1827        if (!arm_feature(env, ARM_FEATURE_M)) {
1828            set_feature(env, ARM_FEATURE_V6K);
1829        } else {
1830            set_feature(env, ARM_FEATURE_V6);
1831        }
1832
1833        /* Always define VBAR for V7 CPUs even if it doesn't exist in
1834         * non-EL3 configs. This is needed by some legacy boards.
1835         */
1836        set_feature(env, ARM_FEATURE_VBAR);
1837    }
1838    if (arm_feature(env, ARM_FEATURE_V6K)) {
1839        set_feature(env, ARM_FEATURE_V6);
1840        set_feature(env, ARM_FEATURE_MVFR);
1841    }
1842    if (arm_feature(env, ARM_FEATURE_V6)) {
1843        set_feature(env, ARM_FEATURE_V5);
1844        if (!arm_feature(env, ARM_FEATURE_M)) {
1845            assert(!tcg_enabled() || no_aa32 ||
1846                   cpu_isar_feature(aa32_jazelle, cpu));
1847            set_feature(env, ARM_FEATURE_AUXCR);
1848        }
1849    }
1850    if (arm_feature(env, ARM_FEATURE_V5)) {
1851        set_feature(env, ARM_FEATURE_V4T);
1852    }
1853    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1854        set_feature(env, ARM_FEATURE_V7MP);
1855    }
1856    if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1857        set_feature(env, ARM_FEATURE_CBAR);
1858    }
1859    if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1860        !arm_feature(env, ARM_FEATURE_M)) {
1861        set_feature(env, ARM_FEATURE_THUMB_DSP);
1862    }
1863
1864    /*
1865     * We rely on no XScale CPU having VFP so we can use the same bits in the
1866     * TB flags field for VECSTRIDE and XSCALE_CPAR.
1867     */
1868    assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1869           !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1870           !arm_feature(env, ARM_FEATURE_XSCALE));
1871
1872    if (arm_feature(env, ARM_FEATURE_V7) &&
1873        !arm_feature(env, ARM_FEATURE_M) &&
1874        !arm_feature(env, ARM_FEATURE_PMSA)) {
1875        /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1876         * can use 4K pages.
1877         */
1878        pagebits = 12;
1879    } else {
1880        /* For CPUs which might have tiny 1K pages, or which have an
1881         * MPU and might have small region sizes, stick with 1K pages.
1882         */
1883        pagebits = 10;
1884    }
1885    if (!set_preferred_target_page_bits(pagebits)) {
1886        /* This can only ever happen for hotplugging a CPU, or if
1887         * the board code incorrectly creates a CPU which it has
1888         * promised via minimum_page_size that it will not.
1889         */
1890        error_setg(errp, "This CPU requires a smaller page size than the "
1891                   "system is using");
1892        return;
1893    }
1894
1895    /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1896     * We don't support setting cluster ID ([16..23]) (known as Aff2
1897     * in later ARM ARM versions), or any of the higher affinity level fields,
1898     * so these bits always RAZ.
1899     */
1900    if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1901        cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1902                                               ARM_DEFAULT_CPUS_PER_CLUSTER);
1903    }
1904
1905    if (cpu->reset_hivecs) {
1906            cpu->reset_sctlr |= (1 << 13);
1907    }
1908
1909    if (cpu->cfgend) {
1910        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1911            cpu->reset_sctlr |= SCTLR_EE;
1912        } else {
1913            cpu->reset_sctlr |= SCTLR_B;
1914        }
1915    }
1916
1917    if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1918        /* If the has_el3 CPU property is disabled then we need to disable the
1919         * feature.
1920         */
1921        unset_feature(env, ARM_FEATURE_EL3);
1922
1923        /* Disable the security extension feature bits in the processor feature
1924         * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1925         */
1926        cpu->isar.id_pfr1 &= ~0xf0;
1927        cpu->isar.id_aa64pfr0 &= ~0xf000;
1928    }
1929
1930    if (!cpu->has_el2) {
1931        unset_feature(env, ARM_FEATURE_EL2);
1932    }
1933
1934    if (!cpu->has_pmu) {
1935        unset_feature(env, ARM_FEATURE_PMU);
1936    }
1937    if (arm_feature(env, ARM_FEATURE_PMU)) {
1938        pmu_init(cpu);
1939
1940        if (!kvm_enabled()) {
1941            arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1942            arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1943        }
1944
1945#ifndef CONFIG_USER_ONLY
1946        cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1947                cpu);
1948#endif
1949    } else {
1950        cpu->isar.id_aa64dfr0 =
1951            FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1952        cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1953        cpu->pmceid0 = 0;
1954        cpu->pmceid1 = 0;
1955    }
1956
1957    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1958        /* Disable the hypervisor feature bits in the processor feature
1959         * registers if we don't have EL2. These are id_pfr1[15:12] and
1960         * id_aa64pfr0_el1[11:8].
1961         */
1962        cpu->isar.id_aa64pfr0 &= ~0xf00;
1963        cpu->isar.id_pfr1 &= ~0xf000;
1964    }
1965
1966#ifndef CONFIG_USER_ONLY
1967    if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1968        /*
1969         * Disable the MTE feature bits if we do not have tag-memory
1970         * provided by the machine.
1971         */
1972        cpu->isar.id_aa64pfr1 =
1973            FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1974    }
1975#endif
1976
1977    /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1978     * to false or by setting pmsav7-dregion to 0.
1979     */
1980    if (!cpu->has_mpu) {
1981        cpu->pmsav7_dregion = 0;
1982    }
1983    if (cpu->pmsav7_dregion == 0) {
1984        cpu->has_mpu = false;
1985    }
1986
1987    if (arm_feature(env, ARM_FEATURE_PMSA) &&
1988        arm_feature(env, ARM_FEATURE_V7)) {
1989        uint32_t nr = cpu->pmsav7_dregion;
1990
1991        if (nr > 0xff) {
1992            error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1993            return;
1994        }
1995
1996        if (nr) {
1997            if (arm_feature(env, ARM_FEATURE_V8)) {
1998                /* PMSAv8 */
1999                env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2000                env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2001                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2002                    env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2003                    env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2004                }
2005            } else {
2006                env->pmsav7.drbar = g_new0(uint32_t, nr);
2007                env->pmsav7.drsr = g_new0(uint32_t, nr);
2008                env->pmsav7.dracr = g_new0(uint32_t, nr);
2009            }
2010        }
2011    }
2012
2013    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2014        uint32_t nr = cpu->sau_sregion;
2015
2016        if (nr > 0xff) {
2017            error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2018            return;
2019        }
2020
2021        if (nr) {
2022            env->sau.rbar = g_new0(uint32_t, nr);
2023            env->sau.rlar = g_new0(uint32_t, nr);
2024        }
2025    }
2026
2027    if (arm_feature(env, ARM_FEATURE_EL3)) {
2028        set_feature(env, ARM_FEATURE_VBAR);
2029    }
2030
2031    register_cp_regs_for_features(cpu);
2032    arm_cpu_register_gdb_regs_for_features(cpu);
2033
2034    init_cpreg_list(cpu);
2035
2036#ifndef CONFIG_USER_ONLY
2037    MachineState *ms = MACHINE(qdev_get_machine());
2038    unsigned int smp_cpus = ms->smp.cpus;
2039    bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2040
2041/* Xilinx: We always want to ensure that two address spaces are created
2042 *         because we allow the secure bit to be overwritten from the outside
2043 *         and in future this could be run time configurable.
2044 */
2045    has_secure = true;
2046
2047    /*
2048     * We must set cs->num_ases to the final value before
2049     * the first call to cpu_address_space_init.
2050     */
2051    if (cpu->tag_memory != NULL) {
2052        cs->num_ases = 3 + has_secure;
2053    } else {
2054        cs->num_ases = 1 + has_secure;
2055    }
2056
2057    if (has_secure) {
2058        if (!cpu->secure_memory) {
2059            cpu->secure_memory = cs->memory;
2060        }
2061        cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2062                               cpu->secure_memory);
2063    }
2064
2065    if (cpu->tag_memory != NULL) {
2066        cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2067                               cpu->tag_memory);
2068        if (has_secure) {
2069            cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2070                                   cpu->secure_tag_memory);
2071        }
2072    }
2073
2074    cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2075
2076    /* No core_count specified, default to smp_cpus. */
2077    if (cpu->core_count == -1) {
2078        cpu->core_count = smp_cpus;
2079    }
2080#endif
2081
2082    if (tcg_enabled()) {
2083        int dcz_blocklen = 4 << cpu->dcz_blocksize;
2084
2085        /*
2086         * We only support DCZ blocklen that fits on one page.
2087         *
2088         * Architectually this is always true.  However TARGET_PAGE_SIZE
2089         * is variable and, for compatibility with -machine virt-2.7,
2090         * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2091         * But even then, while the largest architectural DCZ blocklen
2092         * is 2KiB, no cpu actually uses such a large blocklen.
2093         */
2094        assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2095
2096        /*
2097         * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2098         * both nibbles of each byte storing tag data may be written at once.
2099         * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2100         */
2101        if (cpu_isar_feature(aa64_mte, cpu)) {
2102            assert(dcz_blocklen >= 2 * TAG_GRANULE);
2103        }
2104    }
2105
2106    qemu_init_vcpu(cs);
2107    cpu_reset(cs);
2108
2109    acc->parent_realize(dev, errp);
2110}
2111
2112static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2113{
2114    ObjectClass *oc;
2115    char *typename;
2116    char **cpuname;
2117    const char *cpunamestr;
2118
2119    cpuname = g_strsplit(cpu_model, ",", 1);
2120    cpunamestr = cpuname[0];
2121#ifdef CONFIG_USER_ONLY
2122    /* For backwards compatibility usermode emulation allows "-cpu any",
2123     * which has the same semantics as "-cpu max".
2124     */
2125    if (!strcmp(cpunamestr, "any")) {
2126        cpunamestr = "max";
2127    }
2128#endif
2129    typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2130    oc = object_class_by_name(typename);
2131    g_strfreev(cpuname);
2132    g_free(typename);
2133    if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2134        object_class_is_abstract(oc)) {
2135        return NULL;
2136    }
2137    return oc;
2138}
2139
2140static Property arm_cpu_properties[] = {
2141    DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2142    DEFINE_PROP_UINT64("ctr", ARMCPU, ctr, 0),
2143    DEFINE_PROP_UINT64("clidr", ARMCPU, clidr, 0),
2144    DEFINE_PROP_UINT32("id_pfr0", ARMCPU, isar.id_pfr0, 0),
2145    DEFINE_PROP_UINT32("id_pfr1", ARMCPU, isar.id_pfr1, 0),
2146    DEFINE_PROP_UINT64("ccsidr0", ARMCPU, ccsidr[0], 0),
2147    DEFINE_PROP_UINT64("ccsidr1", ARMCPU, ccsidr[1], 0),
2148    DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2149    DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2150                        mp_affinity, ARM64_AFFINITY_INVALID),
2151    DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2152    DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2153    DEFINE_PROP_END_OF_LIST()
2154};
2155
2156static void set_debug_context(CPUState *cs, unsigned int ctx)
2157{
2158    ARMCPU *cpu = ARM_CPU(cs);
2159    switch (ctx) {
2160    case ARM_DEBUG_CURRENT_EL:
2161        cpu->env.debug_ctx = DEBUG_CURRENT_EL;
2162        break;
2163
2164    case ARM_DEBUG_PHYS:
2165        cpu->env.debug_ctx = DEBUG_PHYS;
2166        break;
2167    }
2168}
2169
2170static void arm_cpu_pwr_cntrl(void *opaque, int n, int level)
2171{
2172    DeviceClass *dc_parent = DEVICE_CLASS(ARM_CPU_PARENT_CLASS);
2173    ARMCPU *cpu = ARM_CPU(opaque);
2174
2175    cpu->power_state = level ? PSCI_ON : PSCI_OFF;
2176    dc_parent->pwr_cntrl(opaque, n, level);
2177}
2178
2179static gchar *arm_gdb_arch_name(CPUState *cs)
2180{
2181    ARMCPU *cpu = ARM_CPU(cs);
2182    CPUARMState *env = &cpu->env;
2183
2184    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2185        return g_strdup("iwmmxt");
2186    }
2187    return g_strdup("arm");
2188}
2189
2190#ifndef CONFIG_USER_ONLY
2191#include "hw/core/sysemu-cpu-ops.h"
2192
2193static const struct SysemuCPUOps arm_sysemu_ops = {
2194    .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2195    .asidx_from_attrs = arm_asidx_from_attrs,
2196    .write_elf32_note = arm_cpu_write_elf32_note,
2197    .write_elf64_note = arm_cpu_write_elf64_note,
2198    .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2199    .legacy_vmsd = &vmstate_arm_cpu,
2200};
2201#endif
2202
2203#ifdef CONFIG_TCG
2204static const struct TCGCPUOps arm_tcg_ops = {
2205    .initialize = arm_translate_init,
2206    .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2207    .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2208    .tlb_fill = arm_cpu_tlb_fill,
2209    .debug_excp_handler = arm_debug_excp_handler,
2210
2211#if !defined(CONFIG_USER_ONLY)
2212    .do_interrupt = arm_cpu_do_interrupt,
2213    .do_transaction_failed = arm_cpu_do_transaction_failed,
2214    .do_unaligned_access = arm_cpu_do_unaligned_access,
2215    .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2216    .debug_check_watchpoint = arm_debug_check_watchpoint,
2217    .debug_check_breakpoint = arm_debug_check_breakpoint,
2218#endif /* !CONFIG_USER_ONLY */
2219};
2220#endif /* CONFIG_TCG */
2221
2222static void arm_cpu_class_init(ObjectClass *oc, void *data)
2223{
2224    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2225    CPUClass *cc = CPU_CLASS(acc);
2226    DeviceClass *dc = DEVICE_CLASS(oc);
2227
2228    device_class_set_parent_realize(dc, arm_cpu_realizefn,
2229                                    &acc->parent_realize);
2230
2231    dc->pwr_cntrl = arm_cpu_pwr_cntrl;
2232
2233    device_class_set_props(dc, arm_cpu_properties);
2234    device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2235
2236    cc->class_by_name = arm_cpu_class_by_name;
2237    cc->has_work = arm_cpu_has_work;
2238    cc->dump_state = arm_cpu_dump_state;
2239    cc->set_pc = arm_cpu_set_pc;
2240    cc->get_pc = arm_cpu_get_pc;
2241    cc->debug_contexts = arm_debug_ctx;
2242    cc->set_debug_context = set_debug_context;
2243    cc->gdb_read_register = arm_cpu_gdb_read_register;
2244    cc->gdb_write_register = arm_cpu_gdb_write_register;
2245#ifndef CONFIG_USER_ONLY
2246    dc->rst_cntrl = cpu_reset_gpio;
2247    cc->sysemu_ops = &arm_sysemu_ops;
2248#endif
2249    cc->gdb_num_core_regs = 32;
2250    cc->gdb_core_xml_file = "arm-core.xml";
2251    cc->gdb_arch_name = arm_gdb_arch_name;
2252    cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2253    cc->gdb_stop_before_watchpoint = true;
2254    cc->disas_set_info = arm_disas_set_info;
2255
2256#ifdef CONFIG_TCG
2257    cc->tcg_ops = &arm_tcg_ops;
2258#endif /* CONFIG_TCG */
2259}
2260
2261#ifdef CONFIG_KVM
2262static void arm_host_initfn(Object *obj)
2263{
2264    ARMCPU *cpu = ARM_CPU(obj);
2265
2266    kvm_arm_set_cpu_features_from_host(cpu);
2267    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2268        aarch64_add_sve_properties(obj);
2269    }
2270    arm_cpu_post_init(obj);
2271}
2272
2273static const TypeInfo host_arm_cpu_type_info = {
2274    .name = TYPE_ARM_HOST_CPU,
2275    .parent = TYPE_AARCH64_CPU,
2276    .instance_init = arm_host_initfn,
2277};
2278
2279#endif
2280
2281static void arm_cpu_instance_init(Object *obj)
2282{
2283    ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2284
2285    acc->info->initfn(obj);
2286    arm_cpu_post_init(obj);
2287}
2288
2289static void cpu_register_class_init(ObjectClass *oc, void *data)
2290{
2291    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2292
2293    acc->info = data;
2294}
2295
2296void arm_cpu_register(const ARMCPUInfo *info)
2297{
2298    TypeInfo type_info = {
2299        .parent = TYPE_ARM_CPU,
2300        .instance_size = sizeof(ARMCPU),
2301        .instance_align = __alignof__(ARMCPU),
2302        .instance_init = arm_cpu_instance_init,
2303        .class_size = sizeof(ARMCPUClass),
2304        .class_init = info->class_init ?: cpu_register_class_init,
2305        .class_data = (void *)info,
2306    };
2307
2308    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2309    type_register(&type_info);
2310    g_free((void *)type_info.name);
2311}
2312
2313static const TypeInfo arm_cpu_type_info = {
2314    .name = TYPE_ARM_CPU,
2315    .parent = TYPE_CPU,
2316    .instance_size = sizeof(ARMCPU),
2317    .instance_align = __alignof__(ARMCPU),
2318    .instance_init = arm_cpu_initfn,
2319    .instance_finalize = arm_cpu_finalizefn,
2320    .abstract = true,
2321    .class_size = sizeof(ARMCPUClass),
2322    .class_init = arm_cpu_class_init,
2323};
2324
2325static void arm_cpu_register_types(void)
2326{
2327    type_register_static(&arm_cpu_type_info);
2328
2329#ifdef CONFIG_KVM
2330    type_register_static(&host_arm_cpu_type_info);
2331#endif
2332}
2333
2334type_init(arm_cpu_register_types)
2335
2336#ifndef CONFIG_USER_ONLY
2337
2338static Object *fdt_armv8_timer_get_intc(FDTMachineInfo *fdti, char *node_path)
2339{
2340    char intc_node_path[DT_PATH_LENGTH];
2341    uint32_t intc_phandle;
2342    Error *errp = NULL;
2343    DeviceState *intc;
2344
2345    intc_phandle = qemu_fdt_getprop_cell(fdti->fdt, node_path,
2346                                         "interrupt-parent",
2347                                         0, true, &errp);
2348
2349    /* There must be an interrupt-parent */
2350    if (errp ||
2351        qemu_devtree_get_node_by_phandle(fdti->fdt,
2352                                         intc_node_path, intc_phandle)) {
2353        g_assert_not_reached();
2354    }
2355
2356    while (!fdt_init_has_opaque(fdti, intc_node_path)) {
2357        fdt_init_yield(fdti);
2358    }
2359
2360    intc = DEVICE(fdt_init_get_opaque(fdti, intc_node_path));
2361
2362    while (!intc->realized) {
2363        fdt_init_yield(fdti);
2364    }
2365
2366    return OBJECT(intc);
2367}
2368
2369static int armv8_timer_fdt_init(char *node_path, FDTMachineInfo *fdti,
2370                                void *priv)
2371{
2372    Object *intc = fdt_armv8_timer_get_intc(fdti, node_path);
2373    CPUState *cpu;
2374    bool map_mode = false;
2375    qemu_irq *sec_irqs = NULL;
2376    qemu_irq *ns_irqs;
2377    qemu_irq *v_irqs;
2378    qemu_irq *h_irqs;
2379    uint32_t first_cpu_idx;
2380    uint32_t num_cpu;
2381    bool has_sec_ext;
2382    Error *err = NULL;
2383
2384    first_cpu_idx = object_property_get_uint(intc, "first-cpu-idx", &err);
2385    if (!err) {
2386        num_cpu = object_property_get_uint(intc, "num-cpu", &err);
2387        assert(!err);
2388        has_sec_ext = object_property_get_bool(intc, "has-security-extensions",
2389                                               &err);
2390        assert(!err);
2391    } else {
2392        /*
2393         * Connect all CPUs with the ARM_FEATURE_GENERIC_TIMER set for
2394         * backwards compatibility when the 'first-cpu-idx' property does not
2395         * exist.
2396         */
2397        num_cpu = 0;
2398        has_sec_ext = true;
2399    }
2400
2401    if (has_sec_ext) {
2402        sec_irqs = fdt_get_irq(fdti, node_path, 0, &map_mode);
2403        ns_irqs = fdt_get_irq(fdti, node_path, 1, &map_mode);
2404        v_irqs = fdt_get_irq(fdti, node_path, 2, &map_mode);
2405        h_irqs = fdt_get_irq(fdti, node_path, 3, &map_mode);
2406    } else {
2407        ns_irqs = fdt_get_irq(fdti, node_path, 0, &map_mode);
2408        v_irqs = fdt_get_irq(fdti, node_path, 1, &map_mode);
2409        h_irqs = fdt_get_irq(fdti, node_path, 2, &map_mode);
2410    }
2411
2412    assert(!map_mode); /* not supported for PPI */
2413
2414    for (cpu = first_cpu; cpu; cpu = CPU_NEXT(cpu)) {
2415        ARMCPU *acpu = ARM_CPU(cpu);
2416        bool is_gic_cpu;
2417
2418        if (!arm_feature(&acpu->env, ARM_FEATURE_GENERIC_TIMER)) {
2419            continue;
2420        }
2421
2422        is_gic_cpu = cpu->cpu_index >= first_cpu_idx &&
2423                     cpu->cpu_index < (first_cpu_idx + num_cpu);
2424
2425        if (!num_cpu || is_gic_cpu) {
2426
2427            assert(*ns_irqs);
2428            assert(*v_irqs);
2429            assert(*h_irqs);
2430            qdev_connect_gpio_out(DEVICE(acpu), 0, *ns_irqs++);
2431            qdev_connect_gpio_out(DEVICE(acpu), 1, *v_irqs++);
2432            qdev_connect_gpio_out(DEVICE(acpu), 2, *h_irqs++);
2433
2434            if (has_sec_ext) {
2435                assert(*sec_irqs);
2436                qdev_connect_gpio_out(DEVICE(acpu), 3, *sec_irqs++);
2437            }
2438        }
2439    }
2440
2441    return 0;
2442}
2443
2444fdt_register_compatibility_n(armv8_timer_fdt_init,
2445                             "compatible:arm,armv8-timer", 13);
2446
2447#endif
2448
2449static const TypeInfo fdt_qom_aliases [] = {
2450    {   .name = "arm.cortex-a9",            .parent = "cortex-a9-arm-cpu"  },
2451};
2452
2453static void fdt_generic_register_types(void)
2454{
2455    int i;
2456
2457    for (i = 0; i < ARRAY_SIZE(fdt_qom_aliases); ++i) {
2458        type_register_static(&fdt_qom_aliases[i]);
2459    }
2460}
2461
2462type_init(fdt_generic_register_types)
2463