qemu/target/arm/internals.h
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU -- internal functions and types
   3 *
   4 * Copyright (c) 2014 Linaro Ltd
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 *
  20 * This header defines functions, types, etc which need to be shared
  21 * between different source files within target/arm/ but which are
  22 * private to it and not required by the rest of QEMU.
  23 */
  24
  25#ifndef TARGET_ARM_INTERNALS_H
  26#define TARGET_ARM_INTERNALS_H
  27
  28#include "hw/registerfields.h"
  29#include "tcg/tcg-gvec-desc.h"
  30#include "syndrome.h"
  31
  32/* register banks for CPU modes */
  33#define BANK_USRSYS 0
  34#define BANK_SVC    1
  35#define BANK_ABT    2
  36#define BANK_UND    3
  37#define BANK_IRQ    4
  38#define BANK_FIQ    5
  39#define BANK_HYP    6
  40#define BANK_MON    7
  41
  42static inline bool excp_is_internal(int excp)
  43{
  44    /* Return true if this exception number represents a QEMU-internal
  45     * exception that will not be passed to the guest.
  46     */
  47    return excp == EXCP_INTERRUPT
  48        || excp == EXCP_HLT
  49        || excp == EXCP_DEBUG
  50        || excp == EXCP_HALTED
  51        || excp == EXCP_EXCEPTION_EXIT
  52        || excp == EXCP_KERNEL_TRAP
  53        || excp == EXCP_SEMIHOST;
  54}
  55
  56/* Scale factor for generic timers, ie number of ns per tick.
  57 * This gives a 62.5MHz timer.
  58 */
  59#define GTIMER_SCALE 16
  60
  61/* Bit definitions for the v7M CONTROL register */
  62FIELD(V7M_CONTROL, NPRIV, 0, 1)
  63FIELD(V7M_CONTROL, SPSEL, 1, 1)
  64FIELD(V7M_CONTROL, FPCA, 2, 1)
  65FIELD(V7M_CONTROL, SFPA, 3, 1)
  66
  67/* Bit definitions for v7M exception return payload */
  68FIELD(V7M_EXCRET, ES, 0, 1)
  69FIELD(V7M_EXCRET, RES0, 1, 1)
  70FIELD(V7M_EXCRET, SPSEL, 2, 1)
  71FIELD(V7M_EXCRET, MODE, 3, 1)
  72FIELD(V7M_EXCRET, FTYPE, 4, 1)
  73FIELD(V7M_EXCRET, DCRS, 5, 1)
  74FIELD(V7M_EXCRET, S, 6, 1)
  75FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
  76
  77/* Minimum value which is a magic number for exception return */
  78#define EXC_RETURN_MIN_MAGIC 0xff000000
  79/* Minimum number which is a magic number for function or exception return
  80 * when using v8M security extension
  81 */
  82#define FNC_RETURN_MIN_MAGIC 0xfefffffe
  83
  84/* We use a few fake FSR values for internal purposes in M profile.
  85 * M profile cores don't have A/R format FSRs, but currently our
  86 * get_phys_addr() code assumes A/R profile and reports failures via
  87 * an A/R format FSR value. We then translate that into the proper
  88 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
  89 * Mostly the FSR values we use for this are those defined for v7PMSA,
  90 * since we share some of that codepath. A few kinds of fault are
  91 * only for M profile and have no A/R equivalent, though, so we have
  92 * to pick a value from the reserved range (which we never otherwise
  93 * generate) to use for these.
  94 * These values will never be visible to the guest.
  95 */
  96#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
  97#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
  98
  99/**
 100 * raise_exception: Raise the specified exception.
 101 * Raise a guest exception with the specified value, syndrome register
 102 * and target exception level. This should be called from helper functions,
 103 * and never returns because we will longjump back up to the CPU main loop.
 104 */
 105void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
 106                                   uint32_t syndrome, uint32_t target_el);
 107
 108/*
 109 * Similarly, but also use unwinding to restore cpu state.
 110 */
 111void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
 112                                      uint32_t syndrome, uint32_t target_el,
 113                                      uintptr_t ra);
 114
 115/*
 116 * For AArch64, map a given EL to an index in the banked_spsr array.
 117 * Note that this mapping and the AArch32 mapping defined in bank_number()
 118 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
 119 * mandated mapping between each other.
 120 */
 121static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
 122{
 123    static const unsigned int map[4] = {
 124        [1] = BANK_SVC, /* EL1.  */
 125        [2] = BANK_HYP, /* EL2.  */
 126        [3] = BANK_MON, /* EL3.  */
 127    };
 128    assert(el >= 1 && el <= 3);
 129    return map[el];
 130}
 131
 132/* Map CPU modes onto saved register banks.  */
 133static inline int bank_number(int mode)
 134{
 135    switch (mode) {
 136    case ARM_CPU_MODE_USR:
 137    case ARM_CPU_MODE_SYS:
 138        return BANK_USRSYS;
 139    case ARM_CPU_MODE_SVC:
 140        return BANK_SVC;
 141    case ARM_CPU_MODE_ABT:
 142        return BANK_ABT;
 143    case ARM_CPU_MODE_UND:
 144        return BANK_UND;
 145    case ARM_CPU_MODE_IRQ:
 146        return BANK_IRQ;
 147    case ARM_CPU_MODE_FIQ:
 148        return BANK_FIQ;
 149    case ARM_CPU_MODE_HYP:
 150        return BANK_HYP;
 151    case ARM_CPU_MODE_MON:
 152        return BANK_MON;
 153    }
 154    g_assert_not_reached();
 155}
 156
 157/**
 158 * r14_bank_number: Map CPU mode onto register bank for r14
 159 *
 160 * Given an AArch32 CPU mode, return the index into the saved register
 161 * banks to use for the R14 (LR) in that mode. This is the same as
 162 * bank_number(), except for the special case of Hyp mode, where
 163 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
 164 * This should be used as the index into env->banked_r14[], and
 165 * bank_number() used for the index into env->banked_r13[] and
 166 * env->banked_spsr[].
 167 */
 168static inline int r14_bank_number(int mode)
 169{
 170    return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
 171}
 172
 173void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 174void arm_translate_init(void);
 175
 176#ifdef CONFIG_TCG
 177void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
 178#endif /* CONFIG_TCG */
 179
 180/**
 181 * aarch64_sve_zcr_get_valid_len:
 182 * @cpu: cpu context
 183 * @start_len: maximum len to consider
 184 *
 185 * Return the maximum supported sve vector length <= @start_len.
 186 * Note that both @start_len and the return value are in units
 187 * of ZCR_ELx.LEN, so the vector bit length is (x + 1) * 128.
 188 */
 189uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len);
 190
 191enum arm_fprounding {
 192    FPROUNDING_TIEEVEN,
 193    FPROUNDING_POSINF,
 194    FPROUNDING_NEGINF,
 195    FPROUNDING_ZERO,
 196    FPROUNDING_TIEAWAY,
 197    FPROUNDING_ODD
 198};
 199
 200int arm_rmode_to_sf(int rmode);
 201
 202static inline void aarch64_save_sp(CPUARMState *env, int el)
 203{
 204    if (env->pstate & PSTATE_SP) {
 205        env->sp_el[el] = env->xregs[31];
 206    } else {
 207        env->sp_el[0] = env->xregs[31];
 208    }
 209}
 210
 211static inline void aarch64_restore_sp(CPUARMState *env, int el)
 212{
 213    if (env->pstate & PSTATE_SP) {
 214        env->xregs[31] = env->sp_el[el];
 215    } else {
 216        env->xregs[31] = env->sp_el[0];
 217    }
 218}
 219
 220static inline void update_spsel(CPUARMState *env, uint32_t imm)
 221{
 222    unsigned int cur_el = arm_current_el(env);
 223    /* Update PSTATE SPSel bit; this requires us to update the
 224     * working stack pointer in xregs[31].
 225     */
 226    if (!((imm ^ env->pstate) & PSTATE_SP)) {
 227        return;
 228    }
 229    aarch64_save_sp(env, cur_el);
 230    env->pstate = deposit32(env->pstate, 0, 1, imm);
 231
 232    /* We rely on illegal updates to SPsel from EL0 to get trapped
 233     * at translation time.
 234     */
 235    assert(cur_el >= 1 && cur_el <= 3);
 236    aarch64_restore_sp(env, cur_el);
 237}
 238
 239/*
 240 * arm_pamax
 241 * @cpu: ARMCPU
 242 *
 243 * Returns the implementation defined bit-width of physical addresses.
 244 * The ARMv8 reference manuals refer to this as PAMax().
 245 */
 246static inline unsigned int arm_pamax(ARMCPU *cpu)
 247{
 248    static const unsigned int pamax_map[] = {
 249        [0] = 32,
 250        [1] = 36,
 251        [2] = 40,
 252        [3] = 42,
 253        [4] = 44,
 254        [5] = 48,
 255    };
 256    unsigned int parange =
 257        FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
 258
 259    /* id_aa64mmfr0 is a read-only register so values outside of the
 260     * supported mappings can be considered an implementation error.  */
 261    assert(parange < ARRAY_SIZE(pamax_map));
 262    return pamax_map[parange];
 263}
 264
 265/* Return true if extended addresses are enabled.
 266 * This is always the case if our translation regime is 64 bit,
 267 * but depends on TTBCR.EAE for 32 bit.
 268 */
 269static inline bool extended_addresses_enabled(CPUARMState *env)
 270{
 271    TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
 272    return arm_el_is_aa64(env, 1) ||
 273           (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
 274}
 275
 276/* Update a QEMU watchpoint based on the information the guest has set in the
 277 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
 278 */
 279void hw_watchpoint_update(ARMCPU *cpu, int n);
 280/* Update the QEMU watchpoints for every guest watchpoint. This does a
 281 * complete delete-and-reinstate of the QEMU watchpoint list and so is
 282 * suitable for use after migration or on reset.
 283 */
 284void hw_watchpoint_update_all(ARMCPU *cpu);
 285/* Update a QEMU breakpoint based on the information the guest has set in the
 286 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
 287 */
 288void hw_breakpoint_update(ARMCPU *cpu, int n);
 289/* Update the QEMU breakpoints for every guest breakpoint. This does a
 290 * complete delete-and-reinstate of the QEMU breakpoint list and so is
 291 * suitable for use after migration or on reset.
 292 */
 293void hw_breakpoint_update_all(ARMCPU *cpu);
 294
 295/* Callback function for checking if a breakpoint should trigger. */
 296bool arm_debug_check_breakpoint(CPUState *cs);
 297
 298/* Callback function for checking if a watchpoint should trigger. */
 299bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
 300
 301/* Adjust addresses (in BE32 mode) before testing against watchpoint
 302 * addresses.
 303 */
 304vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
 305
 306/* Callback function for when a watchpoint or breakpoint triggers. */
 307void arm_debug_excp_handler(CPUState *cs);
 308
 309#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
 310static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
 311{
 312    return false;
 313}
 314static inline void arm_handle_psci_call(ARMCPU *cpu)
 315{
 316    g_assert_not_reached();
 317}
 318#else
 319/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
 320bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
 321/* Actually handle a PSCI call */
 322void arm_handle_psci_call(ARMCPU *cpu);
 323#endif
 324
 325/**
 326 * arm_clear_exclusive: clear the exclusive monitor
 327 * @env: CPU env
 328 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
 329 */
 330static inline void arm_clear_exclusive(CPUARMState *env)
 331{
 332    env->exclusive_addr = -1;
 333}
 334
 335/**
 336 * ARMFaultType: type of an ARM MMU fault
 337 * This corresponds to the v8A pseudocode's Fault enumeration,
 338 * with extensions for QEMU internal conditions.
 339 */
 340typedef enum ARMFaultType {
 341    ARMFault_None,
 342    ARMFault_AccessFlag,
 343    ARMFault_Alignment,
 344    ARMFault_Background,
 345    ARMFault_Domain,
 346    ARMFault_Permission,
 347    ARMFault_Translation,
 348    ARMFault_AddressSize,
 349    ARMFault_SyncExternal,
 350    ARMFault_SyncExternalOnWalk,
 351    ARMFault_SyncParity,
 352    ARMFault_SyncParityOnWalk,
 353    ARMFault_AsyncParity,
 354    ARMFault_AsyncExternal,
 355    ARMFault_Debug,
 356    ARMFault_TLBConflict,
 357    ARMFault_Lockdown,
 358    ARMFault_Exclusive,
 359    ARMFault_ICacheMaint,
 360    ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
 361    ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
 362} ARMFaultType;
 363
 364/**
 365 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
 366 * @type: Type of fault
 367 * @level: Table walk level (for translation, access flag and permission faults)
 368 * @domain: Domain of the fault address (for non-LPAE CPUs only)
 369 * @s2addr: Address that caused a fault at stage 2
 370 * @stage2: True if we faulted at stage 2
 371 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
 372 * @s1ns: True if we faulted on a non-secure IPA while in secure state
 373 * @ea: True if we should set the EA (external abort type) bit in syndrome
 374 */
 375typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 376struct ARMMMUFaultInfo {
 377    ARMFaultType type;
 378    target_ulong s2addr;
 379    int level;
 380    int domain;
 381    bool stage2;
 382    bool s1ptw;
 383    bool s1ns;
 384    bool ea;
 385};
 386
 387/**
 388 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
 389 * Compare pseudocode EncodeSDFSC(), though unlike that function
 390 * we set up a whole FSR-format code including domain field and
 391 * putting the high bit of the FSC into bit 10.
 392 */
 393static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
 394{
 395    uint32_t fsc;
 396
 397    switch (fi->type) {
 398    case ARMFault_None:
 399        return 0;
 400    case ARMFault_AccessFlag:
 401        fsc = fi->level == 1 ? 0x3 : 0x6;
 402        break;
 403    case ARMFault_Alignment:
 404        fsc = 0x1;
 405        break;
 406    case ARMFault_Permission:
 407        fsc = fi->level == 1 ? 0xd : 0xf;
 408        break;
 409    case ARMFault_Domain:
 410        fsc = fi->level == 1 ? 0x9 : 0xb;
 411        break;
 412    case ARMFault_Translation:
 413        fsc = fi->level == 1 ? 0x5 : 0x7;
 414        break;
 415    case ARMFault_SyncExternal:
 416        fsc = 0x8 | (fi->ea << 12);
 417        break;
 418    case ARMFault_SyncExternalOnWalk:
 419        fsc = fi->level == 1 ? 0xc : 0xe;
 420        fsc |= (fi->ea << 12);
 421        break;
 422    case ARMFault_SyncParity:
 423        fsc = 0x409;
 424        break;
 425    case ARMFault_SyncParityOnWalk:
 426        fsc = fi->level == 1 ? 0x40c : 0x40e;
 427        break;
 428    case ARMFault_AsyncParity:
 429        fsc = 0x408;
 430        break;
 431    case ARMFault_AsyncExternal:
 432        fsc = 0x406 | (fi->ea << 12);
 433        break;
 434    case ARMFault_Debug:
 435        fsc = 0x2;
 436        break;
 437    case ARMFault_TLBConflict:
 438        fsc = 0x400;
 439        break;
 440    case ARMFault_Lockdown:
 441        fsc = 0x404;
 442        break;
 443    case ARMFault_Exclusive:
 444        fsc = 0x405;
 445        break;
 446    case ARMFault_ICacheMaint:
 447        fsc = 0x4;
 448        break;
 449    case ARMFault_Background:
 450        fsc = 0x0;
 451        break;
 452    case ARMFault_QEMU_NSCExec:
 453        fsc = M_FAKE_FSR_NSC_EXEC;
 454        break;
 455    case ARMFault_QEMU_SFault:
 456        fsc = M_FAKE_FSR_SFAULT;
 457        break;
 458    default:
 459        /* Other faults can't occur in a context that requires a
 460         * short-format status code.
 461         */
 462        g_assert_not_reached();
 463    }
 464
 465    fsc |= (fi->domain << 4);
 466    return fsc;
 467}
 468
 469/**
 470 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
 471 * Compare pseudocode EncodeLDFSC(), though unlike that function
 472 * we fill in also the LPAE bit 9 of a DFSR format.
 473 */
 474static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
 475{
 476    uint32_t fsc;
 477
 478    switch (fi->type) {
 479    case ARMFault_None:
 480        return 0;
 481    case ARMFault_AddressSize:
 482        fsc = fi->level & 3;
 483        break;
 484    case ARMFault_AccessFlag:
 485        fsc = (fi->level & 3) | (0x2 << 2);
 486        break;
 487    case ARMFault_Permission:
 488        fsc = (fi->level & 3) | (0x3 << 2);
 489        break;
 490    case ARMFault_Translation:
 491        fsc = (fi->level & 3) | (0x1 << 2);
 492        break;
 493    case ARMFault_SyncExternal:
 494        fsc = 0x10 | (fi->ea << 12);
 495        break;
 496    case ARMFault_SyncExternalOnWalk:
 497        fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
 498        break;
 499    case ARMFault_SyncParity:
 500        fsc = 0x18;
 501        break;
 502    case ARMFault_SyncParityOnWalk:
 503        fsc = (fi->level & 3) | (0x7 << 2);
 504        break;
 505    case ARMFault_AsyncParity:
 506        fsc = 0x19;
 507        break;
 508    case ARMFault_AsyncExternal:
 509        fsc = 0x11 | (fi->ea << 12);
 510        break;
 511    case ARMFault_Alignment:
 512        fsc = 0x21;
 513        break;
 514    case ARMFault_Debug:
 515        fsc = 0x22;
 516        break;
 517    case ARMFault_TLBConflict:
 518        fsc = 0x30;
 519        break;
 520    case ARMFault_Lockdown:
 521        fsc = 0x34;
 522        break;
 523    case ARMFault_Exclusive:
 524        fsc = 0x35;
 525        break;
 526    default:
 527        /* Other faults can't occur in a context that requires a
 528         * long-format status code.
 529         */
 530        g_assert_not_reached();
 531    }
 532
 533    fsc |= 1 << 9;
 534    return fsc;
 535}
 536
 537static inline bool arm_extabort_type(MemTxResult result)
 538{
 539    /* The EA bit in syndromes and fault status registers is an
 540     * IMPDEF classification of external aborts. ARM implementations
 541     * usually use this to indicate AXI bus Decode error (0) or
 542     * Slave error (1); in QEMU we follow that.
 543     */
 544    return result != MEMTX_DECODE_ERROR;
 545}
 546
 547bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 548                      MMUAccessType access_type, int mmu_idx,
 549                      bool probe, uintptr_t retaddr);
 550
 551static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
 552{
 553    return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
 554}
 555
 556static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
 557{
 558    if (arm_feature(env, ARM_FEATURE_M)) {
 559        return mmu_idx | ARM_MMU_IDX_M;
 560    } else {
 561        return mmu_idx | ARM_MMU_IDX_A;
 562    }
 563}
 564
 565static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
 566{
 567    /* AArch64 is always a-profile. */
 568    return mmu_idx | ARM_MMU_IDX_A;
 569}
 570
 571int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
 572
 573/*
 574 * Return the MMU index for a v7M CPU with all relevant information
 575 * manually specified.
 576 */
 577ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
 578                              bool secstate, bool priv, bool negpri);
 579
 580/*
 581 * Return the MMU index for a v7M CPU in the specified security and
 582 * privilege state.
 583 */
 584ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
 585                                                bool secstate, bool priv);
 586
 587/* Return the MMU index for a v7M CPU in the specified security state */
 588ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
 589
 590/* Return true if the stage 1 translation regime is using LPAE format page
 591 * tables */
 592bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 593
 594/* Raise a data fault alignment exception for the specified virtual address */
 595void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
 596                                 MMUAccessType access_type,
 597                                 int mmu_idx, uintptr_t retaddr);
 598
 599/* arm_cpu_do_transaction_failed: handle a memory system error response
 600 * (eg "no device/memory present at address") by raising an external abort
 601 * exception
 602 */
 603void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
 604                                   vaddr addr, unsigned size,
 605                                   MMUAccessType access_type,
 606                                   int mmu_idx, MemTxAttrs attrs,
 607                                   MemTxResult response, uintptr_t retaddr);
 608
 609/* Call any registered EL change hooks */
 610static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
 611{
 612    ARMELChangeHook *hook, *next;
 613    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
 614        hook->hook(cpu, hook->opaque);
 615    }
 616}
 617static inline void arm_call_el_change_hook(ARMCPU *cpu)
 618{
 619    ARMELChangeHook *hook, *next;
 620    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
 621        hook->hook(cpu, hook->opaque);
 622    }
 623}
 624
 625/* Return true if this address translation regime has two ranges.  */
 626static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
 627{
 628    switch (mmu_idx) {
 629    case ARMMMUIdx_Stage1_E0:
 630    case ARMMMUIdx_Stage1_E1:
 631    case ARMMMUIdx_Stage1_E1_PAN:
 632    case ARMMMUIdx_Stage1_SE0:
 633    case ARMMMUIdx_Stage1_SE1:
 634    case ARMMMUIdx_Stage1_SE1_PAN:
 635    case ARMMMUIdx_E10_0:
 636    case ARMMMUIdx_E10_1:
 637    case ARMMMUIdx_E10_1_PAN:
 638    case ARMMMUIdx_E20_0:
 639    case ARMMMUIdx_E20_2:
 640    case ARMMMUIdx_E20_2_PAN:
 641    case ARMMMUIdx_SE10_0:
 642    case ARMMMUIdx_SE10_1:
 643    case ARMMMUIdx_SE10_1_PAN:
 644    case ARMMMUIdx_SE20_0:
 645    case ARMMMUIdx_SE20_2:
 646    case ARMMMUIdx_SE20_2_PAN:
 647        return true;
 648    default:
 649        return false;
 650    }
 651}
 652
 653/* Return true if this address translation regime is secure */
 654static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
 655{
 656    switch (mmu_idx) {
 657    case ARMMMUIdx_E10_0:
 658    case ARMMMUIdx_E10_1:
 659    case ARMMMUIdx_E10_1_PAN:
 660    case ARMMMUIdx_E20_0:
 661    case ARMMMUIdx_E20_2:
 662    case ARMMMUIdx_E20_2_PAN:
 663    case ARMMMUIdx_Stage1_E0:
 664    case ARMMMUIdx_Stage1_E1:
 665    case ARMMMUIdx_Stage1_E1_PAN:
 666    case ARMMMUIdx_E2:
 667    case ARMMMUIdx_Stage2:
 668    case ARMMMUIdx_MPrivNegPri:
 669    case ARMMMUIdx_MUserNegPri:
 670    case ARMMMUIdx_MPriv:
 671    case ARMMMUIdx_MUser:
 672        return false;
 673    case ARMMMUIdx_SE3:
 674    case ARMMMUIdx_SE10_0:
 675    case ARMMMUIdx_SE10_1:
 676    case ARMMMUIdx_SE10_1_PAN:
 677    case ARMMMUIdx_SE20_0:
 678    case ARMMMUIdx_SE20_2:
 679    case ARMMMUIdx_SE20_2_PAN:
 680    case ARMMMUIdx_Stage1_SE0:
 681    case ARMMMUIdx_Stage1_SE1:
 682    case ARMMMUIdx_Stage1_SE1_PAN:
 683    case ARMMMUIdx_SE2:
 684    case ARMMMUIdx_Stage2_S:
 685    case ARMMMUIdx_MSPrivNegPri:
 686    case ARMMMUIdx_MSUserNegPri:
 687    case ARMMMUIdx_MSPriv:
 688    case ARMMMUIdx_MSUser:
 689        return true;
 690    default:
 691        g_assert_not_reached();
 692    }
 693}
 694
 695static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
 696{
 697    switch (mmu_idx) {
 698    case ARMMMUIdx_Stage1_E1_PAN:
 699    case ARMMMUIdx_Stage1_SE1_PAN:
 700    case ARMMMUIdx_E10_1_PAN:
 701    case ARMMMUIdx_E20_2_PAN:
 702    case ARMMMUIdx_SE10_1_PAN:
 703    case ARMMMUIdx_SE20_2_PAN:
 704        return true;
 705    default:
 706        return false;
 707    }
 708}
 709
 710/* Return the exception level which controls this address translation regime */
 711static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
 712{
 713    switch (mmu_idx) {
 714    case ARMMMUIdx_SE20_0:
 715    case ARMMMUIdx_SE20_2:
 716    case ARMMMUIdx_SE20_2_PAN:
 717    case ARMMMUIdx_E20_0:
 718    case ARMMMUIdx_E20_2:
 719    case ARMMMUIdx_E20_2_PAN:
 720    case ARMMMUIdx_Stage2:
 721    case ARMMMUIdx_Stage2_S:
 722    case ARMMMUIdx_SE2:
 723    case ARMMMUIdx_E2:
 724        return 2;
 725    case ARMMMUIdx_SE3:
 726        return 3;
 727    case ARMMMUIdx_SE10_0:
 728    case ARMMMUIdx_Stage1_SE0:
 729        return arm_el_is_aa64(env, 3) ? 1 : 3;
 730    case ARMMMUIdx_SE10_1:
 731    case ARMMMUIdx_SE10_1_PAN:
 732    case ARMMMUIdx_Stage1_E0:
 733    case ARMMMUIdx_Stage1_E1:
 734    case ARMMMUIdx_Stage1_E1_PAN:
 735    case ARMMMUIdx_Stage1_SE1:
 736    case ARMMMUIdx_Stage1_SE1_PAN:
 737    case ARMMMUIdx_E10_0:
 738    case ARMMMUIdx_E10_1:
 739    case ARMMMUIdx_E10_1_PAN:
 740    case ARMMMUIdx_MPrivNegPri:
 741    case ARMMMUIdx_MUserNegPri:
 742    case ARMMMUIdx_MPriv:
 743    case ARMMMUIdx_MUser:
 744    case ARMMMUIdx_MSPrivNegPri:
 745    case ARMMMUIdx_MSUserNegPri:
 746    case ARMMMUIdx_MSPriv:
 747    case ARMMMUIdx_MSUser:
 748        return 1;
 749    default:
 750        g_assert_not_reached();
 751    }
 752}
 753
 754/* Return the TCR controlling this translation regime */
 755static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
 756{
 757    if (mmu_idx == ARMMMUIdx_Stage2) {
 758        return &env->cp15.vtcr_el2;
 759    }
 760    if (mmu_idx == ARMMMUIdx_Stage2_S) {
 761        /*
 762         * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
 763         * those are not currently used by QEMU, so just return VSTCR_EL2.
 764         */
 765        return &env->cp15.vstcr_el2;
 766    }
 767    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
 768}
 769
 770/* Return the FSR value for a debug exception (watchpoint, hardware
 771 * breakpoint or BKPT insn) targeting the specified exception level.
 772 */
 773static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
 774{
 775    ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
 776    int target_el = arm_debug_target_el(env);
 777    bool using_lpae = false;
 778
 779    if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
 780        using_lpae = true;
 781    } else {
 782        if (arm_feature(env, ARM_FEATURE_LPAE) &&
 783            (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
 784            using_lpae = true;
 785        }
 786    }
 787
 788    if (using_lpae) {
 789        return arm_fi_to_lfsc(&fi);
 790    } else {
 791        return arm_fi_to_sfsc(&fi);
 792    }
 793}
 794
 795/**
 796 * arm_num_brps: Return number of implemented breakpoints.
 797 * Note that the ID register BRPS field is "number of bps - 1",
 798 * and we return the actual number of breakpoints.
 799 */
 800static inline int arm_num_brps(ARMCPU *cpu)
 801{
 802    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 803        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
 804    } else {
 805        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
 806    }
 807}
 808
 809/**
 810 * arm_num_wrps: Return number of implemented watchpoints.
 811 * Note that the ID register WRPS field is "number of wps - 1",
 812 * and we return the actual number of watchpoints.
 813 */
 814static inline int arm_num_wrps(ARMCPU *cpu)
 815{
 816    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 817        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
 818    } else {
 819        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
 820    }
 821}
 822
 823/**
 824 * arm_num_ctx_cmps: Return number of implemented context comparators.
 825 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
 826 * and we return the actual number of comparators.
 827 */
 828static inline int arm_num_ctx_cmps(ARMCPU *cpu)
 829{
 830    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 831        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
 832    } else {
 833        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
 834    }
 835}
 836
 837/**
 838 * v7m_using_psp: Return true if using process stack pointer
 839 * Return true if the CPU is currently using the process stack
 840 * pointer, or false if it is using the main stack pointer.
 841 */
 842static inline bool v7m_using_psp(CPUARMState *env)
 843{
 844    /* Handler mode always uses the main stack; for thread mode
 845     * the CONTROL.SPSEL bit determines the answer.
 846     * Note that in v7M it is not possible to be in Handler mode with
 847     * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
 848     */
 849    return !arm_v7m_is_handler_mode(env) &&
 850        env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
 851}
 852
 853/**
 854 * v7m_sp_limit: Return SP limit for current CPU state
 855 * Return the SP limit value for the current CPU security state
 856 * and stack pointer.
 857 */
 858static inline uint32_t v7m_sp_limit(CPUARMState *env)
 859{
 860    if (v7m_using_psp(env)) {
 861        return env->v7m.psplim[env->v7m.secure];
 862    } else {
 863        return env->v7m.msplim[env->v7m.secure];
 864    }
 865}
 866
 867/**
 868 * v7m_cpacr_pass:
 869 * Return true if the v7M CPACR permits access to the FPU for the specified
 870 * security state and privilege level.
 871 */
 872static inline bool v7m_cpacr_pass(CPUARMState *env,
 873                                  bool is_secure, bool is_priv)
 874{
 875    switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
 876    case 0:
 877    case 2: /* UNPREDICTABLE: we treat like 0 */
 878        return false;
 879    case 1:
 880        return is_priv;
 881    case 3:
 882        return true;
 883    default:
 884        g_assert_not_reached();
 885    }
 886}
 887
 888/**
 889 * aarch32_mode_name(): Return name of the AArch32 CPU mode
 890 * @psr: Program Status Register indicating CPU mode
 891 *
 892 * Returns, for debug logging purposes, a printable representation
 893 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
 894 * the low bits of the specified PSR.
 895 */
 896static inline const char *aarch32_mode_name(uint32_t psr)
 897{
 898    static const char cpu_mode_names[16][4] = {
 899        "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
 900        "???", "???", "hyp", "und", "???", "???", "???", "sys"
 901    };
 902
 903    return cpu_mode_names[psr & 0xf];
 904}
 905
 906/**
 907 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
 908 *
 909 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
 910 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
 911 * Must be called with the iothread lock held.
 912 */
 913void arm_cpu_update_virq(ARMCPU *cpu);
 914
 915/**
 916 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
 917 *
 918 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
 919 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
 920 * Must be called with the iothread lock held.
 921 */
 922void arm_cpu_update_vfiq(ARMCPU *cpu);
 923
 924/**
 925 * arm_mmu_idx_el:
 926 * @env: The cpu environment
 927 * @el: The EL to use.
 928 *
 929 * Return the full ARMMMUIdx for the translation regime for EL.
 930 */
 931ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
 932
 933/**
 934 * arm_mmu_idx:
 935 * @env: The cpu environment
 936 *
 937 * Return the full ARMMMUIdx for the current translation regime.
 938 */
 939ARMMMUIdx arm_mmu_idx(CPUARMState *env);
 940
 941/**
 942 * arm_stage1_mmu_idx:
 943 * @env: The cpu environment
 944 *
 945 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
 946 */
 947#ifdef CONFIG_USER_ONLY
 948static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
 949{
 950    return ARMMMUIdx_Stage1_E0;
 951}
 952#else
 953ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
 954#endif
 955
 956/**
 957 * arm_mmu_idx_is_stage1_of_2:
 958 * @mmu_idx: The ARMMMUIdx to test
 959 *
 960 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
 961 * first stage of a two stage regime.
 962 */
 963static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
 964{
 965    switch (mmu_idx) {
 966    case ARMMMUIdx_Stage1_E0:
 967    case ARMMMUIdx_Stage1_E1:
 968    case ARMMMUIdx_Stage1_E1_PAN:
 969    case ARMMMUIdx_Stage1_SE0:
 970    case ARMMMUIdx_Stage1_SE1:
 971    case ARMMMUIdx_Stage1_SE1_PAN:
 972        return true;
 973    default:
 974        return false;
 975    }
 976}
 977
 978static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
 979                                               const ARMISARegisters *id)
 980{
 981    uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
 982
 983    if ((features >> ARM_FEATURE_V4T) & 1) {
 984        valid |= CPSR_T;
 985    }
 986    if ((features >> ARM_FEATURE_V5) & 1) {
 987        valid |= CPSR_Q; /* V5TE in reality*/
 988    }
 989    if ((features >> ARM_FEATURE_V6) & 1) {
 990        valid |= CPSR_E | CPSR_GE;
 991    }
 992    if ((features >> ARM_FEATURE_THUMB2) & 1) {
 993        valid |= CPSR_IT;
 994    }
 995    if (isar_feature_aa32_jazelle(id)) {
 996        valid |= CPSR_J;
 997    }
 998    if (isar_feature_aa32_pan(id)) {
 999        valid |= CPSR_PAN;
1000    }
1001    if (isar_feature_aa32_dit(id)) {
1002        valid |= CPSR_DIT;
1003    }
1004    if (isar_feature_aa32_ssbs(id)) {
1005        valid |= CPSR_SSBS;
1006    }
1007
1008    return valid;
1009}
1010
1011static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1012{
1013    uint32_t valid;
1014
1015    valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1016    if (isar_feature_aa64_bti(id)) {
1017        valid |= PSTATE_BTYPE;
1018    }
1019    if (isar_feature_aa64_pan(id)) {
1020        valid |= PSTATE_PAN;
1021    }
1022    if (isar_feature_aa64_uao(id)) {
1023        valid |= PSTATE_UAO;
1024    }
1025    if (isar_feature_aa64_dit(id)) {
1026        valid |= PSTATE_DIT;
1027    }
1028    if (isar_feature_aa64_ssbs(id)) {
1029        valid |= PSTATE_SSBS;
1030    }
1031    if (isar_feature_aa64_mte(id)) {
1032        valid |= PSTATE_TCO;
1033    }
1034
1035    return valid;
1036}
1037
1038/*
1039 * Parameters of a given virtual address, as extracted from the
1040 * translation control register (TCR) for a given regime.
1041 */
1042typedef struct ARMVAParameters {
1043    unsigned tsz    : 8;
1044    unsigned select : 1;
1045    bool tbi        : 1;
1046    bool epd        : 1;
1047    bool hpd        : 1;
1048    bool using16k   : 1;
1049    bool using64k   : 1;
1050} ARMVAParameters;
1051
1052ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1053                                   ARMMMUIdx mmu_idx, bool data);
1054
1055static inline int exception_target_el(CPUARMState *env)
1056{
1057    int target_el = MAX(1, arm_current_el(env));
1058
1059    /*
1060     * No such thing as secure EL1 if EL3 is aarch32,
1061     * so update the target EL to EL3 in this case.
1062     */
1063    if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1064        target_el = 3;
1065    }
1066
1067    return target_el;
1068}
1069
1070/* Determine if allocation tags are available.  */
1071static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1072                                                 uint64_t sctlr)
1073{
1074    if (el < 3
1075        && arm_feature(env, ARM_FEATURE_EL3)
1076        && !(env->cp15.scr_el3 & SCR_ATA)) {
1077        return false;
1078    }
1079    if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
1080        uint64_t hcr = arm_hcr_el2_eff(env);
1081        if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1082            return false;
1083        }
1084    }
1085    sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1086    return sctlr != 0;
1087}
1088
1089#ifndef CONFIG_USER_ONLY
1090
1091/* Security attributes for an address, as returned by v8m_security_lookup. */
1092typedef struct V8M_SAttributes {
1093    bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1094    bool ns;
1095    bool nsc;
1096    uint8_t sregion;
1097    bool srvalid;
1098    uint8_t iregion;
1099    bool irvalid;
1100} V8M_SAttributes;
1101
1102void v8m_security_lookup(CPUARMState *env, uint32_t address,
1103                         MMUAccessType access_type, ARMMMUIdx mmu_idx,
1104                         V8M_SAttributes *sattrs);
1105
1106bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1107                       MMUAccessType access_type, ARMMMUIdx mmu_idx,
1108                       hwaddr *phys_ptr, MemTxAttrs *txattrs,
1109                       int *prot, bool *is_subpage,
1110                       ARMMMUFaultInfo *fi, uint32_t *mregion);
1111
1112/* Cacheability and shareability attributes for a memory access */
1113typedef struct ARMCacheAttrs {
1114    unsigned int attrs:8; /* as in the MAIR register encoding */
1115    unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1116} ARMCacheAttrs;
1117
1118bool get_phys_addr(CPUARMState *env, target_ulong address,
1119                   MMUAccessType access_type, ARMMMUIdx mmu_idx,
1120                   hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1121                   target_ulong *page_size,
1122                   ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1123    __attribute__((nonnull));
1124
1125void arm_log_exception(int idx);
1126
1127#endif /* !CONFIG_USER_ONLY */
1128
1129/*
1130 * The log2 of the words in the tag block, for GMID_EL1.BS.
1131 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1132 */
1133#define GMID_EL1_BS  6
1134
1135/* We associate one allocation tag per 16 bytes, the minimum.  */
1136#define LOG2_TAG_GRANULE 4
1137#define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
1138
1139/*
1140 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1141 * the same simd_desc() encoding due to restrictions on size.
1142 * Use these instead.
1143 */
1144FIELD(PREDDESC, OPRSZ, 0, 6)
1145FIELD(PREDDESC, ESZ, 6, 2)
1146FIELD(PREDDESC, DATA, 8, 24)
1147
1148/*
1149 * The SVE simd_data field, for memory ops, contains either
1150 * rd (5 bits) or a shift count (2 bits).
1151 */
1152#define SVE_MTEDESC_SHIFT 5
1153
1154/* Bits within a descriptor passed to the helper_mte_check* functions. */
1155FIELD(MTEDESC, MIDX,  0, 4)
1156FIELD(MTEDESC, TBI,   4, 2)
1157FIELD(MTEDESC, TCMA,  6, 2)
1158FIELD(MTEDESC, WRITE, 8, 1)
1159FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
1160
1161bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1162uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1163
1164static inline int allocation_tag_from_addr(uint64_t ptr)
1165{
1166    return extract64(ptr, 56, 4);
1167}
1168
1169static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1170{
1171    return deposit64(ptr, 56, 4, rtag);
1172}
1173
1174/* Return true if tbi bits mean that the access is checked.  */
1175static inline bool tbi_check(uint32_t desc, int bit55)
1176{
1177    return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1178}
1179
1180/* Return true if tcma bits mean that the access is unchecked.  */
1181static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1182{
1183    /*
1184     * We had extracted bit55 and ptr_tag for other reasons, so fold
1185     * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1186     */
1187    bool match = ((ptr_tag + bit55) & 0xf) == 0;
1188    bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1189    return tcma && match;
1190}
1191
1192/*
1193 * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1194 * for the tag to be present in the FAR_ELx register.  But for user-only
1195 * mode, we do not have a TLB with which to implement this, so we must
1196 * remove the top byte.
1197 */
1198static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1199{
1200#ifdef CONFIG_USER_ONLY
1201    /* TBI0 is known to be enabled, while TBI1 is disabled. */
1202    ptr &= sextract64(ptr, 0, 56);
1203#endif
1204    return ptr;
1205}
1206
1207static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1208{
1209#ifdef CONFIG_USER_ONLY
1210    int64_t clean_ptr = sextract64(ptr, 0, 56);
1211    if (tbi_check(desc, clean_ptr < 0)) {
1212        ptr = clean_ptr;
1213    }
1214#endif
1215    return ptr;
1216}
1217
1218/* XILINX: cache maintenance support */
1219bool generate_cache_maintenance(const ARMCPRegInfo *ri);
1220void cpu_clean_inv_one(CPUState *cpu, run_on_cpu_data d);
1221
1222/* Values for M-profile PSR.ECI for MVE insns */
1223enum MVEECIState {
1224    ECI_NONE = 0, /* No completed beats */
1225    ECI_A0 = 1, /* Completed: A0 */
1226    ECI_A0A1 = 2, /* Completed: A0, A1 */
1227    /* 3 is reserved */
1228    ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1229    ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1230    /* All other values reserved */
1231};
1232
1233#endif
1234