qemu/hw/arm/mps2-tz.c
<<
>>
Prefs
   1/*
   2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
   3 *
   4 * Copyright (c) 2017 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License version 2 or
   9 *  (at your option) any later version.
  10 */
  11
  12/* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
  13 * FPGA but is otherwise the same as the 2). Since the CPU itself
  14 * and most of the devices are in the FPGA, the details of the board
  15 * as seen by the guest depend significantly on the FPGA image.
  16 * This source file covers the following FPGA images, for TrustZone cores:
  17 *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
  18 *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
  19 *  "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
  20 *  "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
  21 *
  22 * Links to the TRM for the board itself and to the various Application
  23 * Notes which document the FPGA images can be found here:
  24 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
  25 *
  26 * Board TRM:
  27 * https://developer.arm.com/documentation/100112/latest/
  28 * Application Note AN505:
  29 * https://developer.arm.com/documentation/dai0505/latest/
  30 * Application Note AN521:
  31 * https://developer.arm.com/documentation/dai0521/latest/
  32 * Application Note AN524:
  33 * https://developer.arm.com/documentation/dai0524/latest/
  34 * Application Note AN547:
  35 * https://developer.arm.com/documentation/dai0547/latest/
  36 *
  37 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
  38 * (ARM ECM0601256) for the details of some of the device layout:
  39 *  https://developer.arm.com/documentation/ecm0601256/latest
  40 * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
  41 * most of the device layout:
  42 *  https://developer.arm.com/documentation/101104/latest/
  43 * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
  44 *  https://developer.arm.com/documentation/101773/latest/
  45 */
  46
  47#include "qemu/osdep.h"
  48#include "qemu/units.h"
  49#include "qemu/cutils.h"
  50#include "qapi/error.h"
  51#include "qemu/error-report.h"
  52#include "hw/arm/boot.h"
  53#include "hw/arm/armv7m.h"
  54#include "hw/or-irq.h"
  55#include "hw/boards.h"
  56#include "exec/address-spaces.h"
  57#include "sysemu/sysemu.h"
  58#include "sysemu/reset.h"
  59#include "hw/misc/unimp.h"
  60#include "hw/char/cmsdk-apb-uart.h"
  61#include "hw/timer/cmsdk-apb-timer.h"
  62#include "hw/misc/mps2-scc.h"
  63#include "hw/misc/mps2-fpgaio.h"
  64#include "hw/misc/tz-mpc.h"
  65#include "hw/misc/tz-msc.h"
  66#include "hw/arm/armsse.h"
  67#include "hw/dma/pl080.h"
  68#include "hw/rtc/pl031.h"
  69#include "hw/ssi/pl022.h"
  70#include "hw/i2c/arm_sbcon_i2c.h"
  71#include "hw/net/lan9118.h"
  72#include "net/net.h"
  73#include "hw/core/split-irq.h"
  74#include "hw/qdev-clock.h"
  75#include "qom/object.h"
  76#include "hw/irq.h"
  77
  78#define MPS2TZ_NUMIRQ_MAX 96
  79#define MPS2TZ_RAM_MAX 5
  80
  81typedef enum MPS2TZFPGAType {
  82    FPGA_AN505,
  83    FPGA_AN521,
  84    FPGA_AN524,
  85    FPGA_AN547,
  86} MPS2TZFPGAType;
  87
  88/*
  89 * Define the layout of RAM in a board, including which parts are
  90 * behind which MPCs.
  91 * mrindex specifies the index into mms->ram[] to use for the backing RAM;
  92 * -1 means "use the system RAM".
  93 */
  94typedef struct RAMInfo {
  95    const char *name;
  96    uint32_t base;
  97    uint32_t size;
  98    int mpc; /* MPC number, -1 for "not behind an MPC" */
  99    int mrindex;
 100    int flags;
 101} RAMInfo;
 102
 103/*
 104 * Flag values:
 105 *  IS_ALIAS: this RAM area is an alias to the upstream end of the
 106 *    MPC specified by its .mpc value
 107 *  IS_ROM: this RAM area is read-only
 108 */
 109#define IS_ALIAS 1
 110#define IS_ROM 2
 111
 112struct MPS2TZMachineClass {
 113    MachineClass parent;
 114    MPS2TZFPGAType fpga_type;
 115    uint32_t scc_id;
 116    uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
 117    uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */
 118    uint32_t len_oscclk;
 119    const uint32_t *oscclk;
 120    uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
 121    bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
 122    bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */
 123    int numirq; /* Number of external interrupts */
 124    int uart_overflow_irq; /* number of the combined UART overflow IRQ */
 125    uint32_t init_svtor; /* init-svtor setting for SSE */
 126    uint32_t sram_addr_width; /* SRAM_ADDR_WIDTH setting for SSE */
 127    const RAMInfo *raminfo;
 128    const char *armsse_type;
 129    uint32_t boot_ram_size; /* size of ram at address 0; 0 == find in raminfo */
 130};
 131
 132struct MPS2TZMachineState {
 133    MachineState parent;
 134
 135    ARMSSE iotkit;
 136    MemoryRegion ram[MPS2TZ_RAM_MAX];
 137    MemoryRegion eth_usb_container;
 138
 139    MPS2SCC scc;
 140    MPS2FPGAIO fpgaio;
 141    TZPPC ppc[5];
 142    TZMPC mpc[3];
 143    PL022State spi[5];
 144    ArmSbconI2CState i2c[5];
 145    UnimplementedDeviceState i2s_audio;
 146    UnimplementedDeviceState gpio[4];
 147    UnimplementedDeviceState gfx;
 148    UnimplementedDeviceState cldc;
 149    UnimplementedDeviceState usb;
 150    PL031State rtc;
 151    PL080State dma[4];
 152    TZMSC msc[4];
 153    CMSDKAPBUART uart[6];
 154    SplitIRQ sec_resp_splitter;
 155    qemu_or_irq uart_irq_orgate;
 156    DeviceState *lan9118;
 157    SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
 158    Clock *sysclk;
 159    Clock *s32kclk;
 160
 161    bool remap;
 162    qemu_irq remap_irq;
 163};
 164
 165#define TYPE_MPS2TZ_MACHINE "mps2tz"
 166#define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
 167#define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
 168#define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
 169#define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
 170
 171OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
 172
 173/* Slow 32Khz S32KCLK frequency in Hz */
 174#define S32KCLK_FRQ (32 * 1000)
 175
 176/*
 177 * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
 178 * emulation of that much guest RAM, so artificially make it smaller.
 179 */
 180#if HOST_LONG_BITS == 32
 181#define MPS3_DDR_SIZE (1 * GiB)
 182#else
 183#define MPS3_DDR_SIZE (2 * GiB)
 184#endif
 185
 186static const uint32_t an505_oscclk[] = {
 187    40000000,
 188    24580000,
 189    25000000,
 190};
 191
 192static const uint32_t an524_oscclk[] = {
 193    24000000,
 194    32000000,
 195    50000000,
 196    50000000,
 197    24576000,
 198    23750000,
 199};
 200
 201static const RAMInfo an505_raminfo[] = { {
 202        .name = "ssram-0",
 203        .base = 0x00000000,
 204        .size = 0x00400000,
 205        .mpc = 0,
 206        .mrindex = 0,
 207    }, {
 208        .name = "ssram-1",
 209        .base = 0x28000000,
 210        .size = 0x00200000,
 211        .mpc = 1,
 212        .mrindex = 1,
 213    }, {
 214        .name = "ssram-2",
 215        .base = 0x28200000,
 216        .size = 0x00200000,
 217        .mpc = 2,
 218        .mrindex = 2,
 219    }, {
 220        .name = "ssram-0-alias",
 221        .base = 0x00400000,
 222        .size = 0x00400000,
 223        .mpc = 0,
 224        .mrindex = 3,
 225        .flags = IS_ALIAS,
 226    }, {
 227        /* Use the largest bit of contiguous RAM as our "system memory" */
 228        .name = "mps.ram",
 229        .base = 0x80000000,
 230        .size = 16 * MiB,
 231        .mpc = -1,
 232        .mrindex = -1,
 233    }, {
 234        .name = NULL,
 235    },
 236};
 237
 238/*
 239 * Note that the addresses and MPC numbering here should match up
 240 * with those used in remap_memory(), which can swap the BRAM and QSPI.
 241 */
 242static const RAMInfo an524_raminfo[] = { {
 243        .name = "bram",
 244        .base = 0x00000000,
 245        .size = 512 * KiB,
 246        .mpc = 0,
 247        .mrindex = 0,
 248    }, {
 249        /* We don't model QSPI flash yet; for now expose it as simple ROM */
 250        .name = "QSPI",
 251        .base = 0x28000000,
 252        .size = 8 * MiB,
 253        .mpc = 1,
 254        .mrindex = 1,
 255        .flags = IS_ROM,
 256    }, {
 257        .name = "DDR",
 258        .base = 0x60000000,
 259        .size = MPS3_DDR_SIZE,
 260        .mpc = 2,
 261        .mrindex = -1,
 262    }, {
 263        .name = NULL,
 264    },
 265};
 266
 267static const RAMInfo an547_raminfo[] = { {
 268        .name = "sram",
 269        .base = 0x01000000,
 270        .size = 2 * MiB,
 271        .mpc = 0,
 272        .mrindex = 1,
 273    }, {
 274        .name = "sram 2",
 275        .base = 0x21000000,
 276        .size = 4 * MiB,
 277        .mpc = -1,
 278        .mrindex = 3,
 279    }, {
 280        /* We don't model QSPI flash yet; for now expose it as simple ROM */
 281        .name = "QSPI",
 282        .base = 0x28000000,
 283        .size = 8 * MiB,
 284        .mpc = 1,
 285        .mrindex = 4,
 286        .flags = IS_ROM,
 287    }, {
 288        .name = "DDR",
 289        .base = 0x60000000,
 290        .size = MPS3_DDR_SIZE,
 291        .mpc = 2,
 292        .mrindex = -1,
 293    }, {
 294        .name = NULL,
 295    },
 296};
 297
 298static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
 299{
 300    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 301    const RAMInfo *p;
 302    const RAMInfo *found = NULL;
 303
 304    for (p = mmc->raminfo; p->name; p++) {
 305        if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
 306            /* There should only be one entry in the array for this MPC */
 307            g_assert(!found);
 308            found = p;
 309        }
 310    }
 311    /* if raminfo array doesn't have an entry for each MPC this is a bug */
 312    assert(found);
 313    return found;
 314}
 315
 316static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
 317                                    const RAMInfo *raminfo)
 318{
 319    /* Return an initialized MemoryRegion for the RAMInfo. */
 320    MemoryRegion *ram;
 321
 322    if (raminfo->mrindex < 0) {
 323        /* Means this RAMInfo is for QEMU's "system memory" */
 324        MachineState *machine = MACHINE(mms);
 325        assert(!(raminfo->flags & IS_ROM));
 326        return machine->ram;
 327    }
 328
 329    assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
 330    ram = &mms->ram[raminfo->mrindex];
 331
 332    memory_region_init_ram(ram, NULL, raminfo->name,
 333                           raminfo->size, &error_fatal);
 334    if (raminfo->flags & IS_ROM) {
 335        memory_region_set_readonly(ram, true);
 336    }
 337    return ram;
 338}
 339
 340/* Create an alias of an entire original MemoryRegion @orig
 341 * located at @base in the memory map.
 342 */
 343static void make_ram_alias(MemoryRegion *mr, const char *name,
 344                           MemoryRegion *orig, hwaddr base)
 345{
 346    memory_region_init_alias(mr, NULL, name, orig, 0,
 347                             memory_region_size(orig));
 348    memory_region_add_subregion(get_system_memory(), base, mr);
 349}
 350
 351static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
 352{
 353    /*
 354     * Return a qemu_irq which will signal IRQ n to all CPUs in the
 355     * SSE.  The irqno should be as the CPU sees it, so the first
 356     * external-to-the-SSE interrupt is 32.
 357     */
 358    MachineClass *mc = MACHINE_GET_CLASS(mms);
 359    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 360
 361    assert(irqno >= 32 && irqno < (mmc->numirq + 32));
 362
 363    /*
 364     * Convert from "CPU irq number" (as listed in the FPGA image
 365     * documentation) to the SSE external-interrupt number.
 366     */
 367    irqno -= 32;
 368
 369    if (mc->max_cpus > 1) {
 370        return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
 371    } else {
 372        return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
 373    }
 374}
 375
 376/* Union describing the device-specific extra data we pass to the devfn. */
 377typedef union PPCExtraData {
 378    bool i2c_internal;
 379} PPCExtraData;
 380
 381/* Most of the devices in the AN505 FPGA image sit behind
 382 * Peripheral Protection Controllers. These data structures
 383 * define the layout of which devices sit behind which PPCs.
 384 * The devfn for each port is a function which creates, configures
 385 * and initializes the device, returning the MemoryRegion which
 386 * needs to be plugged into the downstream end of the PPC port.
 387 */
 388typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
 389                                const char *name, hwaddr size,
 390                                const int *irqs,
 391                                const PPCExtraData *extradata);
 392
 393typedef struct PPCPortInfo {
 394    const char *name;
 395    MakeDevFn *devfn;
 396    void *opaque;
 397    hwaddr addr;
 398    hwaddr size;
 399    int irqs[3]; /* currently no device needs more IRQ lines than this */
 400    PPCExtraData extradata; /* to pass device-specific info to the devfn */
 401} PPCPortInfo;
 402
 403typedef struct PPCInfo {
 404    const char *name;
 405    PPCPortInfo ports[TZ_NUM_PORTS];
 406} PPCInfo;
 407
 408static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
 409                                    void *opaque,
 410                                    const char *name, hwaddr size,
 411                                    const int *irqs,
 412                                    const PPCExtraData *extradata)
 413{
 414    /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
 415     * and return a pointer to its MemoryRegion.
 416     */
 417    UnimplementedDeviceState *uds = opaque;
 418
 419    object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
 420    qdev_prop_set_string(DEVICE(uds), "name", name);
 421    qdev_prop_set_uint64(DEVICE(uds), "size", size);
 422    sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
 423    return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
 424}
 425
 426static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
 427                               const char *name, hwaddr size,
 428                               const int *irqs, const PPCExtraData *extradata)
 429{
 430    /* The irq[] array is tx, rx, combined, in that order */
 431    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 432    CMSDKAPBUART *uart = opaque;
 433    int i = uart - &mms->uart[0];
 434    SysBusDevice *s;
 435    DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
 436
 437    object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
 438    qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
 439    qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq);
 440    sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
 441    s = SYS_BUS_DEVICE(uart);
 442    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
 443    sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
 444    sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
 445    sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
 446    sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
 447    return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
 448}
 449
 450static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
 451                              const char *name, hwaddr size,
 452                              const int *irqs, const PPCExtraData *extradata)
 453{
 454    MPS2SCC *scc = opaque;
 455    DeviceState *sccdev;
 456    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 457    uint32_t i;
 458
 459    object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
 460    sccdev = DEVICE(scc);
 461    qdev_prop_set_uint32(sccdev, "scc-cfg0", mms->remap ? 1 : 0);
 462    qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
 463    qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
 464    qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
 465    qdev_prop_set_uint32(sccdev, "len-oscclk", mmc->len_oscclk);
 466    for (i = 0; i < mmc->len_oscclk; i++) {
 467        g_autofree char *propname = g_strdup_printf("oscclk[%u]", i);
 468        qdev_prop_set_uint32(sccdev, propname, mmc->oscclk[i]);
 469    }
 470    sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
 471    return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
 472}
 473
 474static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
 475                                 const char *name, hwaddr size,
 476                                 const int *irqs, const PPCExtraData *extradata)
 477{
 478    MPS2FPGAIO *fpgaio = opaque;
 479    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 480
 481    object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
 482    qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
 483    qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
 484    qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl);
 485    sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
 486    return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
 487}
 488
 489static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
 490                                  const char *name, hwaddr size,
 491                                  const int *irqs,
 492                                  const PPCExtraData *extradata)
 493{
 494    SysBusDevice *s;
 495    NICInfo *nd = &nd_table[0];
 496
 497    /* In hardware this is a LAN9220; the LAN9118 is software compatible
 498     * except that it doesn't support the checksum-offload feature.
 499     */
 500    qemu_check_nic_model(nd, "lan9118");
 501    mms->lan9118 = qdev_new(TYPE_LAN9118);
 502    qdev_set_nic_properties(mms->lan9118, nd);
 503
 504    s = SYS_BUS_DEVICE(mms->lan9118);
 505    sysbus_realize_and_unref(s, &error_fatal);
 506    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
 507    return sysbus_mmio_get_region(s, 0);
 508}
 509
 510static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
 511                                  const char *name, hwaddr size,
 512                                  const int *irqs,
 513                                  const PPCExtraData *extradata)
 514{
 515    /*
 516     * The AN524 makes the ethernet and USB share a PPC port.
 517     * irqs[] is the ethernet IRQ.
 518     */
 519    SysBusDevice *s;
 520    NICInfo *nd = &nd_table[0];
 521
 522    memory_region_init(&mms->eth_usb_container, OBJECT(mms),
 523                       "mps2-tz-eth-usb-container", 0x200000);
 524
 525    /*
 526     * In hardware this is a LAN9220; the LAN9118 is software compatible
 527     * except that it doesn't support the checksum-offload feature.
 528     */
 529    qemu_check_nic_model(nd, "lan9118");
 530    mms->lan9118 = qdev_new(TYPE_LAN9118);
 531    qdev_set_nic_properties(mms->lan9118, nd);
 532
 533    s = SYS_BUS_DEVICE(mms->lan9118);
 534    sysbus_realize_and_unref(s, &error_fatal);
 535    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
 536
 537    memory_region_add_subregion(&mms->eth_usb_container,
 538                                0, sysbus_mmio_get_region(s, 0));
 539
 540    /* The USB OTG controller is an ISP1763; we don't have a model of it. */
 541    object_initialize_child(OBJECT(mms), "usb-otg",
 542                            &mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
 543    qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
 544    qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
 545    s = SYS_BUS_DEVICE(&mms->usb);
 546    sysbus_realize(s, &error_fatal);
 547
 548    memory_region_add_subregion(&mms->eth_usb_container,
 549                                0x100000, sysbus_mmio_get_region(s, 0));
 550
 551    return &mms->eth_usb_container;
 552}
 553
 554static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
 555                              const char *name, hwaddr size,
 556                              const int *irqs, const PPCExtraData *extradata)
 557{
 558    TZMPC *mpc = opaque;
 559    int i = mpc - &mms->mpc[0];
 560    MemoryRegion *upstream;
 561    const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
 562    MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
 563
 564    object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
 565    object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
 566                             &error_fatal);
 567    sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
 568    /* Map the upstream end of the MPC into system memory */
 569    upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
 570    memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
 571    /* and connect its interrupt to the IoTKit */
 572    qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
 573                                qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
 574                                                       "mpcexp_status", i));
 575
 576    /* Return the register interface MR for our caller to map behind the PPC */
 577    return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
 578}
 579
 580static hwaddr boot_mem_base(MPS2TZMachineState *mms)
 581{
 582    /*
 583     * Return the canonical address of the block which will be mapped
 584     * at address 0x0 (i.e. where the vector table is).
 585     * This is usually 0, but if the AN524 alternate memory map is
 586     * enabled it will be the base address of the QSPI block.
 587     */
 588    return mms->remap ? 0x28000000 : 0;
 589}
 590
 591static void remap_memory(MPS2TZMachineState *mms, int map)
 592{
 593    /*
 594     * Remap the memory for the AN524. 'map' is the value of
 595     * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
 596     * for the "option 1" mapping where QSPI is at address 0.
 597     *
 598     * Effectively we need to swap around the "upstream" ends of
 599     * MPC 0 and MPC 1.
 600     */
 601    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 602    int i;
 603
 604    if (mmc->fpga_type != FPGA_AN524) {
 605        return;
 606    }
 607
 608    memory_region_transaction_begin();
 609    for (i = 0; i < 2; i++) {
 610        TZMPC *mpc = &mms->mpc[i];
 611        MemoryRegion *upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
 612        hwaddr addr = (i ^ map) ? 0x28000000 : 0;
 613
 614        memory_region_set_address(upstream, addr);
 615    }
 616    memory_region_transaction_commit();
 617}
 618
 619static void remap_irq_fn(void *opaque, int n, int level)
 620{
 621    MPS2TZMachineState *mms = opaque;
 622
 623    remap_memory(mms, level);
 624}
 625
 626static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
 627                              const char *name, hwaddr size,
 628                              const int *irqs, const PPCExtraData *extradata)
 629{
 630    /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
 631    PL080State *dma = opaque;
 632    int i = dma - &mms->dma[0];
 633    SysBusDevice *s;
 634    char *mscname = g_strdup_printf("%s-msc", name);
 635    TZMSC *msc = &mms->msc[i];
 636    DeviceState *iotkitdev = DEVICE(&mms->iotkit);
 637    MemoryRegion *msc_upstream;
 638    MemoryRegion *msc_downstream;
 639
 640    /*
 641     * Each DMA device is a PL081 whose transaction master interface
 642     * is guarded by a Master Security Controller. The downstream end of
 643     * the MSC connects to the IoTKit AHB Slave Expansion port, so the
 644     * DMA devices can see all devices and memory that the CPU does.
 645     */
 646    object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
 647    msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
 648    object_property_set_link(OBJECT(msc), "downstream",
 649                             OBJECT(msc_downstream), &error_fatal);
 650    object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
 651    sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
 652
 653    qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
 654                                qdev_get_gpio_in_named(iotkitdev,
 655                                                       "mscexp_status", i));
 656    qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
 657                                qdev_get_gpio_in_named(DEVICE(msc),
 658                                                       "irq_clear", 0));
 659    qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
 660                                qdev_get_gpio_in_named(DEVICE(msc),
 661                                                       "cfg_nonsec", 0));
 662    qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
 663                          ARRAY_SIZE(mms->ppc) + i,
 664                          qdev_get_gpio_in_named(DEVICE(msc),
 665                                                 "cfg_sec_resp", 0));
 666    msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
 667
 668    object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
 669    object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
 670                             &error_fatal);
 671    sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
 672
 673    s = SYS_BUS_DEVICE(dma);
 674    /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
 675    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
 676    sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
 677    sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
 678
 679    g_free(mscname);
 680    return sysbus_mmio_get_region(s, 0);
 681}
 682
 683static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
 684                              const char *name, hwaddr size,
 685                              const int *irqs, const PPCExtraData *extradata)
 686{
 687    /*
 688     * The AN505 has five PL022 SPI controllers.
 689     * One of these should have the LCD controller behind it; the others
 690     * are connected only to the FPGA's "general purpose SPI connector"
 691     * or "shield" expansion connectors.
 692     * Note that if we do implement devices behind SPI, the chip select
 693     * lines are set via the "MISC" register in the MPS2 FPGAIO device.
 694     */
 695    PL022State *spi = opaque;
 696    SysBusDevice *s;
 697
 698    object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
 699    sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
 700    s = SYS_BUS_DEVICE(spi);
 701    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
 702    return sysbus_mmio_get_region(s, 0);
 703}
 704
 705static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
 706                              const char *name, hwaddr size,
 707                              const int *irqs, const PPCExtraData *extradata)
 708{
 709    ArmSbconI2CState *i2c = opaque;
 710    SysBusDevice *s;
 711
 712    object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
 713    s = SYS_BUS_DEVICE(i2c);
 714    sysbus_realize(s, &error_fatal);
 715
 716    /*
 717     * If this is an internal-use-only i2c bus, mark it full
 718     * so that user-created i2c devices are not plugged into it.
 719     * If we implement models of any on-board i2c devices that
 720     * plug in to one of the internal-use-only buses, then we will
 721     * need to create and plugging those in here before we mark the
 722     * bus as full.
 723     */
 724    if (extradata->i2c_internal) {
 725        BusState *qbus = qdev_get_child_bus(DEVICE(i2c), "i2c");
 726        qbus_mark_full(qbus);
 727    }
 728
 729    return sysbus_mmio_get_region(s, 0);
 730}
 731
 732static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
 733                              const char *name, hwaddr size,
 734                              const int *irqs, const PPCExtraData *extradata)
 735{
 736    PL031State *pl031 = opaque;
 737    SysBusDevice *s;
 738
 739    object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
 740    s = SYS_BUS_DEVICE(pl031);
 741    sysbus_realize(s, &error_fatal);
 742    /*
 743     * The board docs don't give an IRQ number for the PL031, so
 744     * presumably it is not connected.
 745     */
 746    return sysbus_mmio_get_region(s, 0);
 747}
 748
 749static void create_non_mpc_ram(MPS2TZMachineState *mms)
 750{
 751    /*
 752     * Handle the RAMs which are either not behind MPCs or which are
 753     * aliases to another MPC.
 754     */
 755    const RAMInfo *p;
 756    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 757
 758    for (p = mmc->raminfo; p->name; p++) {
 759        if (p->flags & IS_ALIAS) {
 760            SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
 761            MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
 762            make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
 763        } else if (p->mpc == -1) {
 764            /* RAM not behind an MPC */
 765            MemoryRegion *mr = mr_for_raminfo(mms, p);
 766            memory_region_add_subregion(get_system_memory(), p->base, mr);
 767        }
 768    }
 769}
 770
 771static uint32_t boot_ram_size(MPS2TZMachineState *mms)
 772{
 773    /* Return the size of the RAM block at guest address zero */
 774    const RAMInfo *p;
 775    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 776
 777    /*
 778     * Use a per-board specification (for when the boot RAM is in
 779     * the SSE and so doesn't have a RAMInfo list entry)
 780     */
 781    if (mmc->boot_ram_size) {
 782        return mmc->boot_ram_size;
 783    }
 784
 785    for (p = mmc->raminfo; p->name; p++) {
 786        if (p->base == boot_mem_base(mms)) {
 787            return p->size;
 788        }
 789    }
 790    g_assert_not_reached();
 791}
 792
 793static void mps2tz_common_init(MachineState *machine)
 794{
 795    MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
 796    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 797    MachineClass *mc = MACHINE_GET_CLASS(machine);
 798    MemoryRegion *system_memory = get_system_memory();
 799    DeviceState *iotkitdev;
 800    DeviceState *dev_splitter;
 801    const PPCInfo *ppcs;
 802    int num_ppcs;
 803    int i;
 804
 805    if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
 806        error_report("This board can only be used with CPU %s",
 807                     mc->default_cpu_type);
 808        exit(1);
 809    }
 810
 811    if (machine->ram_size != mc->default_ram_size) {
 812        char *sz = size_to_str(mc->default_ram_size);
 813        error_report("Invalid RAM size, should be %s", sz);
 814        g_free(sz);
 815        exit(EXIT_FAILURE);
 816    }
 817
 818    /* These clocks don't need migration because they are fixed-frequency */
 819    mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
 820    clock_set_hz(mms->sysclk, mmc->sysclk_frq);
 821    mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
 822    clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
 823
 824    object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
 825                            mmc->armsse_type);
 826    iotkitdev = DEVICE(&mms->iotkit);
 827    object_property_set_link(OBJECT(&mms->iotkit), "memory",
 828                             OBJECT(system_memory), &error_abort);
 829    qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
 830    qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor);
 831    qdev_prop_set_uint32(iotkitdev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
 832    qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
 833    qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
 834    sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
 835
 836    /*
 837     * If this board has more than one CPU, then we need to create splitters
 838     * to feed the IRQ inputs for each CPU in the SSE from each device in the
 839     * board. If there is only one CPU, we can just wire the device IRQ
 840     * directly to the SSE's IRQ input.
 841     */
 842    assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
 843    if (mc->max_cpus > 1) {
 844        for (i = 0; i < mmc->numirq; i++) {
 845            char *name = g_strdup_printf("mps2-irq-splitter%d", i);
 846            SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
 847
 848            object_initialize_child_with_props(OBJECT(machine), name,
 849                                               splitter, sizeof(*splitter),
 850                                               TYPE_SPLIT_IRQ, &error_fatal,
 851                                               NULL);
 852            g_free(name);
 853
 854            object_property_set_int(OBJECT(splitter), "num-lines", 2,
 855                                    &error_fatal);
 856            qdev_realize(DEVICE(splitter), NULL, &error_fatal);
 857            qdev_connect_gpio_out(DEVICE(splitter), 0,
 858                                  qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
 859                                                         "EXP_IRQ", i));
 860            qdev_connect_gpio_out(DEVICE(splitter), 1,
 861                                  qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
 862                                                         "EXP_CPU1_IRQ", i));
 863        }
 864    }
 865
 866    /* The sec_resp_cfg output from the IoTKit must be split into multiple
 867     * lines, one for each of the PPCs we create here, plus one per MSC.
 868     */
 869    object_initialize_child(OBJECT(machine), "sec-resp-splitter",
 870                            &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
 871    object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
 872                            ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
 873                            &error_fatal);
 874    qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
 875    dev_splitter = DEVICE(&mms->sec_resp_splitter);
 876    qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
 877                                qdev_get_gpio_in(dev_splitter, 0));
 878
 879    /*
 880     * The IoTKit sets up much of the memory layout, including
 881     * the aliases between secure and non-secure regions in the
 882     * address space, and also most of the devices in the system.
 883     * The FPGA itself contains various RAMs and some additional devices.
 884     * The FPGA images have an odd combination of different RAMs,
 885     * because in hardware they are different implementations and
 886     * connected to different buses, giving varying performance/size
 887     * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
 888     * call the largest lump our "system memory".
 889     */
 890
 891    /*
 892     * The overflow IRQs for all UARTs are ORed together.
 893     * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
 894     * Create the OR gate for this: it has one input for the TX overflow
 895     * and one for the RX overflow for each UART we might have.
 896     * (If the board has fewer than the maximum possible number of UARTs
 897     * those inputs are never wired up and are treated as always-zero.)
 898     */
 899    object_initialize_child(OBJECT(mms), "uart-irq-orgate",
 900                            &mms->uart_irq_orgate, TYPE_OR_IRQ);
 901    object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
 902                            2 * ARRAY_SIZE(mms->uart),
 903                            &error_fatal);
 904    qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
 905    qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
 906                          get_sse_irq_in(mms, mmc->uart_overflow_irq));
 907
 908    /* Most of the devices in the FPGA are behind Peripheral Protection
 909     * Controllers. The required order for initializing things is:
 910     *  + initialize the PPC
 911     *  + initialize, configure and realize downstream devices
 912     *  + connect downstream device MemoryRegions to the PPC
 913     *  + realize the PPC
 914     *  + map the PPC's MemoryRegions to the places in the address map
 915     *    where the downstream devices should appear
 916     *  + wire up the PPC's control lines to the IoTKit object
 917     */
 918
 919    const PPCInfo an505_ppcs[] = { {
 920            .name = "apb_ppcexp0",
 921            .ports = {
 922                { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
 923                { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
 924                { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
 925            },
 926        }, {
 927            .name = "apb_ppcexp1",
 928            .ports = {
 929                { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
 930                { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
 931                { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
 932                { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
 933                { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
 934                { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
 935                { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
 936                { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
 937                { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
 938                { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
 939                { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000, {},
 940                  { .i2c_internal = true /* touchscreen */ } },
 941                { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000, {},
 942                  { .i2c_internal = true /* audio conf */ } },
 943                { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000, {},
 944                  { .i2c_internal = false /* shield 0 */ } },
 945                { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000, {},
 946                  { .i2c_internal = false /* shield 1 */ } },
 947            },
 948        }, {
 949            .name = "apb_ppcexp2",
 950            .ports = {
 951                { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
 952                { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
 953                  0x40301000, 0x1000 },
 954                { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
 955            },
 956        }, {
 957            .name = "ahb_ppcexp0",
 958            .ports = {
 959                { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
 960                { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
 961                { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
 962                { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
 963                { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
 964                { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
 965            },
 966        }, {
 967            .name = "ahb_ppcexp1",
 968            .ports = {
 969                { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
 970                { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
 971                { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
 972                { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
 973            },
 974        },
 975    };
 976
 977    const PPCInfo an524_ppcs[] = { {
 978            .name = "apb_ppcexp0",
 979            .ports = {
 980                { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
 981                { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
 982                { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
 983            },
 984        }, {
 985            .name = "apb_ppcexp1",
 986            .ports = {
 987                { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000, {},
 988                  { .i2c_internal = true /* touchscreen */ } },
 989                { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000, {},
 990                  { .i2c_internal = true /* audio conf */ } },
 991                { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
 992                { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
 993                { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
 994                { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000, {},
 995                  { .i2c_internal = false /* shield 0 */ } },
 996                { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000, {},
 997                  { .i2c_internal = false /* shield 1 */ } },
 998                { /* port 7 reserved */ },
 999                { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000, {},
1000                  { .i2c_internal = true /* DDR4 EEPROM */ } },
1001            },
1002        }, {
1003            .name = "apb_ppcexp2",
1004            .ports = {
1005                { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
1006                { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
1007                  0x41301000, 0x1000 },
1008                { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
1009                { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
1010                { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
1011                { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
1012                { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
1013                { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
1014                { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
1015
1016                { /* port 9 reserved */ },
1017                { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
1018                { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
1019            },
1020        }, {
1021            .name = "ahb_ppcexp0",
1022            .ports = {
1023                { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1024                { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1025                { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1026                { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1027                { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
1028            },
1029        },
1030    };
1031
1032    const PPCInfo an547_ppcs[] = { {
1033            .name = "apb_ppcexp0",
1034            .ports = {
1035                { "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 },
1036                { "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 },
1037                { "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 },
1038            },
1039        }, {
1040            .name = "apb_ppcexp1",
1041            .ports = {
1042                { "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000, {},
1043                  { .i2c_internal = true /* touchscreen */ } },
1044                { "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000, {},
1045                  { .i2c_internal = true /* audio conf */ } },
1046                { "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } },
1047                { "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } },
1048                { "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } },
1049                { "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000, {},
1050                  { .i2c_internal = false /* shield 0 */ } },
1051                { "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000, {},
1052                  { .i2c_internal = false /* shield 1 */ } },
1053                { /* port 7 reserved */ },
1054                { "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000, {},
1055                  { .i2c_internal = true /* DDR4 EEPROM */ } },
1056            },
1057        }, {
1058            .name = "apb_ppcexp2",
1059            .ports = {
1060                { "scc", make_scc, &mms->scc, 0x49300000, 0x1000 },
1061                { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 },
1062                { "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 },
1063                { "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } },
1064                { "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } },
1065                { "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } },
1066                { "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } },
1067                { "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } },
1068                { "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } },
1069
1070                { /* port 9 reserved */ },
1071                { "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 },
1072                { "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 },
1073            },
1074        }, {
1075            .name = "ahb_ppcexp0",
1076            .ports = {
1077                { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1078                { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1079                { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1080                { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1081                { /* port 4 USER AHB interface 0 */ },
1082                { /* port 5 USER AHB interface 1 */ },
1083                { /* port 6 USER AHB interface 2 */ },
1084                { /* port 7 USER AHB interface 3 */ },
1085                { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } },
1086            },
1087        },
1088    };
1089
1090    switch (mmc->fpga_type) {
1091    case FPGA_AN505:
1092    case FPGA_AN521:
1093        ppcs = an505_ppcs;
1094        num_ppcs = ARRAY_SIZE(an505_ppcs);
1095        break;
1096    case FPGA_AN524:
1097        ppcs = an524_ppcs;
1098        num_ppcs = ARRAY_SIZE(an524_ppcs);
1099        break;
1100    case FPGA_AN547:
1101        ppcs = an547_ppcs;
1102        num_ppcs = ARRAY_SIZE(an547_ppcs);
1103        break;
1104    default:
1105        g_assert_not_reached();
1106    }
1107
1108    for (i = 0; i < num_ppcs; i++) {
1109        const PPCInfo *ppcinfo = &ppcs[i];
1110        TZPPC *ppc = &mms->ppc[i];
1111        DeviceState *ppcdev;
1112        int port;
1113        char *gpioname;
1114
1115        object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
1116                                TYPE_TZ_PPC);
1117        ppcdev = DEVICE(ppc);
1118
1119        for (port = 0; port < TZ_NUM_PORTS; port++) {
1120            const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1121            MemoryRegion *mr;
1122            char *portname;
1123
1124            if (!pinfo->devfn) {
1125                continue;
1126            }
1127
1128            mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
1129                              pinfo->irqs, &pinfo->extradata);
1130            portname = g_strdup_printf("port[%d]", port);
1131            object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1132                                     &error_fatal);
1133            g_free(portname);
1134        }
1135
1136        sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
1137
1138        for (port = 0; port < TZ_NUM_PORTS; port++) {
1139            const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1140
1141            if (!pinfo->devfn) {
1142                continue;
1143            }
1144            sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
1145
1146            gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
1147            qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1148                                        qdev_get_gpio_in_named(ppcdev,
1149                                                               "cfg_nonsec",
1150                                                               port));
1151            g_free(gpioname);
1152            gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
1153            qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1154                                        qdev_get_gpio_in_named(ppcdev,
1155                                                               "cfg_ap", port));
1156            g_free(gpioname);
1157        }
1158
1159        gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
1160        qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1161                                    qdev_get_gpio_in_named(ppcdev,
1162                                                           "irq_enable", 0));
1163        g_free(gpioname);
1164        gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
1165        qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1166                                    qdev_get_gpio_in_named(ppcdev,
1167                                                           "irq_clear", 0));
1168        g_free(gpioname);
1169        gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
1170        qdev_connect_gpio_out_named(ppcdev, "irq", 0,
1171                                    qdev_get_gpio_in_named(iotkitdev,
1172                                                           gpioname, 0));
1173        g_free(gpioname);
1174
1175        qdev_connect_gpio_out(dev_splitter, i,
1176                              qdev_get_gpio_in_named(ppcdev,
1177                                                     "cfg_sec_resp", 0));
1178    }
1179
1180    create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1181
1182    if (mmc->fpga_type == FPGA_AN547) {
1183        create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1184        create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1185    }
1186
1187    create_non_mpc_ram(mms);
1188
1189    if (mmc->fpga_type == FPGA_AN524) {
1190        /*
1191         * Connect the line from the SCC so that we can remap when the
1192         * guest updates that register.
1193         */
1194        mms->remap_irq = qemu_allocate_irq(remap_irq_fn, mms, 0);
1195        qdev_connect_gpio_out_named(DEVICE(&mms->scc), "remap", 0,
1196                                    mms->remap_irq);
1197    }
1198
1199    armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
1200                       boot_ram_size(mms));
1201}
1202
1203static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
1204                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1205{
1206    /*
1207     * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1208     * the Master Security Controllers. Thes have the same logic as
1209     * is used by the IoTKit for the IDAU connected to the CPU, except
1210     * that MSCs don't care about the NSC attribute.
1211     */
1212    int region = extract32(address, 28, 4);
1213
1214    *ns = !(region & 1);
1215    *nsc = false;
1216    /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1217    *exempt = (address & 0xeff00000) == 0xe0000000;
1218    *iregion = region;
1219}
1220
1221static char *mps2_get_remap(Object *obj, Error **errp)
1222{
1223    MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1224    const char *val = mms->remap ? "QSPI" : "BRAM";
1225    return g_strdup(val);
1226}
1227
1228static void mps2_set_remap(Object *obj, const char *value, Error **errp)
1229{
1230    MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1231
1232    if (!strcmp(value, "BRAM")) {
1233        mms->remap = false;
1234    } else if (!strcmp(value, "QSPI")) {
1235        mms->remap = true;
1236    } else {
1237        error_setg(errp, "Invalid remap value");
1238        error_append_hint(errp, "Valid values are BRAM and QSPI.\n");
1239    }
1240}
1241
1242static void mps2_machine_reset(MachineState *machine)
1243{
1244    MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
1245
1246    /*
1247     * Set the initial memory mapping before triggering the reset of
1248     * the rest of the system, so that the guest image loader and CPU
1249     * reset see the correct mapping.
1250     */
1251    remap_memory(mms, mms->remap);
1252    qemu_devices_reset();
1253}
1254
1255static void mps2tz_class_init(ObjectClass *oc, void *data)
1256{
1257    MachineClass *mc = MACHINE_CLASS(oc);
1258    IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
1259
1260    mc->init = mps2tz_common_init;
1261    mc->reset = mps2_machine_reset;
1262    iic->check = mps2_tz_idau_check;
1263}
1264
1265static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
1266{
1267    /*
1268     * Set mc->default_ram_size and default_ram_id from the
1269     * information in mmc->raminfo.
1270     */
1271    MachineClass *mc = MACHINE_CLASS(mmc);
1272    const RAMInfo *p;
1273
1274    for (p = mmc->raminfo; p->name; p++) {
1275        if (p->mrindex < 0) {
1276            /* Found the entry for "system memory" */
1277            mc->default_ram_size = p->size;
1278            mc->default_ram_id = p->name;
1279            return;
1280        }
1281    }
1282    g_assert_not_reached();
1283}
1284
1285static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
1286{
1287    MachineClass *mc = MACHINE_CLASS(oc);
1288    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1289
1290    mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1291    mc->default_cpus = 1;
1292    mc->min_cpus = mc->default_cpus;
1293    mc->max_cpus = mc->default_cpus;
1294    mmc->fpga_type = FPGA_AN505;
1295    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1296    mmc->scc_id = 0x41045050;
1297    mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1298    mmc->apb_periph_frq = mmc->sysclk_frq;
1299    mmc->oscclk = an505_oscclk;
1300    mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1301    mmc->fpgaio_num_leds = 2;
1302    mmc->fpgaio_has_switches = false;
1303    mmc->fpgaio_has_dbgctrl = false;
1304    mmc->numirq = 92;
1305    mmc->uart_overflow_irq = 47;
1306    mmc->init_svtor = 0x10000000;
1307    mmc->sram_addr_width = 15;
1308    mmc->raminfo = an505_raminfo;
1309    mmc->armsse_type = TYPE_IOTKIT;
1310    mmc->boot_ram_size = 0;
1311    mps2tz_set_default_ram_info(mmc);
1312}
1313
1314static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
1315{
1316    MachineClass *mc = MACHINE_CLASS(oc);
1317    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1318
1319    mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1320    mc->default_cpus = 2;
1321    mc->min_cpus = mc->default_cpus;
1322    mc->max_cpus = mc->default_cpus;
1323    mmc->fpga_type = FPGA_AN521;
1324    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1325    mmc->scc_id = 0x41045210;
1326    mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1327    mmc->apb_periph_frq = mmc->sysclk_frq;
1328    mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
1329    mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1330    mmc->fpgaio_num_leds = 2;
1331    mmc->fpgaio_has_switches = false;
1332    mmc->fpgaio_has_dbgctrl = false;
1333    mmc->numirq = 92;
1334    mmc->uart_overflow_irq = 47;
1335    mmc->init_svtor = 0x10000000;
1336    mmc->sram_addr_width = 15;
1337    mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
1338    mmc->armsse_type = TYPE_SSE200;
1339    mmc->boot_ram_size = 0;
1340    mps2tz_set_default_ram_info(mmc);
1341}
1342
1343static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
1344{
1345    MachineClass *mc = MACHINE_CLASS(oc);
1346    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1347
1348    mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1349    mc->default_cpus = 2;
1350    mc->min_cpus = mc->default_cpus;
1351    mc->max_cpus = mc->default_cpus;
1352    mmc->fpga_type = FPGA_AN524;
1353    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1354    mmc->scc_id = 0x41045240;
1355    mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1356    mmc->apb_periph_frq = mmc->sysclk_frq;
1357    mmc->oscclk = an524_oscclk;
1358    mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1359    mmc->fpgaio_num_leds = 10;
1360    mmc->fpgaio_has_switches = true;
1361    mmc->fpgaio_has_dbgctrl = false;
1362    mmc->numirq = 95;
1363    mmc->uart_overflow_irq = 47;
1364    mmc->init_svtor = 0x10000000;
1365    mmc->sram_addr_width = 15;
1366    mmc->raminfo = an524_raminfo;
1367    mmc->armsse_type = TYPE_SSE200;
1368    mmc->boot_ram_size = 0;
1369    mps2tz_set_default_ram_info(mmc);
1370
1371    object_class_property_add_str(oc, "remap", mps2_get_remap, mps2_set_remap);
1372    object_class_property_set_description(oc, "remap",
1373                                          "Set memory mapping. Valid values "
1374                                          "are BRAM (default) and QSPI.");
1375}
1376
1377static void mps3tz_an547_class_init(ObjectClass *oc, void *data)
1378{
1379    MachineClass *mc = MACHINE_CLASS(oc);
1380    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1381
1382    mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1383    mc->default_cpus = 1;
1384    mc->min_cpus = mc->default_cpus;
1385    mc->max_cpus = mc->default_cpus;
1386    mmc->fpga_type = FPGA_AN547;
1387    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55");
1388    mmc->scc_id = 0x41055470;
1389    mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1390    mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */
1391    mmc->oscclk = an524_oscclk; /* same as AN524 */
1392    mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1393    mmc->fpgaio_num_leds = 10;
1394    mmc->fpgaio_has_switches = true;
1395    mmc->fpgaio_has_dbgctrl = true;
1396    mmc->numirq = 96;
1397    mmc->uart_overflow_irq = 48;
1398    mmc->init_svtor = 0x00000000;
1399    mmc->sram_addr_width = 21;
1400    mmc->raminfo = an547_raminfo;
1401    mmc->armsse_type = TYPE_SSE300;
1402    mmc->boot_ram_size = 512 * KiB;
1403    mps2tz_set_default_ram_info(mmc);
1404}
1405
1406static const TypeInfo mps2tz_info = {
1407    .name = TYPE_MPS2TZ_MACHINE,
1408    .parent = TYPE_MACHINE,
1409    .abstract = true,
1410    .instance_size = sizeof(MPS2TZMachineState),
1411    .class_size = sizeof(MPS2TZMachineClass),
1412    .class_init = mps2tz_class_init,
1413    .interfaces = (InterfaceInfo[]) {
1414        { TYPE_IDAU_INTERFACE },
1415        { }
1416    },
1417};
1418
1419static const TypeInfo mps2tz_an505_info = {
1420    .name = TYPE_MPS2TZ_AN505_MACHINE,
1421    .parent = TYPE_MPS2TZ_MACHINE,
1422    .class_init = mps2tz_an505_class_init,
1423};
1424
1425static const TypeInfo mps2tz_an521_info = {
1426    .name = TYPE_MPS2TZ_AN521_MACHINE,
1427    .parent = TYPE_MPS2TZ_MACHINE,
1428    .class_init = mps2tz_an521_class_init,
1429};
1430
1431static const TypeInfo mps3tz_an524_info = {
1432    .name = TYPE_MPS3TZ_AN524_MACHINE,
1433    .parent = TYPE_MPS2TZ_MACHINE,
1434    .class_init = mps3tz_an524_class_init,
1435};
1436
1437static const TypeInfo mps3tz_an547_info = {
1438    .name = TYPE_MPS3TZ_AN547_MACHINE,
1439    .parent = TYPE_MPS2TZ_MACHINE,
1440    .class_init = mps3tz_an547_class_init,
1441};
1442
1443static void mps2tz_machine_init(void)
1444{
1445    type_register_static(&mps2tz_info);
1446    type_register_static(&mps2tz_an505_info);
1447    type_register_static(&mps2tz_an521_info);
1448    type_register_static(&mps3tz_an524_info);
1449    type_register_static(&mps3tz_an547_info);
1450}
1451
1452type_init(mps2tz_machine_init);
1453