qemu/accel/hvf/hvf-accel-ops.c
<<
>>
Prefs
   1/*
   2 * Copyright 2008 IBM Corporation
   3 *           2008 Red Hat, Inc.
   4 * Copyright 2011 Intel Corporation
   5 * Copyright 2016 Veertu, Inc.
   6 * Copyright 2017 The Android Open Source Project
   7 *
   8 * QEMU Hypervisor.framework support
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of version 2 of the GNU General Public
  12 * License as published by the Free Software Foundation.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  21 *
  22 * This file contain code under public domain from the hvdos project:
  23 * https://github.com/mist64/hvdos
  24 *
  25 * Parts Copyright (c) 2011 NetApp, Inc.
  26 * All rights reserved.
  27 *
  28 * Redistribution and use in source and binary forms, with or without
  29 * modification, are permitted provided that the following conditions
  30 * are met:
  31 * 1. Redistributions of source code must retain the above copyright
  32 *    notice, this list of conditions and the following disclaimer.
  33 * 2. Redistributions in binary form must reproduce the above copyright
  34 *    notice, this list of conditions and the following disclaimer in the
  35 *    documentation and/or other materials provided with the distribution.
  36 *
  37 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
  38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  40 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
  41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  47 * SUCH DAMAGE.
  48 */
  49
  50#include "qemu/osdep.h"
  51#include "qemu/error-report.h"
  52#include "qemu/main-loop.h"
  53#include "exec/address-spaces.h"
  54#include "exec/exec-all.h"
  55#include "sysemu/cpus.h"
  56#include "sysemu/hvf.h"
  57#include "sysemu/hvf_int.h"
  58#include "sysemu/runstate.h"
  59#include "qemu/guest-random.h"
  60
  61HVFState *hvf_state;
  62
  63#ifdef __aarch64__
  64#define HV_VM_DEFAULT NULL
  65#endif
  66
  67/* Memory slots */
  68
  69hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
  70{
  71    hvf_slot *slot;
  72    int x;
  73    for (x = 0; x < hvf_state->num_slots; ++x) {
  74        slot = &hvf_state->slots[x];
  75        if (slot->size && start < (slot->start + slot->size) &&
  76            (start + size) > slot->start) {
  77            return slot;
  78        }
  79    }
  80    return NULL;
  81}
  82
  83struct mac_slot {
  84    int present;
  85    uint64_t size;
  86    uint64_t gpa_start;
  87    uint64_t gva;
  88};
  89
  90struct mac_slot mac_slots[32];
  91
  92static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
  93{
  94    struct mac_slot *macslot;
  95    hv_return_t ret;
  96
  97    macslot = &mac_slots[slot->slot_id];
  98
  99    if (macslot->present) {
 100        if (macslot->size != slot->size) {
 101            macslot->present = 0;
 102            ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
 103            assert_hvf_ok(ret);
 104        }
 105    }
 106
 107    if (!slot->size) {
 108        return 0;
 109    }
 110
 111    macslot->present = 1;
 112    macslot->gpa_start = slot->start;
 113    macslot->size = slot->size;
 114    ret = hv_vm_map(slot->mem, slot->start, slot->size, flags);
 115    assert_hvf_ok(ret);
 116    return 0;
 117}
 118
 119static void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
 120{
 121    hvf_slot *mem;
 122    MemoryRegion *area = section->mr;
 123    bool writeable = !area->readonly && !area->rom_device;
 124    hv_memory_flags_t flags;
 125    uint64_t page_size = qemu_real_host_page_size;
 126
 127    if (!memory_region_is_ram(area)) {
 128        if (writeable) {
 129            return;
 130        } else if (!memory_region_is_romd(area)) {
 131            /*
 132             * If the memory device is not in romd_mode, then we actually want
 133             * to remove the hvf memory slot so all accesses will trap.
 134             */
 135             add = false;
 136        }
 137    }
 138
 139    if (!QEMU_IS_ALIGNED(int128_get64(section->size), page_size) ||
 140        !QEMU_IS_ALIGNED(section->offset_within_address_space, page_size)) {
 141        /* Not page aligned, so we can not map as RAM */
 142        add = false;
 143    }
 144
 145    mem = hvf_find_overlap_slot(
 146            section->offset_within_address_space,
 147            int128_get64(section->size));
 148
 149    if (mem && add) {
 150        if (mem->size == int128_get64(section->size) &&
 151            mem->start == section->offset_within_address_space &&
 152            mem->mem == (memory_region_get_ram_ptr(area) +
 153            section->offset_within_region)) {
 154            return; /* Same region was attempted to register, go away. */
 155        }
 156    }
 157
 158    /* Region needs to be reset. set the size to 0 and remap it. */
 159    if (mem) {
 160        mem->size = 0;
 161        if (do_hvf_set_memory(mem, 0)) {
 162            error_report("Failed to reset overlapping slot");
 163            abort();
 164        }
 165    }
 166
 167    if (!add) {
 168        return;
 169    }
 170
 171    if (area->readonly ||
 172        (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
 173        flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
 174    } else {
 175        flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
 176    }
 177
 178    /* Now make a new slot. */
 179    int x;
 180
 181    for (x = 0; x < hvf_state->num_slots; ++x) {
 182        mem = &hvf_state->slots[x];
 183        if (!mem->size) {
 184            break;
 185        }
 186    }
 187
 188    if (x == hvf_state->num_slots) {
 189        error_report("No free slots");
 190        abort();
 191    }
 192
 193    mem->size = int128_get64(section->size);
 194    mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
 195    mem->start = section->offset_within_address_space;
 196    mem->region = area;
 197
 198    if (do_hvf_set_memory(mem, flags)) {
 199        error_report("Error registering new memory slot");
 200        abort();
 201    }
 202}
 203
 204static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
 205{
 206    if (!cpu->vcpu_dirty) {
 207        hvf_get_registers(cpu);
 208        cpu->vcpu_dirty = true;
 209    }
 210}
 211
 212static void hvf_cpu_synchronize_state(CPUState *cpu)
 213{
 214    if (!cpu->vcpu_dirty) {
 215        run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
 216    }
 217}
 218
 219static void do_hvf_cpu_synchronize_set_dirty(CPUState *cpu,
 220                                             run_on_cpu_data arg)
 221{
 222    /* QEMU state is the reference, push it to HVF now and on next entry */
 223    cpu->vcpu_dirty = true;
 224}
 225
 226static void hvf_cpu_synchronize_post_reset(CPUState *cpu)
 227{
 228    run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
 229}
 230
 231static void hvf_cpu_synchronize_post_init(CPUState *cpu)
 232{
 233    run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
 234}
 235
 236static void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
 237{
 238    run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
 239}
 240
 241static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
 242{
 243    hvf_slot *slot;
 244
 245    slot = hvf_find_overlap_slot(
 246            section->offset_within_address_space,
 247            int128_get64(section->size));
 248
 249    /* protect region against writes; begin tracking it */
 250    if (on) {
 251        slot->flags |= HVF_SLOT_LOG;
 252        hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
 253                      HV_MEMORY_READ | HV_MEMORY_EXEC);
 254    /* stop tracking region*/
 255    } else {
 256        slot->flags &= ~HVF_SLOT_LOG;
 257        hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
 258                      HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC);
 259    }
 260}
 261
 262static void hvf_log_start(MemoryListener *listener,
 263                          MemoryRegionSection *section, int old, int new)
 264{
 265    if (old != 0) {
 266        return;
 267    }
 268
 269    hvf_set_dirty_tracking(section, 1);
 270}
 271
 272static void hvf_log_stop(MemoryListener *listener,
 273                         MemoryRegionSection *section, int old, int new)
 274{
 275    if (new != 0) {
 276        return;
 277    }
 278
 279    hvf_set_dirty_tracking(section, 0);
 280}
 281
 282static void hvf_log_sync(MemoryListener *listener,
 283                         MemoryRegionSection *section)
 284{
 285    /*
 286     * sync of dirty pages is handled elsewhere; just make sure we keep
 287     * tracking the region.
 288     */
 289    hvf_set_dirty_tracking(section, 1);
 290}
 291
 292static void hvf_region_add(MemoryListener *listener,
 293                           MemoryRegionSection *section)
 294{
 295    hvf_set_phys_mem(section, true);
 296}
 297
 298static void hvf_region_del(MemoryListener *listener,
 299                           MemoryRegionSection *section)
 300{
 301    hvf_set_phys_mem(section, false);
 302}
 303
 304static MemoryListener hvf_memory_listener = {
 305    .name = "hvf",
 306    .priority = 10,
 307    .region_add = hvf_region_add,
 308    .region_del = hvf_region_del,
 309    .log_start = hvf_log_start,
 310    .log_stop = hvf_log_stop,
 311    .log_sync = hvf_log_sync,
 312};
 313
 314static void dummy_signal(int sig)
 315{
 316}
 317
 318bool hvf_allowed;
 319
 320static int hvf_accel_init(MachineState *ms)
 321{
 322    int x;
 323    hv_return_t ret;
 324    HVFState *s;
 325
 326    ret = hv_vm_create(HV_VM_DEFAULT);
 327    assert_hvf_ok(ret);
 328
 329    s = g_new0(HVFState, 1);
 330
 331    s->num_slots = ARRAY_SIZE(s->slots);
 332    for (x = 0; x < s->num_slots; ++x) {
 333        s->slots[x].size = 0;
 334        s->slots[x].slot_id = x;
 335    }
 336
 337    hvf_state = s;
 338    memory_listener_register(&hvf_memory_listener, &address_space_memory);
 339
 340    return hvf_arch_init();
 341}
 342
 343static void hvf_accel_class_init(ObjectClass *oc, void *data)
 344{
 345    AccelClass *ac = ACCEL_CLASS(oc);
 346    ac->name = "HVF";
 347    ac->init_machine = hvf_accel_init;
 348    ac->allowed = &hvf_allowed;
 349}
 350
 351static const TypeInfo hvf_accel_type = {
 352    .name = TYPE_HVF_ACCEL,
 353    .parent = TYPE_ACCEL,
 354    .class_init = hvf_accel_class_init,
 355};
 356
 357static void hvf_type_init(void)
 358{
 359    type_register_static(&hvf_accel_type);
 360}
 361
 362type_init(hvf_type_init);
 363
 364static void hvf_vcpu_destroy(CPUState *cpu)
 365{
 366    hv_return_t ret = hv_vcpu_destroy(cpu->hvf->fd);
 367    assert_hvf_ok(ret);
 368
 369    hvf_arch_vcpu_destroy(cpu);
 370    g_free(cpu->hvf);
 371    cpu->hvf = NULL;
 372}
 373
 374static int hvf_init_vcpu(CPUState *cpu)
 375{
 376    int r;
 377
 378    cpu->hvf = g_malloc0(sizeof(*cpu->hvf));
 379
 380    /* init cpu signals */
 381    struct sigaction sigact;
 382
 383    memset(&sigact, 0, sizeof(sigact));
 384    sigact.sa_handler = dummy_signal;
 385    sigaction(SIG_IPI, &sigact, NULL);
 386
 387    pthread_sigmask(SIG_BLOCK, NULL, &cpu->hvf->unblock_ipi_mask);
 388    sigdelset(&cpu->hvf->unblock_ipi_mask, SIG_IPI);
 389
 390#ifdef __aarch64__
 391    r = hv_vcpu_create(&cpu->hvf->fd, (hv_vcpu_exit_t **)&cpu->hvf->exit, NULL);
 392#else
 393    r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf->fd, HV_VCPU_DEFAULT);
 394#endif
 395    cpu->vcpu_dirty = 1;
 396    assert_hvf_ok(r);
 397
 398    return hvf_arch_init_vcpu(cpu);
 399}
 400
 401/*
 402 * The HVF-specific vCPU thread function. This one should only run when the host
 403 * CPU supports the VMX "unrestricted guest" feature.
 404 */
 405static void *hvf_cpu_thread_fn(void *arg)
 406{
 407    CPUState *cpu = arg;
 408
 409    int r;
 410
 411    assert(hvf_enabled());
 412
 413    rcu_register_thread();
 414
 415    qemu_mutex_lock_iothread();
 416    qemu_thread_get_self(cpu->thread);
 417
 418    cpu->thread_id = qemu_get_thread_id();
 419    cpu->can_do_io = 1;
 420    current_cpu = cpu;
 421
 422    hvf_init_vcpu(cpu);
 423
 424    /* signal CPU creation */
 425    cpu_thread_signal_created(cpu);
 426    qemu_guest_random_seed_thread_part2(cpu->random_seed);
 427
 428    do {
 429        if (cpu_can_run(cpu)) {
 430            r = hvf_vcpu_exec(cpu);
 431            if (r == EXCP_DEBUG) {
 432                cpu_handle_guest_debug(cpu);
 433            }
 434        }
 435        qemu_wait_io_event(cpu);
 436    } while (!cpu->unplug || cpu_can_run(cpu));
 437
 438    hvf_vcpu_destroy(cpu);
 439    cpu_thread_signal_destroyed(cpu);
 440    qemu_mutex_unlock_iothread();
 441    rcu_unregister_thread();
 442    return NULL;
 443}
 444
 445static void hvf_start_vcpu_thread(CPUState *cpu)
 446{
 447    char thread_name[VCPU_THREAD_NAME_SIZE];
 448
 449    /*
 450     * HVF currently does not support TCG, and only runs in
 451     * unrestricted-guest mode.
 452     */
 453    assert(hvf_enabled());
 454
 455    cpu->thread = g_malloc0(sizeof(QemuThread));
 456    cpu->halt_cond = g_malloc0(sizeof(QemuCond));
 457    qemu_cond_init(cpu->halt_cond);
 458
 459    snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
 460             cpu->cpu_index);
 461    qemu_thread_create(cpu->thread, thread_name, hvf_cpu_thread_fn,
 462                       cpu, QEMU_THREAD_JOINABLE);
 463}
 464
 465static void hvf_accel_ops_class_init(ObjectClass *oc, void *data)
 466{
 467    AccelOpsClass *ops = ACCEL_OPS_CLASS(oc);
 468
 469    ops->create_vcpu_thread = hvf_start_vcpu_thread;
 470    ops->kick_vcpu_thread = hvf_kick_vcpu_thread;
 471
 472    ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset;
 473    ops->synchronize_post_init = hvf_cpu_synchronize_post_init;
 474    ops->synchronize_state = hvf_cpu_synchronize_state;
 475    ops->synchronize_pre_loadvm = hvf_cpu_synchronize_pre_loadvm;
 476};
 477static const TypeInfo hvf_accel_ops_type = {
 478    .name = ACCEL_OPS_NAME("hvf"),
 479
 480    .parent = TYPE_ACCEL_OPS,
 481    .class_init = hvf_accel_ops_class_init,
 482    .abstract = true,
 483};
 484static void hvf_accel_ops_register_types(void)
 485{
 486    type_register_static(&hvf_accel_ops_type);
 487}
 488type_init(hvf_accel_ops_register_types);
 489