qemu/accel/tcg/cputlb.c
<<
>>
Prefs
   1/*
   2 *  Common CPU TLB handling
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/main-loop.h"
  22#include "hw/core/tcg-cpu-ops.h"
  23#include "exec/exec-all.h"
  24#include "exec/memory.h"
  25#include "exec/cpu_ldst.h"
  26#include "exec/cputlb.h"
  27#include "exec/memory-internal.h"
  28#include "exec/ram_addr.h"
  29#include "tcg/tcg.h"
  30#include "qemu/error-report.h"
  31#include "exec/log.h"
  32#include "exec/helper-proto.h"
  33#include "qemu/atomic.h"
  34#include "qemu/atomic128.h"
  35#include "exec/translate-all.h"
  36#include "trace/trace-root.h"
  37#include "tb-hash.h"
  38#include "internal.h"
  39#ifdef CONFIG_PLUGIN
  40#include "qemu/plugin-memory.h"
  41#endif
  42#include "tcg/tcg-ldst.h"
  43
  44/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
  45/* #define DEBUG_TLB */
  46/* #define DEBUG_TLB_LOG */
  47
  48#ifdef DEBUG_TLB
  49# define DEBUG_TLB_GATE 1
  50# ifdef DEBUG_TLB_LOG
  51#  define DEBUG_TLB_LOG_GATE 1
  52# else
  53#  define DEBUG_TLB_LOG_GATE 0
  54# endif
  55#else
  56# define DEBUG_TLB_GATE 0
  57# define DEBUG_TLB_LOG_GATE 0
  58#endif
  59
  60#define tlb_debug(fmt, ...) do { \
  61    if (DEBUG_TLB_LOG_GATE) { \
  62        qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
  63                      ## __VA_ARGS__); \
  64    } else if (DEBUG_TLB_GATE) { \
  65        fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
  66    } \
  67} while (0)
  68
  69#define assert_cpu_is_self(cpu) do {                              \
  70        if (DEBUG_TLB_GATE) {                                     \
  71            g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
  72        }                                                         \
  73    } while (0)
  74
  75/* run_on_cpu_data.target_ptr should always be big enough for a
  76 * target_ulong even on 32 bit builds */
  77QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
  78
  79/* We currently can't handle more than 16 bits in the MMUIDX bitmask.
  80 */
  81QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
  82#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
  83
  84static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
  85{
  86    return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
  87}
  88
  89static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
  90{
  91    return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
  92}
  93
  94static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
  95                             size_t max_entries)
  96{
  97    desc->window_begin_ns = ns;
  98    desc->window_max_entries = max_entries;
  99}
 100
 101static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
 102{
 103    unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
 104
 105    for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
 106        qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
 107    }
 108}
 109
 110static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
 111{
 112    /* Discard jump cache entries for any tb which might potentially
 113       overlap the flushed page.  */
 114    tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
 115    tb_jmp_cache_clear_page(cpu, addr);
 116}
 117
 118/**
 119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
 120 * @desc: The CPUTLBDesc portion of the TLB
 121 * @fast: The CPUTLBDescFast portion of the same TLB
 122 *
 123 * Called with tlb_lock_held.
 124 *
 125 * We have two main constraints when resizing a TLB: (1) we only resize it
 126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
 127 * the array or unnecessarily flushing it), which means we do not control how
 128 * frequently the resizing can occur; (2) we don't have access to the guest's
 129 * future scheduling decisions, and therefore have to decide the magnitude of
 130 * the resize based on past observations.
 131 *
 132 * In general, a memory-hungry process can benefit greatly from an appropriately
 133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
 134 * we just have to make the TLB as large as possible; while an oversized TLB
 135 * results in minimal TLB miss rates, it also takes longer to be flushed
 136 * (flushes can be _very_ frequent), and the reduced locality can also hurt
 137 * performance.
 138 *
 139 * To achieve near-optimal performance for all kinds of workloads, we:
 140 *
 141 * 1. Aggressively increase the size of the TLB when the use rate of the
 142 * TLB being flushed is high, since it is likely that in the near future this
 143 * memory-hungry process will execute again, and its memory hungriness will
 144 * probably be similar.
 145 *
 146 * 2. Slowly reduce the size of the TLB as the use rate declines over a
 147 * reasonably large time window. The rationale is that if in such a time window
 148 * we have not observed a high TLB use rate, it is likely that we won't observe
 149 * it in the near future. In that case, once a time window expires we downsize
 150 * the TLB to match the maximum use rate observed in the window.
 151 *
 152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
 153 * since in that range performance is likely near-optimal. Recall that the TLB
 154 * is direct mapped, so we want the use rate to be low (or at least not too
 155 * high), since otherwise we are likely to have a significant amount of
 156 * conflict misses.
 157 */
 158static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
 159                                  int64_t now)
 160{
 161    size_t old_size = tlb_n_entries(fast);
 162    size_t rate;
 163    size_t new_size = old_size;
 164    int64_t window_len_ms = 100;
 165    int64_t window_len_ns = window_len_ms * 1000 * 1000;
 166    bool window_expired = now > desc->window_begin_ns + window_len_ns;
 167
 168    if (desc->n_used_entries > desc->window_max_entries) {
 169        desc->window_max_entries = desc->n_used_entries;
 170    }
 171    rate = desc->window_max_entries * 100 / old_size;
 172
 173    if (rate > 70) {
 174        new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
 175    } else if (rate < 30 && window_expired) {
 176        size_t ceil = pow2ceil(desc->window_max_entries);
 177        size_t expected_rate = desc->window_max_entries * 100 / ceil;
 178
 179        /*
 180         * Avoid undersizing when the max number of entries seen is just below
 181         * a pow2. For instance, if max_entries == 1025, the expected use rate
 182         * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
 183         * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
 184         * later. Thus, make sure that the expected use rate remains below 70%.
 185         * (and since we double the size, that means the lowest rate we'd
 186         * expect to get is 35%, which is still in the 30-70% range where
 187         * we consider that the size is appropriate.)
 188         */
 189        if (expected_rate > 70) {
 190            ceil *= 2;
 191        }
 192        new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
 193    }
 194
 195    if (new_size == old_size) {
 196        if (window_expired) {
 197            tlb_window_reset(desc, now, desc->n_used_entries);
 198        }
 199        return;
 200    }
 201
 202    g_free(fast->table);
 203    g_free(desc->iotlb);
 204
 205    tlb_window_reset(desc, now, 0);
 206    /* desc->n_used_entries is cleared by the caller */
 207    fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
 208    fast->table = g_try_new(CPUTLBEntry, new_size);
 209    desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
 210
 211    /*
 212     * If the allocations fail, try smaller sizes. We just freed some
 213     * memory, so going back to half of new_size has a good chance of working.
 214     * Increased memory pressure elsewhere in the system might cause the
 215     * allocations to fail though, so we progressively reduce the allocation
 216     * size, aborting if we cannot even allocate the smallest TLB we support.
 217     */
 218    while (fast->table == NULL || desc->iotlb == NULL) {
 219        if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
 220            error_report("%s: %s", __func__, strerror(errno));
 221            abort();
 222        }
 223        new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
 224        fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
 225
 226        g_free(fast->table);
 227        g_free(desc->iotlb);
 228        fast->table = g_try_new(CPUTLBEntry, new_size);
 229        desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
 230    }
 231}
 232
 233static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
 234{
 235    desc->n_used_entries = 0;
 236    desc->large_page_addr = -1;
 237    desc->large_page_mask = -1;
 238    desc->vindex = 0;
 239    memset(fast->table, -1, sizeof_tlb(fast));
 240    memset(desc->vtable, -1, sizeof(desc->vtable));
 241}
 242
 243static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
 244                                        int64_t now)
 245{
 246    CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
 247    CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
 248
 249    tlb_mmu_resize_locked(desc, fast, now);
 250    tlb_mmu_flush_locked(desc, fast);
 251}
 252
 253static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
 254{
 255    size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
 256
 257    tlb_window_reset(desc, now, 0);
 258    desc->n_used_entries = 0;
 259    fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
 260    fast->table = g_new(CPUTLBEntry, n_entries);
 261    desc->iotlb = g_new(CPUIOTLBEntry, n_entries);
 262    tlb_mmu_flush_locked(desc, fast);
 263}
 264
 265static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
 266{
 267    env_tlb(env)->d[mmu_idx].n_used_entries++;
 268}
 269
 270static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
 271{
 272    env_tlb(env)->d[mmu_idx].n_used_entries--;
 273}
 274
 275void tlb_init(CPUState *cpu)
 276{
 277    CPUArchState *env = cpu->env_ptr;
 278    int64_t now = get_clock_realtime();
 279    int i;
 280
 281    qemu_spin_init(&env_tlb(env)->c.lock);
 282
 283    /* All tlbs are initialized flushed. */
 284    env_tlb(env)->c.dirty = 0;
 285
 286    for (i = 0; i < NB_MMU_MODES; i++) {
 287        tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
 288    }
 289}
 290
 291void tlb_destroy(CPUState *cpu)
 292{
 293    CPUArchState *env = cpu->env_ptr;
 294    int i;
 295
 296    qemu_spin_destroy(&env_tlb(env)->c.lock);
 297    for (i = 0; i < NB_MMU_MODES; i++) {
 298        CPUTLBDesc *desc = &env_tlb(env)->d[i];
 299        CPUTLBDescFast *fast = &env_tlb(env)->f[i];
 300
 301        g_free(fast->table);
 302        g_free(desc->iotlb);
 303    }
 304}
 305
 306/* flush_all_helper: run fn across all cpus
 307 *
 308 * If the wait flag is set then the src cpu's helper will be queued as
 309 * "safe" work and the loop exited creating a synchronisation point
 310 * where all queued work will be finished before execution starts
 311 * again.
 312 */
 313static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
 314                             run_on_cpu_data d)
 315{
 316    CPUState *cpu;
 317
 318    CPU_FOREACH(cpu) {
 319        if (cpu != src) {
 320            async_run_on_cpu(cpu, fn, d);
 321        }
 322    }
 323}
 324
 325void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
 326{
 327    CPUState *cpu;
 328    size_t full = 0, part = 0, elide = 0;
 329
 330    CPU_FOREACH(cpu) {
 331        CPUArchState *env = cpu->env_ptr;
 332
 333        full += qatomic_read(&env_tlb(env)->c.full_flush_count);
 334        part += qatomic_read(&env_tlb(env)->c.part_flush_count);
 335        elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
 336    }
 337    *pfull = full;
 338    *ppart = part;
 339    *pelide = elide;
 340}
 341
 342static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
 343{
 344    CPUArchState *env = cpu->env_ptr;
 345    uint16_t asked = data.host_int;
 346    uint16_t all_dirty, work, to_clean;
 347    int64_t now = get_clock_realtime();
 348
 349    assert_cpu_is_self(cpu);
 350
 351    tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
 352
 353    qemu_spin_lock(&env_tlb(env)->c.lock);
 354
 355    all_dirty = env_tlb(env)->c.dirty;
 356    to_clean = asked & all_dirty;
 357    all_dirty &= ~to_clean;
 358    env_tlb(env)->c.dirty = all_dirty;
 359
 360    for (work = to_clean; work != 0; work &= work - 1) {
 361        int mmu_idx = ctz32(work);
 362        tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
 363    }
 364
 365    qemu_spin_unlock(&env_tlb(env)->c.lock);
 366
 367    cpu_tb_jmp_cache_clear(cpu);
 368
 369    if (to_clean == ALL_MMUIDX_BITS) {
 370        qatomic_set(&env_tlb(env)->c.full_flush_count,
 371                   env_tlb(env)->c.full_flush_count + 1);
 372    } else {
 373        qatomic_set(&env_tlb(env)->c.part_flush_count,
 374                   env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
 375        if (to_clean != asked) {
 376            qatomic_set(&env_tlb(env)->c.elide_flush_count,
 377                       env_tlb(env)->c.elide_flush_count +
 378                       ctpop16(asked & ~to_clean));
 379        }
 380    }
 381}
 382
 383void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
 384{
 385    tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
 386
 387    if (cpu->created && !qemu_cpu_is_self(cpu)) {
 388        async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
 389                         RUN_ON_CPU_HOST_INT(idxmap));
 390    } else {
 391        tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
 392    }
 393}
 394
 395void tlb_flush(CPUState *cpu)
 396{
 397    tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
 398}
 399
 400void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
 401{
 402    const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 403
 404    tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 405
 406    flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 407    fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
 408}
 409
 410void tlb_flush_all_cpus(CPUState *src_cpu)
 411{
 412    tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
 413}
 414
 415void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
 416{
 417    const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 418
 419    tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 420
 421    flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 422    async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 423}
 424
 425void tlb_flush_all_cpus_synced(CPUState *src_cpu)
 426{
 427    tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
 428}
 429
 430static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
 431                                      target_ulong page, target_ulong mask)
 432{
 433    page &= mask;
 434    mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
 435
 436    return (page == (tlb_entry->addr_read & mask) ||
 437            page == (tlb_addr_write(tlb_entry) & mask) ||
 438            page == (tlb_entry->addr_code & mask));
 439}
 440
 441static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
 442                                        target_ulong page)
 443{
 444    return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
 445}
 446
 447/**
 448 * tlb_entry_is_empty - return true if the entry is not in use
 449 * @te: pointer to CPUTLBEntry
 450 */
 451static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
 452{
 453    return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
 454}
 455
 456/* Called with tlb_c.lock held */
 457static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
 458                                        target_ulong page,
 459                                        target_ulong mask)
 460{
 461    if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
 462        memset(tlb_entry, -1, sizeof(*tlb_entry));
 463        return true;
 464    }
 465    return false;
 466}
 467
 468static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
 469                                          target_ulong page)
 470{
 471    return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
 472}
 473
 474/* Called with tlb_c.lock held */
 475static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
 476                                            target_ulong page,
 477                                            target_ulong mask)
 478{
 479    CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
 480    int k;
 481
 482    assert_cpu_is_self(env_cpu(env));
 483    for (k = 0; k < CPU_VTLB_SIZE; k++) {
 484        if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
 485            tlb_n_used_entries_dec(env, mmu_idx);
 486        }
 487    }
 488}
 489
 490static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
 491                                              target_ulong page)
 492{
 493    tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
 494}
 495
 496static void tlb_flush_page_locked(CPUArchState *env, int midx,
 497                                  target_ulong page)
 498{
 499    target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
 500    target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
 501
 502    /* Check if we need to flush due to large pages.  */
 503    if ((page & lp_mask) == lp_addr) {
 504        tlb_debug("forcing full flush midx %d ("
 505                  TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 506                  midx, lp_addr, lp_mask);
 507        tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
 508    } else {
 509        if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
 510            tlb_n_used_entries_dec(env, midx);
 511        }
 512        tlb_flush_vtlb_page_locked(env, midx, page);
 513    }
 514}
 515
 516/**
 517 * tlb_flush_page_by_mmuidx_async_0:
 518 * @cpu: cpu on which to flush
 519 * @addr: page of virtual address to flush
 520 * @idxmap: set of mmu_idx to flush
 521 *
 522 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
 523 * at @addr from the tlbs indicated by @idxmap from @cpu.
 524 */
 525static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
 526                                             target_ulong addr,
 527                                             uint16_t idxmap)
 528{
 529    CPUArchState *env = cpu->env_ptr;
 530    int mmu_idx;
 531
 532    assert_cpu_is_self(cpu);
 533
 534    tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
 535
 536    qemu_spin_lock(&env_tlb(env)->c.lock);
 537    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 538        if ((idxmap >> mmu_idx) & 1) {
 539            tlb_flush_page_locked(env, mmu_idx, addr);
 540        }
 541    }
 542    qemu_spin_unlock(&env_tlb(env)->c.lock);
 543
 544    tb_flush_jmp_cache(cpu, addr);
 545}
 546
 547/**
 548 * tlb_flush_page_by_mmuidx_async_1:
 549 * @cpu: cpu on which to flush
 550 * @data: encoded addr + idxmap
 551 *
 552 * Helper for tlb_flush_page_by_mmuidx and friends, called through
 553 * async_run_on_cpu.  The idxmap parameter is encoded in the page
 554 * offset of the target_ptr field.  This limits the set of mmu_idx
 555 * that can be passed via this method.
 556 */
 557static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
 558                                             run_on_cpu_data data)
 559{
 560    target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
 561    target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
 562    uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
 563
 564    tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
 565}
 566
 567typedef struct {
 568    target_ulong addr;
 569    uint16_t idxmap;
 570} TLBFlushPageByMMUIdxData;
 571
 572/**
 573 * tlb_flush_page_by_mmuidx_async_2:
 574 * @cpu: cpu on which to flush
 575 * @data: allocated addr + idxmap
 576 *
 577 * Helper for tlb_flush_page_by_mmuidx and friends, called through
 578 * async_run_on_cpu.  The addr+idxmap parameters are stored in a
 579 * TLBFlushPageByMMUIdxData structure that has been allocated
 580 * specifically for this helper.  Free the structure when done.
 581 */
 582static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
 583                                             run_on_cpu_data data)
 584{
 585    TLBFlushPageByMMUIdxData *d = data.host_ptr;
 586
 587    tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
 588    g_free(d);
 589}
 590
 591void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
 592{
 593    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
 594
 595    /* This should already be page aligned */
 596    addr &= TARGET_PAGE_MASK;
 597
 598    if (qemu_cpu_is_self(cpu)) {
 599        tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
 600    } else if (idxmap < TARGET_PAGE_SIZE) {
 601        /*
 602         * Most targets have only a few mmu_idx.  In the case where
 603         * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
 604         * allocating memory for this operation.
 605         */
 606        async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
 607                         RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 608    } else {
 609        TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
 610
 611        /* Otherwise allocate a structure, freed by the worker.  */
 612        d->addr = addr;
 613        d->idxmap = idxmap;
 614        async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
 615                         RUN_ON_CPU_HOST_PTR(d));
 616    }
 617}
 618
 619void tlb_flush_page(CPUState *cpu, target_ulong addr)
 620{
 621    tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
 622}
 623
 624void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
 625                                       uint16_t idxmap)
 626{
 627    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
 628
 629    /* This should already be page aligned */
 630    addr &= TARGET_PAGE_MASK;
 631
 632    /*
 633     * Allocate memory to hold addr+idxmap only when needed.
 634     * See tlb_flush_page_by_mmuidx for details.
 635     */
 636    if (idxmap < TARGET_PAGE_SIZE) {
 637        flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
 638                         RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 639    } else {
 640        CPUState *dst_cpu;
 641
 642        /* Allocate a separate data block for each destination cpu.  */
 643        CPU_FOREACH(dst_cpu) {
 644            if (dst_cpu != src_cpu) {
 645                TLBFlushPageByMMUIdxData *d
 646                    = g_new(TLBFlushPageByMMUIdxData, 1);
 647
 648                d->addr = addr;
 649                d->idxmap = idxmap;
 650                async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
 651                                 RUN_ON_CPU_HOST_PTR(d));
 652            }
 653        }
 654    }
 655
 656    tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
 657}
 658
 659void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
 660{
 661    tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
 662}
 663
 664void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 665                                              target_ulong addr,
 666                                              uint16_t idxmap)
 667{
 668    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
 669
 670    /* This should already be page aligned */
 671    addr &= TARGET_PAGE_MASK;
 672
 673    /*
 674     * Allocate memory to hold addr+idxmap only when needed.
 675     * See tlb_flush_page_by_mmuidx for details.
 676     */
 677    if (idxmap < TARGET_PAGE_SIZE) {
 678        flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
 679                         RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 680        async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
 681                              RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 682    } else {
 683        CPUState *dst_cpu;
 684        TLBFlushPageByMMUIdxData *d;
 685
 686        /* Allocate a separate data block for each destination cpu.  */
 687        CPU_FOREACH(dst_cpu) {
 688            if (dst_cpu != src_cpu) {
 689                d = g_new(TLBFlushPageByMMUIdxData, 1);
 690                d->addr = addr;
 691                d->idxmap = idxmap;
 692                async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
 693                                 RUN_ON_CPU_HOST_PTR(d));
 694            }
 695        }
 696
 697        d = g_new(TLBFlushPageByMMUIdxData, 1);
 698        d->addr = addr;
 699        d->idxmap = idxmap;
 700        async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
 701                              RUN_ON_CPU_HOST_PTR(d));
 702    }
 703}
 704
 705void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
 706{
 707    tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
 708}
 709
 710static void tlb_flush_range_locked(CPUArchState *env, int midx,
 711                                   target_ulong addr, target_ulong len,
 712                                   unsigned bits)
 713{
 714    CPUTLBDesc *d = &env_tlb(env)->d[midx];
 715    CPUTLBDescFast *f = &env_tlb(env)->f[midx];
 716    target_ulong mask = MAKE_64BIT_MASK(0, bits);
 717
 718    /*
 719     * If @bits is smaller than the tlb size, there may be multiple entries
 720     * within the TLB; otherwise all addresses that match under @mask hit
 721     * the same TLB entry.
 722     * TODO: Perhaps allow bits to be a few bits less than the size.
 723     * For now, just flush the entire TLB.
 724     *
 725     * If @len is larger than the tlb size, then it will take longer to
 726     * test all of the entries in the TLB than it will to flush it all.
 727     */
 728    if (mask < f->mask || len > f->mask) {
 729        tlb_debug("forcing full flush midx %d ("
 730                  TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
 731                  midx, addr, mask, len);
 732        tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
 733        return;
 734    }
 735
 736    /*
 737     * Check if we need to flush due to large pages.
 738     * Because large_page_mask contains all 1's from the msb,
 739     * we only need to test the end of the range.
 740     */
 741    if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
 742        tlb_debug("forcing full flush midx %d ("
 743                  TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 744                  midx, d->large_page_addr, d->large_page_mask);
 745        tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
 746        return;
 747    }
 748
 749    for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
 750        target_ulong page = addr + i;
 751        CPUTLBEntry *entry = tlb_entry(env, midx, page);
 752
 753        if (tlb_flush_entry_mask_locked(entry, page, mask)) {
 754            tlb_n_used_entries_dec(env, midx);
 755        }
 756        tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
 757    }
 758}
 759
 760typedef struct {
 761    target_ulong addr;
 762    target_ulong len;
 763    uint16_t idxmap;
 764    uint16_t bits;
 765} TLBFlushRangeData;
 766
 767static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
 768                                              TLBFlushRangeData d)
 769{
 770    CPUArchState *env = cpu->env_ptr;
 771    int mmu_idx;
 772
 773    assert_cpu_is_self(cpu);
 774
 775    tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
 776              d.addr, d.bits, d.len, d.idxmap);
 777
 778    qemu_spin_lock(&env_tlb(env)->c.lock);
 779    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 780        if ((d.idxmap >> mmu_idx) & 1) {
 781            tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
 782        }
 783    }
 784    qemu_spin_unlock(&env_tlb(env)->c.lock);
 785
 786    for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) {
 787        tb_flush_jmp_cache(cpu, d.addr + i);
 788    }
 789}
 790
 791static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
 792                                              run_on_cpu_data data)
 793{
 794    TLBFlushRangeData *d = data.host_ptr;
 795    tlb_flush_range_by_mmuidx_async_0(cpu, *d);
 796    g_free(d);
 797}
 798
 799void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
 800                               target_ulong len, uint16_t idxmap,
 801                               unsigned bits)
 802{
 803    TLBFlushRangeData d;
 804
 805    /*
 806     * If all bits are significant, and len is small,
 807     * this devolves to tlb_flush_page.
 808     */
 809    if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
 810        tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
 811        return;
 812    }
 813    /* If no page bits are significant, this devolves to tlb_flush. */
 814    if (bits < TARGET_PAGE_BITS) {
 815        tlb_flush_by_mmuidx(cpu, idxmap);
 816        return;
 817    }
 818
 819    /* This should already be page aligned */
 820    d.addr = addr & TARGET_PAGE_MASK;
 821    d.len = len;
 822    d.idxmap = idxmap;
 823    d.bits = bits;
 824
 825    if (qemu_cpu_is_self(cpu)) {
 826        tlb_flush_range_by_mmuidx_async_0(cpu, d);
 827    } else {
 828        /* Otherwise allocate a structure, freed by the worker.  */
 829        TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
 830        async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
 831                         RUN_ON_CPU_HOST_PTR(p));
 832    }
 833}
 834
 835void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
 836                                   uint16_t idxmap, unsigned bits)
 837{
 838    tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
 839}
 840
 841void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
 842                                        target_ulong addr, target_ulong len,
 843                                        uint16_t idxmap, unsigned bits)
 844{
 845    TLBFlushRangeData d;
 846    CPUState *dst_cpu;
 847
 848    /*
 849     * If all bits are significant, and len is small,
 850     * this devolves to tlb_flush_page.
 851     */
 852    if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
 853        tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
 854        return;
 855    }
 856    /* If no page bits are significant, this devolves to tlb_flush. */
 857    if (bits < TARGET_PAGE_BITS) {
 858        tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
 859        return;
 860    }
 861
 862    /* This should already be page aligned */
 863    d.addr = addr & TARGET_PAGE_MASK;
 864    d.len = len;
 865    d.idxmap = idxmap;
 866    d.bits = bits;
 867
 868    /* Allocate a separate data block for each destination cpu.  */
 869    CPU_FOREACH(dst_cpu) {
 870        if (dst_cpu != src_cpu) {
 871            TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
 872            async_run_on_cpu(dst_cpu,
 873                             tlb_flush_range_by_mmuidx_async_1,
 874                             RUN_ON_CPU_HOST_PTR(p));
 875        }
 876    }
 877
 878    tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
 879}
 880
 881void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
 882                                            target_ulong addr,
 883                                            uint16_t idxmap, unsigned bits)
 884{
 885    tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
 886                                       idxmap, bits);
 887}
 888
 889void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 890                                               target_ulong addr,
 891                                               target_ulong len,
 892                                               uint16_t idxmap,
 893                                               unsigned bits)
 894{
 895    TLBFlushRangeData d, *p;
 896    CPUState *dst_cpu;
 897
 898    /*
 899     * If all bits are significant, and len is small,
 900     * this devolves to tlb_flush_page.
 901     */
 902    if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
 903        tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
 904        return;
 905    }
 906    /* If no page bits are significant, this devolves to tlb_flush. */
 907    if (bits < TARGET_PAGE_BITS) {
 908        tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
 909        return;
 910    }
 911
 912    /* This should already be page aligned */
 913    d.addr = addr & TARGET_PAGE_MASK;
 914    d.len = len;
 915    d.idxmap = idxmap;
 916    d.bits = bits;
 917
 918    /* Allocate a separate data block for each destination cpu.  */
 919    CPU_FOREACH(dst_cpu) {
 920        if (dst_cpu != src_cpu) {
 921            p = g_memdup(&d, sizeof(d));
 922            async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
 923                             RUN_ON_CPU_HOST_PTR(p));
 924        }
 925    }
 926
 927    p = g_memdup(&d, sizeof(d));
 928    async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
 929                          RUN_ON_CPU_HOST_PTR(p));
 930}
 931
 932void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 933                                                   target_ulong addr,
 934                                                   uint16_t idxmap,
 935                                                   unsigned bits)
 936{
 937    tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
 938                                              idxmap, bits);
 939}
 940
 941/* update the TLBs so that writes to code in the virtual page 'addr'
 942   can be detected */
 943void tlb_protect_code(ram_addr_t ram_addr)
 944{
 945    cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
 946                                             DIRTY_MEMORY_CODE);
 947}
 948
 949/* update the TLB so that writes in physical page 'phys_addr' are no longer
 950   tested for self modifying code */
 951void tlb_unprotect_code(ram_addr_t ram_addr)
 952{
 953    cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
 954}
 955
 956
 957/*
 958 * Dirty write flag handling
 959 *
 960 * When the TCG code writes to a location it looks up the address in
 961 * the TLB and uses that data to compute the final address. If any of
 962 * the lower bits of the address are set then the slow path is forced.
 963 * There are a number of reasons to do this but for normal RAM the
 964 * most usual is detecting writes to code regions which may invalidate
 965 * generated code.
 966 *
 967 * Other vCPUs might be reading their TLBs during guest execution, so we update
 968 * te->addr_write with qatomic_set. We don't need to worry about this for
 969 * oversized guests as MTTCG is disabled for them.
 970 *
 971 * Called with tlb_c.lock held.
 972 */
 973static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
 974                                         uintptr_t start, uintptr_t length)
 975{
 976    uintptr_t addr = tlb_entry->addr_write;
 977
 978    if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
 979                 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
 980        addr &= TARGET_PAGE_MASK;
 981        addr += tlb_entry->addend;
 982        if ((addr - start) < length) {
 983#if TCG_OVERSIZED_GUEST
 984            tlb_entry->addr_write |= TLB_NOTDIRTY;
 985#else
 986            qatomic_set(&tlb_entry->addr_write,
 987                       tlb_entry->addr_write | TLB_NOTDIRTY);
 988#endif
 989        }
 990    }
 991}
 992
 993/*
 994 * Called with tlb_c.lock held.
 995 * Called only from the vCPU context, i.e. the TLB's owner thread.
 996 */
 997static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
 998{
 999    *d = *s;
1000}
1001
1002/* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1003 * the target vCPU).
1004 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1005 * thing actually updated is the target TLB entry ->addr_write flags.
1006 */
1007void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1008{
1009    CPUArchState *env;
1010
1011    int mmu_idx;
1012
1013    env = cpu->env_ptr;
1014    qemu_spin_lock(&env_tlb(env)->c.lock);
1015    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1016        unsigned int i;
1017        unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1018
1019        for (i = 0; i < n; i++) {
1020            tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1021                                         start1, length);
1022        }
1023
1024        for (i = 0; i < CPU_VTLB_SIZE; i++) {
1025            tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1026                                         start1, length);
1027        }
1028    }
1029    qemu_spin_unlock(&env_tlb(env)->c.lock);
1030}
1031
1032/* Called with tlb_c.lock held */
1033static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1034                                         target_ulong vaddr)
1035{
1036    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1037        tlb_entry->addr_write = vaddr;
1038    }
1039}
1040
1041/* update the TLB corresponding to virtual page vaddr
1042   so that it is no longer dirty */
1043void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
1044{
1045    CPUArchState *env = cpu->env_ptr;
1046    int mmu_idx;
1047
1048    assert_cpu_is_self(cpu);
1049
1050    vaddr &= TARGET_PAGE_MASK;
1051    qemu_spin_lock(&env_tlb(env)->c.lock);
1052    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1053        tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
1054    }
1055
1056    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1057        int k;
1058        for (k = 0; k < CPU_VTLB_SIZE; k++) {
1059            tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
1060        }
1061    }
1062    qemu_spin_unlock(&env_tlb(env)->c.lock);
1063}
1064
1065/* Our TLB does not support large pages, so remember the area covered by
1066   large pages and trigger a full TLB flush if these are invalidated.  */
1067static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1068                               target_ulong vaddr, target_ulong size)
1069{
1070    target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1071    target_ulong lp_mask = ~(size - 1);
1072
1073    if (lp_addr == (target_ulong)-1) {
1074        /* No previous large page.  */
1075        lp_addr = vaddr;
1076    } else {
1077        /* Extend the existing region to include the new page.
1078           This is a compromise between unnecessary flushes and
1079           the cost of maintaining a full variable size TLB.  */
1080        lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1081        while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1082            lp_mask <<= 1;
1083        }
1084    }
1085    env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1086    env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1087}
1088
1089/* Add a new TLB entry. At most one entry for a given virtual address
1090 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1091 * supplied size is only used by tlb_flush_page.
1092 *
1093 * Called from TCG-generated code, which is under an RCU read-side
1094 * critical section.
1095 */
1096void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1097                             hwaddr paddr, MemTxAttrs attrs, int prot,
1098                             int mmu_idx, target_ulong size)
1099{
1100    CPUArchState *env = cpu->env_ptr;
1101    CPUTLB *tlb = env_tlb(env);
1102    CPUTLBDesc *desc = &tlb->d[mmu_idx];
1103    MemoryRegionSection *section;
1104    unsigned int index;
1105    target_ulong address;
1106    target_ulong write_address;
1107    uintptr_t addend;
1108    CPUTLBEntry *te, tn;
1109    hwaddr iotlb, xlat, sz, paddr_page;
1110    target_ulong vaddr_page;
1111    int asidx = cpu_asidx_from_attrs(cpu, attrs);
1112    int wp_flags;
1113    bool is_ram, is_romd;
1114
1115    assert_cpu_is_self(cpu);
1116
1117    if (size <= TARGET_PAGE_SIZE) {
1118        sz = TARGET_PAGE_SIZE;
1119    } else {
1120        tlb_add_large_page(env, mmu_idx, vaddr, size);
1121        sz = size;
1122    }
1123    vaddr_page = vaddr & TARGET_PAGE_MASK;
1124    paddr_page = paddr & TARGET_PAGE_MASK;
1125
1126    section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1127                                                &xlat, &sz, attrs, &prot);
1128    assert(sz >= TARGET_PAGE_SIZE);
1129
1130    tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
1131              " prot=%x idx=%d\n",
1132              vaddr, paddr, prot, mmu_idx);
1133
1134    address = vaddr_page;
1135    if (size < TARGET_PAGE_SIZE) {
1136        /* Repeat the MMU check and TLB fill on every access.  */
1137        address |= TLB_INVALID_MASK;
1138    }
1139    if (attrs.byte_swap) {
1140        address |= TLB_BSWAP;
1141    }
1142
1143    is_ram = memory_region_is_ram(section->mr);
1144    is_romd = memory_region_is_romd(section->mr);
1145
1146    if (is_ram || is_romd) {
1147        /* RAM and ROMD both have associated host memory. */
1148        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1149    } else {
1150        /* I/O does not; force the host address to NULL. */
1151        addend = 0;
1152    }
1153
1154    write_address = address;
1155    if (is_ram) {
1156        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1157        /*
1158         * Computing is_clean is expensive; avoid all that unless
1159         * the page is actually writable.
1160         */
1161        if (prot & PAGE_WRITE) {
1162            if (section->readonly) {
1163                write_address |= TLB_DISCARD_WRITE;
1164            } else if (cpu_physical_memory_is_clean(iotlb)) {
1165                write_address |= TLB_NOTDIRTY;
1166            }
1167        }
1168    } else {
1169        /* I/O or ROMD */
1170        iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1171        /*
1172         * Writes to romd devices must go through MMIO to enable write.
1173         * Reads to romd devices go through the ram_ptr found above,
1174         * but of course reads to I/O must go through MMIO.
1175         */
1176        write_address |= TLB_MMIO;
1177        if (!is_romd) {
1178            address = write_address;
1179        }
1180    }
1181
1182    wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1183                                              TARGET_PAGE_SIZE);
1184
1185    index = tlb_index(env, mmu_idx, vaddr_page);
1186    te = tlb_entry(env, mmu_idx, vaddr_page);
1187
1188    /*
1189     * Hold the TLB lock for the rest of the function. We could acquire/release
1190     * the lock several times in the function, but it is faster to amortize the
1191     * acquisition cost by acquiring it just once. Note that this leads to
1192     * a longer critical section, but this is not a concern since the TLB lock
1193     * is unlikely to be contended.
1194     */
1195    qemu_spin_lock(&tlb->c.lock);
1196
1197    /* Note that the tlb is no longer clean.  */
1198    tlb->c.dirty |= 1 << mmu_idx;
1199
1200    /* Make sure there's no cached translation for the new page.  */
1201    tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1202
1203    /*
1204     * Only evict the old entry to the victim tlb if it's for a
1205     * different page; otherwise just overwrite the stale data.
1206     */
1207    if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
1208        unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1209        CPUTLBEntry *tv = &desc->vtable[vidx];
1210
1211        /* Evict the old entry into the victim tlb.  */
1212        copy_tlb_helper_locked(tv, te);
1213        desc->viotlb[vidx] = desc->iotlb[index];
1214        tlb_n_used_entries_dec(env, mmu_idx);
1215    }
1216
1217    /* refill the tlb */
1218    /*
1219     * At this point iotlb contains a physical section number in the lower
1220     * TARGET_PAGE_BITS, and either
1221     *  + the ram_addr_t of the page base of the target RAM (RAM)
1222     *  + the offset within section->mr of the page base (I/O, ROMD)
1223     * We subtract the vaddr_page (which is page aligned and thus won't
1224     * disturb the low bits) to give an offset which can be added to the
1225     * (non-page-aligned) vaddr of the eventual memory access to get
1226     * the MemoryRegion offset for the access. Note that the vaddr we
1227     * subtract here is that of the page base, and not the same as the
1228     * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1229     */
1230    desc->iotlb[index].addr = iotlb - vaddr_page;
1231    desc->iotlb[index].attrs = attrs;
1232
1233    /* Now calculate the new entry */
1234    tn.addend = addend - vaddr_page;
1235    if (prot & PAGE_READ) {
1236        tn.addr_read = address;
1237        if (wp_flags & BP_MEM_READ) {
1238            tn.addr_read |= TLB_WATCHPOINT;
1239        }
1240    } else {
1241        tn.addr_read = -1;
1242    }
1243
1244    if (prot & PAGE_EXEC) {
1245        tn.addr_code = address;
1246    } else {
1247        tn.addr_code = -1;
1248    }
1249
1250    tn.addr_write = -1;
1251    if (prot & PAGE_WRITE) {
1252        tn.addr_write = write_address;
1253        if (prot & PAGE_WRITE_INV) {
1254            tn.addr_write |= TLB_INVALID_MASK;
1255        }
1256        if (wp_flags & BP_MEM_WRITE) {
1257            tn.addr_write |= TLB_WATCHPOINT;
1258        }
1259    }
1260
1261    copy_tlb_helper_locked(te, &tn);
1262    tlb_n_used_entries_inc(env, mmu_idx);
1263    qemu_spin_unlock(&tlb->c.lock);
1264}
1265
1266/* Add a new TLB entry, but without specifying the memory
1267 * transaction attributes to be used.
1268 */
1269void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1270                  hwaddr paddr, int prot,
1271                  int mmu_idx, target_ulong size)
1272{
1273    tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1274                            prot, mmu_idx, size);
1275}
1276
1277static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1278{
1279    ram_addr_t ram_addr;
1280
1281    ram_addr = qemu_ram_addr_from_host(ptr);
1282    if (ram_addr == RAM_ADDR_INVALID) {
1283        error_report("Bad ram pointer %p", ptr);
1284        abort();
1285    }
1286    return ram_addr;
1287}
1288
1289/*
1290 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1291 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1292 * be discarded and looked up again (e.g. via tlb_entry()).
1293 */
1294static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1295                     MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1296{
1297    CPUClass *cc = CPU_GET_CLASS(cpu);
1298    bool ok;
1299
1300    /*
1301     * This is not a probe, so only valid return is success; failure
1302     * should result in exception + longjmp to the cpu loop.
1303     */
1304    ok = cc->tcg_ops->tlb_fill(cpu, addr, size,
1305                               access_type, mmu_idx, false, retaddr);
1306    assert(ok);
1307}
1308
1309static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1310                                        MMUAccessType access_type,
1311                                        int mmu_idx, uintptr_t retaddr)
1312{
1313    CPUClass *cc = CPU_GET_CLASS(cpu);
1314
1315    cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
1316}
1317
1318static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1319                                          vaddr addr, unsigned size,
1320                                          MMUAccessType access_type,
1321                                          int mmu_idx, MemTxAttrs attrs,
1322                                          MemTxResult response,
1323                                          uintptr_t retaddr)
1324{
1325    CPUClass *cc = CPU_GET_CLASS(cpu);
1326
1327    if (!cpu->ignore_memory_transaction_failures &&
1328        cc->tcg_ops->do_transaction_failed) {
1329        cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1330                                           access_type, mmu_idx, attrs,
1331                                           response, retaddr);
1332    }
1333}
1334
1335static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1336                         int mmu_idx, target_ulong addr, uintptr_t retaddr,
1337                         MMUAccessType access_type, MemOp op)
1338{
1339    CPUState *cpu = env_cpu(env);
1340    hwaddr mr_offset;
1341    MemoryRegionSection *section;
1342    MemoryRegion *mr;
1343    uint64_t val;
1344    bool locked = false;
1345    MemTxResult r;
1346
1347    section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1348    mr = section->mr;
1349    mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1350    cpu->mem_io_pc = retaddr;
1351    if (!cpu->can_do_io) {
1352        cpu_io_recompile(cpu, retaddr);
1353    }
1354
1355    if (!qemu_mutex_iothread_locked()) {
1356        qemu_mutex_lock_iothread();
1357        locked = true;
1358    }
1359    r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
1360    if (r != MEMTX_OK) {
1361        hwaddr physaddr = mr_offset +
1362            section->offset_within_address_space -
1363            section->offset_within_region;
1364
1365        cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1366                               mmu_idx, iotlbentry->attrs, r, retaddr);
1367    }
1368    if (locked) {
1369        qemu_mutex_unlock_iothread();
1370    }
1371
1372    return val;
1373}
1374
1375/*
1376 * Save a potentially trashed IOTLB entry for later lookup by plugin.
1377 * This is read by tlb_plugin_lookup if the iotlb entry doesn't match
1378 * because of the side effect of io_writex changing memory layout.
1379 */
1380static void save_iotlb_data(CPUState *cs, hwaddr addr,
1381                            MemoryRegionSection *section, hwaddr mr_offset)
1382{
1383#ifdef CONFIG_PLUGIN
1384    SavedIOTLB *saved = &cs->saved_iotlb;
1385    saved->addr = addr;
1386    saved->section = section;
1387    saved->mr_offset = mr_offset;
1388#endif
1389}
1390
1391static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1392                      int mmu_idx, uint64_t val, target_ulong addr,
1393                      uintptr_t retaddr, MemOp op)
1394{
1395    CPUState *cpu = env_cpu(env);
1396    hwaddr mr_offset;
1397    MemoryRegionSection *section;
1398    MemoryRegion *mr;
1399    bool locked = false;
1400    MemTxResult r;
1401
1402    section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1403    mr = section->mr;
1404    mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1405    if (!cpu->can_do_io) {
1406        cpu_io_recompile(cpu, retaddr);
1407    }
1408    cpu->mem_io_pc = retaddr;
1409
1410    /*
1411     * The memory_region_dispatch may trigger a flush/resize
1412     * so for plugins we save the iotlb_data just in case.
1413     */
1414    save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset);
1415
1416    if (!qemu_mutex_iothread_locked()) {
1417        qemu_mutex_lock_iothread();
1418        locked = true;
1419    }
1420    r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
1421    if (r != MEMTX_OK) {
1422        hwaddr physaddr = mr_offset +
1423            section->offset_within_address_space -
1424            section->offset_within_region;
1425
1426        cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1427                               MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
1428                               retaddr);
1429    }
1430    if (locked) {
1431        qemu_mutex_unlock_iothread();
1432    }
1433}
1434
1435static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
1436{
1437#if TCG_OVERSIZED_GUEST
1438    return *(target_ulong *)((uintptr_t)entry + ofs);
1439#else
1440    /* ofs might correspond to .addr_write, so use qatomic_read */
1441    return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
1442#endif
1443}
1444
1445/* Return true if ADDR is present in the victim tlb, and has been copied
1446   back to the main tlb.  */
1447static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1448                           size_t elt_ofs, target_ulong page)
1449{
1450    size_t vidx;
1451
1452    assert_cpu_is_self(env_cpu(env));
1453    for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1454        CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1455        target_ulong cmp;
1456
1457        /* elt_ofs might correspond to .addr_write, so use qatomic_read */
1458#if TCG_OVERSIZED_GUEST
1459        cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1460#else
1461        cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1462#endif
1463
1464        if (cmp == page) {
1465            /* Found entry in victim tlb, swap tlb and iotlb.  */
1466            CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1467
1468            qemu_spin_lock(&env_tlb(env)->c.lock);
1469            copy_tlb_helper_locked(&tmptlb, tlb);
1470            copy_tlb_helper_locked(tlb, vtlb);
1471            copy_tlb_helper_locked(vtlb, &tmptlb);
1472            qemu_spin_unlock(&env_tlb(env)->c.lock);
1473
1474            CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
1475            CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
1476            tmpio = *io; *io = *vio; *vio = tmpio;
1477            return true;
1478        }
1479    }
1480    return false;
1481}
1482
1483/* Macro to call the above, with local variables from the use context.  */
1484#define VICTIM_TLB_HIT(TY, ADDR) \
1485  victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1486                 (ADDR) & TARGET_PAGE_MASK)
1487
1488/*
1489 * Return a ram_addr_t for the virtual address for execution.
1490 *
1491 * Return -1 if we can't translate and execute from an entire page
1492 * of RAM.  This will force us to execute by loading and translating
1493 * one insn at a time, without caching.
1494 *
1495 * NOTE: This function will trigger an exception if the page is
1496 * not executable.
1497 */
1498tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1499                                        void **hostp)
1500{
1501    uintptr_t mmu_idx = cpu_mmu_index(env, true);
1502    uintptr_t index = tlb_index(env, mmu_idx, addr);
1503    CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1504    void *p;
1505
1506    if (unlikely(!tlb_hit(entry->addr_code, addr))) {
1507        if (!VICTIM_TLB_HIT(addr_code, addr)) {
1508            tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
1509            index = tlb_index(env, mmu_idx, addr);
1510            entry = tlb_entry(env, mmu_idx, addr);
1511
1512            if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
1513                /*
1514                 * The MMU protection covers a smaller range than a target
1515                 * page, so we must redo the MMU check for every insn.
1516                 */
1517                return -1;
1518            }
1519        }
1520        assert(tlb_hit(entry->addr_code, addr));
1521    }
1522
1523    if (unlikely(entry->addr_code & TLB_MMIO)) {
1524        /* The region is not backed by RAM.  */
1525        if (hostp) {
1526            *hostp = NULL;
1527        }
1528        return -1;
1529    }
1530
1531    p = (void *)((uintptr_t)addr + entry->addend);
1532    if (hostp) {
1533        *hostp = p;
1534    }
1535    return qemu_ram_addr_from_host_nofail(p);
1536}
1537
1538tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1539{
1540    return get_page_addr_code_hostp(env, addr, NULL);
1541}
1542
1543static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1544                           CPUIOTLBEntry *iotlbentry, uintptr_t retaddr)
1545{
1546    ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr;
1547
1548    trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1549
1550    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1551        struct page_collection *pages
1552            = page_collection_lock(ram_addr, ram_addr + size);
1553        tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
1554        page_collection_unlock(pages);
1555    }
1556
1557    /*
1558     * Set both VGA and migration bits for simplicity and to remove
1559     * the notdirty callback faster.
1560     */
1561    cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1562
1563    /* We remove the notdirty callback only if the code has been flushed. */
1564    if (!cpu_physical_memory_is_clean(ram_addr)) {
1565        trace_memory_notdirty_set_dirty(mem_vaddr);
1566        tlb_set_dirty(cpu, mem_vaddr);
1567    }
1568}
1569
1570static int probe_access_internal(CPUArchState *env, target_ulong addr,
1571                                 int fault_size, MMUAccessType access_type,
1572                                 int mmu_idx, bool nonfault,
1573                                 void **phost, uintptr_t retaddr)
1574{
1575    uintptr_t index = tlb_index(env, mmu_idx, addr);
1576    CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1577    target_ulong tlb_addr, page_addr;
1578    size_t elt_ofs;
1579    int flags;
1580
1581    switch (access_type) {
1582    case MMU_DATA_LOAD:
1583        elt_ofs = offsetof(CPUTLBEntry, addr_read);
1584        break;
1585    case MMU_DATA_STORE:
1586        elt_ofs = offsetof(CPUTLBEntry, addr_write);
1587        break;
1588    case MMU_INST_FETCH:
1589        elt_ofs = offsetof(CPUTLBEntry, addr_code);
1590        break;
1591    default:
1592        g_assert_not_reached();
1593    }
1594    tlb_addr = tlb_read_ofs(entry, elt_ofs);
1595
1596    page_addr = addr & TARGET_PAGE_MASK;
1597    if (!tlb_hit_page(tlb_addr, page_addr)) {
1598        if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
1599            CPUState *cs = env_cpu(env);
1600            CPUClass *cc = CPU_GET_CLASS(cs);
1601
1602            if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1603                                       mmu_idx, nonfault, retaddr)) {
1604                /* Non-faulting page table read failed.  */
1605                *phost = NULL;
1606                return TLB_INVALID_MASK;
1607            }
1608
1609            /* TLB resize via tlb_fill may have moved the entry.  */
1610            entry = tlb_entry(env, mmu_idx, addr);
1611        }
1612        tlb_addr = tlb_read_ofs(entry, elt_ofs);
1613    }
1614    flags = tlb_addr & TLB_FLAGS_MASK;
1615
1616    /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1617    if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1618        *phost = NULL;
1619        return TLB_MMIO;
1620    }
1621
1622    /* Everything else is RAM. */
1623    *phost = (void *)((uintptr_t)addr + entry->addend);
1624    return flags;
1625}
1626
1627int probe_access_flags(CPUArchState *env, target_ulong addr,
1628                       MMUAccessType access_type, int mmu_idx,
1629                       bool nonfault, void **phost, uintptr_t retaddr)
1630{
1631    int flags;
1632
1633    flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
1634                                  nonfault, phost, retaddr);
1635
1636    /* Handle clean RAM pages.  */
1637    if (unlikely(flags & TLB_NOTDIRTY)) {
1638        uintptr_t index = tlb_index(env, mmu_idx, addr);
1639        CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1640
1641        notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1642        flags &= ~TLB_NOTDIRTY;
1643    }
1644
1645    return flags;
1646}
1647
1648void *probe_access(CPUArchState *env, target_ulong addr, int size,
1649                   MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1650{
1651    void *host;
1652    int flags;
1653
1654    g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1655
1656    flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1657                                  false, &host, retaddr);
1658
1659    /* Per the interface, size == 0 merely faults the access. */
1660    if (size == 0) {
1661        return NULL;
1662    }
1663
1664    if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1665        uintptr_t index = tlb_index(env, mmu_idx, addr);
1666        CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1667
1668        /* Handle watchpoints.  */
1669        if (flags & TLB_WATCHPOINT) {
1670            int wp_access = (access_type == MMU_DATA_STORE
1671                             ? BP_MEM_WRITE : BP_MEM_READ);
1672            cpu_check_watchpoint(env_cpu(env), addr, size,
1673                                 iotlbentry->attrs, wp_access, retaddr);
1674        }
1675
1676        /* Handle clean RAM pages.  */
1677        if (flags & TLB_NOTDIRTY) {
1678            notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1679        }
1680    }
1681
1682    return host;
1683}
1684
1685void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1686                        MMUAccessType access_type, int mmu_idx)
1687{
1688    void *host;
1689    int flags;
1690
1691    flags = probe_access_internal(env, addr, 0, access_type,
1692                                  mmu_idx, true, &host, 0);
1693
1694    /* No combination of flags are expected by the caller. */
1695    return flags ? NULL : host;
1696}
1697
1698#ifdef CONFIG_PLUGIN
1699/*
1700 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1701 * This should be a hot path as we will have just looked this path up
1702 * in the softmmu lookup code (or helper). We don't handle re-fills or
1703 * checking the victim table. This is purely informational.
1704 *
1705 * This almost never fails as the memory access being instrumented
1706 * should have just filled the TLB. The one corner case is io_writex
1707 * which can cause TLB flushes and potential resizing of the TLBs
1708 * losing the information we need. In those cases we need to recover
1709 * data from a copy of the iotlbentry. As long as this always occurs
1710 * from the same thread (which a mem callback will be) this is safe.
1711 */
1712
1713bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1714                       bool is_store, struct qemu_plugin_hwaddr *data)
1715{
1716    CPUArchState *env = cpu->env_ptr;
1717    CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1718    uintptr_t index = tlb_index(env, mmu_idx, addr);
1719    target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1720
1721    if (likely(tlb_hit(tlb_addr, addr))) {
1722        /* We must have an iotlb entry for MMIO */
1723        if (tlb_addr & TLB_MMIO) {
1724            CPUIOTLBEntry *iotlbentry;
1725            iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1726            data->is_io = true;
1727            data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1728            data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1729        } else {
1730            data->is_io = false;
1731            data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1732        }
1733        return true;
1734    } else {
1735        SavedIOTLB *saved = &cpu->saved_iotlb;
1736        data->is_io = true;
1737        data->v.io.section = saved->section;
1738        data->v.io.offset = saved->mr_offset;
1739        return true;
1740    }
1741}
1742
1743#endif
1744
1745/*
1746 * Probe for an atomic operation.  Do not allow unaligned operations,
1747 * or io operations to proceed.  Return the host address.
1748 *
1749 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1750 */
1751static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1752                               MemOpIdx oi, int size, int prot,
1753                               uintptr_t retaddr)
1754{
1755    size_t mmu_idx = get_mmuidx(oi);
1756    MemOp mop = get_memop(oi);
1757    int a_bits = get_alignment_bits(mop);
1758    uintptr_t index;
1759    CPUTLBEntry *tlbe;
1760    target_ulong tlb_addr;
1761    void *hostaddr;
1762
1763    /* Adjust the given return address.  */
1764    retaddr -= GETPC_ADJ;
1765
1766    /* Enforce guest required alignment.  */
1767    if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1768        /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1769        cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1770                             mmu_idx, retaddr);
1771    }
1772
1773    /* Enforce qemu required alignment.  */
1774    if (unlikely(addr & (size - 1))) {
1775        /* We get here if guest alignment was not requested,
1776           or was not enforced by cpu_unaligned_access above.
1777           We might widen the access and emulate, but for now
1778           mark an exception and exit the cpu loop.  */
1779        goto stop_the_world;
1780    }
1781
1782    index = tlb_index(env, mmu_idx, addr);
1783    tlbe = tlb_entry(env, mmu_idx, addr);
1784
1785    /* Check TLB entry and enforce page permissions.  */
1786    if (prot & PAGE_WRITE) {
1787        tlb_addr = tlb_addr_write(tlbe);
1788        if (!tlb_hit(tlb_addr, addr)) {
1789            if (!VICTIM_TLB_HIT(addr_write, addr)) {
1790                tlb_fill(env_cpu(env), addr, size,
1791                         MMU_DATA_STORE, mmu_idx, retaddr);
1792                index = tlb_index(env, mmu_idx, addr);
1793                tlbe = tlb_entry(env, mmu_idx, addr);
1794            }
1795            tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1796        }
1797
1798        /* Let the guest notice RMW on a write-only page.  */
1799        if ((prot & PAGE_READ) &&
1800            unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1801            tlb_fill(env_cpu(env), addr, size,
1802                     MMU_DATA_LOAD, mmu_idx, retaddr);
1803            /*
1804             * Since we don't support reads and writes to different addresses,
1805             * and we do have the proper page loaded for write, this shouldn't
1806             * ever return.  But just in case, handle via stop-the-world.
1807             */
1808            goto stop_the_world;
1809        }
1810    } else /* if (prot & PAGE_READ) */ {
1811        tlb_addr = tlbe->addr_read;
1812        if (!tlb_hit(tlb_addr, addr)) {
1813            if (!VICTIM_TLB_HIT(addr_write, addr)) {
1814                tlb_fill(env_cpu(env), addr, size,
1815                         MMU_DATA_LOAD, mmu_idx, retaddr);
1816                index = tlb_index(env, mmu_idx, addr);
1817                tlbe = tlb_entry(env, mmu_idx, addr);
1818            }
1819            tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
1820        }
1821    }
1822
1823    /* Notice an IO access or a needs-MMU-lookup access */
1824    if (unlikely(tlb_addr & TLB_MMIO)) {
1825        /* There's really nothing that can be done to
1826           support this apart from stop-the-world.  */
1827        goto stop_the_world;
1828    }
1829
1830    hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1831
1832    if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1833        notdirty_write(env_cpu(env), addr, size,
1834                       &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr);
1835    }
1836
1837    return hostaddr;
1838
1839 stop_the_world:
1840    cpu_loop_exit_atomic(env_cpu(env), retaddr);
1841}
1842
1843/*
1844 * Verify that we have passed the correct MemOp to the correct function.
1845 *
1846 * In the case of the helper_*_mmu functions, we will have done this by
1847 * using the MemOp to look up the helper during code generation.
1848 *
1849 * In the case of the cpu_*_mmu functions, this is up to the caller.
1850 * We could present one function to target code, and dispatch based on
1851 * the MemOp, but so far we have worked hard to avoid an indirect function
1852 * call along the memory path.
1853 */
1854static void validate_memop(MemOpIdx oi, MemOp expected)
1855{
1856#ifdef CONFIG_DEBUG_TCG
1857    MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
1858    assert(have == expected);
1859#endif
1860}
1861
1862/*
1863 * Load Helpers
1864 *
1865 * We support two different access types. SOFTMMU_CODE_ACCESS is
1866 * specifically for reading instructions from system memory. It is
1867 * called by the translation loop and in some helpers where the code
1868 * is disassembled. It shouldn't be called directly by guest code.
1869 */
1870
1871typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1872                                MemOpIdx oi, uintptr_t retaddr);
1873
1874static inline uint64_t QEMU_ALWAYS_INLINE
1875load_memop(const void *haddr, MemOp op)
1876{
1877    switch (op) {
1878    case MO_UB:
1879        return ldub_p(haddr);
1880    case MO_BEUW:
1881        return lduw_be_p(haddr);
1882    case MO_LEUW:
1883        return lduw_le_p(haddr);
1884    case MO_BEUL:
1885        return (uint32_t)ldl_be_p(haddr);
1886    case MO_LEUL:
1887        return (uint32_t)ldl_le_p(haddr);
1888    case MO_BEQ:
1889        return ldq_be_p(haddr);
1890    case MO_LEQ:
1891        return ldq_le_p(haddr);
1892    default:
1893        qemu_build_not_reached();
1894    }
1895}
1896
1897static inline uint64_t QEMU_ALWAYS_INLINE
1898load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
1899            uintptr_t retaddr, MemOp op, bool code_read,
1900            FullLoadHelper *full_load)
1901{
1902    uintptr_t mmu_idx = get_mmuidx(oi);
1903    uintptr_t index = tlb_index(env, mmu_idx, addr);
1904    CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1905    target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1906    const size_t tlb_off = code_read ?
1907        offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1908    const MMUAccessType access_type =
1909        code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1910    unsigned a_bits = get_alignment_bits(get_memop(oi));
1911    void *haddr;
1912    uint64_t res;
1913    size_t size = memop_size(op);
1914
1915    /* Handle CPU specific unaligned behaviour */
1916    if (addr & ((1 << a_bits) - 1)) {
1917        cpu_unaligned_access(env_cpu(env), addr, access_type,
1918                             mmu_idx, retaddr);
1919    }
1920
1921    /* If the TLB entry is for a different page, reload and try again.  */
1922    if (!tlb_hit(tlb_addr, addr)) {
1923        if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1924                            addr & TARGET_PAGE_MASK)) {
1925            tlb_fill(env_cpu(env), addr, size,
1926                     access_type, mmu_idx, retaddr);
1927            index = tlb_index(env, mmu_idx, addr);
1928            entry = tlb_entry(env, mmu_idx, addr);
1929        }
1930        tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1931        tlb_addr &= ~TLB_INVALID_MASK;
1932    }
1933
1934    /* Handle anything that isn't just a straight memory access.  */
1935    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1936        CPUIOTLBEntry *iotlbentry;
1937        bool need_swap;
1938
1939        /* For anything that is unaligned, recurse through full_load.  */
1940        if ((addr & (size - 1)) != 0) {
1941            goto do_unaligned_access;
1942        }
1943
1944        iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1945
1946        /* Handle watchpoints.  */
1947        if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1948            /* On watchpoint hit, this will longjmp out.  */
1949            cpu_check_watchpoint(env_cpu(env), addr, size,
1950                                 iotlbentry->attrs, BP_MEM_READ, retaddr);
1951        }
1952
1953        need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
1954
1955        /* Handle I/O access.  */
1956        if (likely(tlb_addr & TLB_MMIO)) {
1957            return io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
1958                            access_type, op ^ (need_swap * MO_BSWAP));
1959        }
1960
1961        haddr = (void *)((uintptr_t)addr + entry->addend);
1962
1963        /*
1964         * Keep these two load_memop separate to ensure that the compiler
1965         * is able to fold the entire function to a single instruction.
1966         * There is a build-time assert inside to remind you of this.  ;-)
1967         */
1968        if (unlikely(need_swap)) {
1969            return load_memop(haddr, op ^ MO_BSWAP);
1970        }
1971        return load_memop(haddr, op);
1972    }
1973
1974    /* Handle slow unaligned access (it spans two pages or IO).  */
1975    if (size > 1
1976        && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1977                    >= TARGET_PAGE_SIZE)) {
1978        target_ulong addr1, addr2;
1979        uint64_t r1, r2;
1980        unsigned shift;
1981    do_unaligned_access:
1982        addr1 = addr & ~((target_ulong)size - 1);
1983        addr2 = addr1 + size;
1984        r1 = full_load(env, addr1, oi, retaddr);
1985        r2 = full_load(env, addr2, oi, retaddr);
1986        shift = (addr & (size - 1)) * 8;
1987
1988        if (memop_big_endian(op)) {
1989            /* Big-endian combine.  */
1990            res = (r1 << shift) | (r2 >> ((size * 8) - shift));
1991        } else {
1992            /* Little-endian combine.  */
1993            res = (r1 >> shift) | (r2 << ((size * 8) - shift));
1994        }
1995        return res & MAKE_64BIT_MASK(0, size * 8);
1996    }
1997
1998    haddr = (void *)((uintptr_t)addr + entry->addend);
1999    return load_memop(haddr, op);
2000}
2001
2002/*
2003 * For the benefit of TCG generated code, we want to avoid the
2004 * complication of ABI-specific return type promotion and always
2005 * return a value extended to the register size of the host. This is
2006 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2007 * data, and for that we always have uint64_t.
2008 *
2009 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2010 */
2011
2012static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
2013                              MemOpIdx oi, uintptr_t retaddr)
2014{
2015    validate_memop(oi, MO_UB);
2016    return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
2017}
2018
2019tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
2020                                     MemOpIdx oi, uintptr_t retaddr)
2021{
2022    return full_ldub_mmu(env, addr, oi, retaddr);
2023}
2024
2025static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2026                                 MemOpIdx oi, uintptr_t retaddr)
2027{
2028    validate_memop(oi, MO_LEUW);
2029    return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
2030                       full_le_lduw_mmu);
2031}
2032
2033tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2034                                    MemOpIdx oi, uintptr_t retaddr)
2035{
2036    return full_le_lduw_mmu(env, addr, oi, retaddr);
2037}
2038
2039static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2040                                 MemOpIdx oi, uintptr_t retaddr)
2041{
2042    validate_memop(oi, MO_BEUW);
2043    return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
2044                       full_be_lduw_mmu);
2045}
2046
2047tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2048                                    MemOpIdx oi, uintptr_t retaddr)
2049{
2050    return full_be_lduw_mmu(env, addr, oi, retaddr);
2051}
2052
2053static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2054                                 MemOpIdx oi, uintptr_t retaddr)
2055{
2056    validate_memop(oi, MO_LEUL);
2057    return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
2058                       full_le_ldul_mmu);
2059}
2060
2061tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2062                                    MemOpIdx oi, uintptr_t retaddr)
2063{
2064    return full_le_ldul_mmu(env, addr, oi, retaddr);
2065}
2066
2067static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2068                                 MemOpIdx oi, uintptr_t retaddr)
2069{
2070    validate_memop(oi, MO_BEUL);
2071    return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
2072                       full_be_ldul_mmu);
2073}
2074
2075tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2076                                    MemOpIdx oi, uintptr_t retaddr)
2077{
2078    return full_be_ldul_mmu(env, addr, oi, retaddr);
2079}
2080
2081uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
2082                           MemOpIdx oi, uintptr_t retaddr)
2083{
2084    validate_memop(oi, MO_LEQ);
2085    return load_helper(env, addr, oi, retaddr, MO_LEQ, false,
2086                       helper_le_ldq_mmu);
2087}
2088
2089uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
2090                           MemOpIdx oi, uintptr_t retaddr)
2091{
2092    validate_memop(oi, MO_BEQ);
2093    return load_helper(env, addr, oi, retaddr, MO_BEQ, false,
2094                       helper_be_ldq_mmu);
2095}
2096
2097/*
2098 * Provide signed versions of the load routines as well.  We can of course
2099 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2100 */
2101
2102
2103tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
2104                                     MemOpIdx oi, uintptr_t retaddr)
2105{
2106    return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
2107}
2108
2109tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
2110                                    MemOpIdx oi, uintptr_t retaddr)
2111{
2112    return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
2113}
2114
2115tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
2116                                    MemOpIdx oi, uintptr_t retaddr)
2117{
2118    return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
2119}
2120
2121tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
2122                                    MemOpIdx oi, uintptr_t retaddr)
2123{
2124    return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
2125}
2126
2127tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
2128                                    MemOpIdx oi, uintptr_t retaddr)
2129{
2130    return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
2131}
2132
2133/*
2134 * Load helpers for cpu_ldst.h.
2135 */
2136
2137static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
2138                                       MemOpIdx oi, uintptr_t retaddr,
2139                                       FullLoadHelper *full_load)
2140{
2141    uint64_t ret;
2142
2143    trace_guest_ld_before_exec(env_cpu(env), addr, oi);
2144    ret = full_load(env, addr, oi, retaddr);
2145    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2146    return ret;
2147}
2148
2149uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2150{
2151    return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu);
2152}
2153
2154uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
2155                        MemOpIdx oi, uintptr_t ra)
2156{
2157    return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu);
2158}
2159
2160uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
2161                        MemOpIdx oi, uintptr_t ra)
2162{
2163    return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu);
2164}
2165
2166uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
2167                        MemOpIdx oi, uintptr_t ra)
2168{
2169    return cpu_load_helper(env, addr, oi, MO_BEQ, helper_be_ldq_mmu);
2170}
2171
2172uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
2173                        MemOpIdx oi, uintptr_t ra)
2174{
2175    return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu);
2176}
2177
2178uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
2179                        MemOpIdx oi, uintptr_t ra)
2180{
2181    return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu);
2182}
2183
2184uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
2185                        MemOpIdx oi, uintptr_t ra)
2186{
2187    return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu);
2188}
2189
2190/*
2191 * Store Helpers
2192 */
2193
2194static inline void QEMU_ALWAYS_INLINE
2195store_memop(void *haddr, uint64_t val, MemOp op)
2196{
2197    switch (op) {
2198    case MO_UB:
2199        stb_p(haddr, val);
2200        break;
2201    case MO_BEUW:
2202        stw_be_p(haddr, val);
2203        break;
2204    case MO_LEUW:
2205        stw_le_p(haddr, val);
2206        break;
2207    case MO_BEUL:
2208        stl_be_p(haddr, val);
2209        break;
2210    case MO_LEUL:
2211        stl_le_p(haddr, val);
2212        break;
2213    case MO_BEQ:
2214        stq_be_p(haddr, val);
2215        break;
2216    case MO_LEQ:
2217        stq_le_p(haddr, val);
2218        break;
2219    default:
2220        qemu_build_not_reached();
2221    }
2222}
2223
2224static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2225                         MemOpIdx oi, uintptr_t retaddr);
2226
2227static void __attribute__((noinline))
2228store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
2229                       uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
2230                       bool big_endian)
2231{
2232    const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2233    uintptr_t index, index2;
2234    CPUTLBEntry *entry, *entry2;
2235    target_ulong page2, tlb_addr, tlb_addr2;
2236    MemOpIdx oi;
2237    size_t size2;
2238    int i;
2239
2240    /*
2241     * Ensure the second page is in the TLB.  Note that the first page
2242     * is already guaranteed to be filled, and that the second page
2243     * cannot evict the first.
2244     */
2245    page2 = (addr + size) & TARGET_PAGE_MASK;
2246    size2 = (addr + size) & ~TARGET_PAGE_MASK;
2247    index2 = tlb_index(env, mmu_idx, page2);
2248    entry2 = tlb_entry(env, mmu_idx, page2);
2249
2250    tlb_addr2 = tlb_addr_write(entry2);
2251    if (!tlb_hit_page(tlb_addr2, page2)) {
2252        if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
2253            tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
2254                     mmu_idx, retaddr);
2255            index2 = tlb_index(env, mmu_idx, page2);
2256            entry2 = tlb_entry(env, mmu_idx, page2);
2257        }
2258        tlb_addr2 = tlb_addr_write(entry2);
2259    }
2260
2261    index = tlb_index(env, mmu_idx, addr);
2262    entry = tlb_entry(env, mmu_idx, addr);
2263    tlb_addr = tlb_addr_write(entry);
2264
2265    /*
2266     * Handle watchpoints.  Since this may trap, all checks
2267     * must happen before any store.
2268     */
2269    if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2270        cpu_check_watchpoint(env_cpu(env), addr, size - size2,
2271                             env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
2272                             BP_MEM_WRITE, retaddr);
2273    }
2274    if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
2275        cpu_check_watchpoint(env_cpu(env), page2, size2,
2276                             env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
2277                             BP_MEM_WRITE, retaddr);
2278    }
2279
2280    /*
2281     * XXX: not efficient, but simple.
2282     * This loop must go in the forward direction to avoid issues
2283     * with self-modifying code in Windows 64-bit.
2284     */
2285    oi = make_memop_idx(MO_UB, mmu_idx);
2286    if (big_endian) {
2287        for (i = 0; i < size; ++i) {
2288            /* Big-endian extract.  */
2289            uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
2290            full_stb_mmu(env, addr + i, val8, oi, retaddr);
2291        }
2292    } else {
2293        for (i = 0; i < size; ++i) {
2294            /* Little-endian extract.  */
2295            uint8_t val8 = val >> (i * 8);
2296            full_stb_mmu(env, addr + i, val8, oi, retaddr);
2297        }
2298    }
2299}
2300
2301static inline void QEMU_ALWAYS_INLINE
2302store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2303             MemOpIdx oi, uintptr_t retaddr, MemOp op)
2304{
2305    uintptr_t mmu_idx = get_mmuidx(oi);
2306    uintptr_t index = tlb_index(env, mmu_idx, addr);
2307    CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
2308    target_ulong tlb_addr = tlb_addr_write(entry);
2309    const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2310    unsigned a_bits = get_alignment_bits(get_memop(oi));
2311    void *haddr;
2312    size_t size = memop_size(op);
2313
2314    /* Handle CPU specific unaligned behaviour */
2315    if (addr & ((1 << a_bits) - 1)) {
2316        cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2317                             mmu_idx, retaddr);
2318    }
2319
2320    /* If the TLB entry is for a different page, reload and try again.  */
2321    if (!tlb_hit(tlb_addr, addr)) {
2322        if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
2323            addr & TARGET_PAGE_MASK)) {
2324            tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
2325                     mmu_idx, retaddr);
2326            index = tlb_index(env, mmu_idx, addr);
2327            entry = tlb_entry(env, mmu_idx, addr);
2328        }
2329        tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
2330    }
2331
2332    /* Handle anything that isn't just a straight memory access.  */
2333    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
2334        CPUIOTLBEntry *iotlbentry;
2335        bool need_swap;
2336
2337        /* For anything that is unaligned, recurse through byte stores.  */
2338        if ((addr & (size - 1)) != 0) {
2339            goto do_unaligned_access;
2340        }
2341
2342        iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
2343
2344        /* Handle watchpoints.  */
2345        if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2346            /* On watchpoint hit, this will longjmp out.  */
2347            cpu_check_watchpoint(env_cpu(env), addr, size,
2348                                 iotlbentry->attrs, BP_MEM_WRITE, retaddr);
2349        }
2350
2351        need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
2352
2353        /* Handle I/O access.  */
2354        if (tlb_addr & TLB_MMIO) {
2355            io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
2356                      op ^ (need_swap * MO_BSWAP));
2357            return;
2358        }
2359
2360        /* Ignore writes to ROM.  */
2361        if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
2362            return;
2363        }
2364
2365        /* Handle clean RAM pages.  */
2366        if (tlb_addr & TLB_NOTDIRTY) {
2367            notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
2368        }
2369
2370        haddr = (void *)((uintptr_t)addr + entry->addend);
2371
2372        /*
2373         * Keep these two store_memop separate to ensure that the compiler
2374         * is able to fold the entire function to a single instruction.
2375         * There is a build-time assert inside to remind you of this.  ;-)
2376         */
2377        if (unlikely(need_swap)) {
2378            store_memop(haddr, val, op ^ MO_BSWAP);
2379        } else {
2380            store_memop(haddr, val, op);
2381        }
2382        return;
2383    }
2384
2385    /* Handle slow unaligned access (it spans two pages or IO).  */
2386    if (size > 1
2387        && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
2388                     >= TARGET_PAGE_SIZE)) {
2389    do_unaligned_access:
2390        store_helper_unaligned(env, addr, val, retaddr, size,
2391                               mmu_idx, memop_big_endian(op));
2392        return;
2393    }
2394
2395    haddr = (void *)((uintptr_t)addr + entry->addend);
2396    store_memop(haddr, val, op);
2397}
2398
2399static void __attribute__((noinline))
2400full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2401             MemOpIdx oi, uintptr_t retaddr)
2402{
2403    validate_memop(oi, MO_UB);
2404    store_helper(env, addr, val, oi, retaddr, MO_UB);
2405}
2406
2407void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2408                        MemOpIdx oi, uintptr_t retaddr)
2409{
2410    full_stb_mmu(env, addr, val, oi, retaddr);
2411}
2412
2413static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2414                            MemOpIdx oi, uintptr_t retaddr)
2415{
2416    validate_memop(oi, MO_LEUW);
2417    store_helper(env, addr, val, oi, retaddr, MO_LEUW);
2418}
2419
2420void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2421                       MemOpIdx oi, uintptr_t retaddr)
2422{
2423    full_le_stw_mmu(env, addr, val, oi, retaddr);
2424}
2425
2426static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2427                            MemOpIdx oi, uintptr_t retaddr)
2428{
2429    validate_memop(oi, MO_BEUW);
2430    store_helper(env, addr, val, oi, retaddr, MO_BEUW);
2431}
2432
2433void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2434                       MemOpIdx oi, uintptr_t retaddr)
2435{
2436    full_be_stw_mmu(env, addr, val, oi, retaddr);
2437}
2438
2439static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2440                            MemOpIdx oi, uintptr_t retaddr)
2441{
2442    validate_memop(oi, MO_LEUL);
2443    store_helper(env, addr, val, oi, retaddr, MO_LEUL);
2444}
2445
2446void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2447                       MemOpIdx oi, uintptr_t retaddr)
2448{
2449    full_le_stl_mmu(env, addr, val, oi, retaddr);
2450}
2451
2452static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2453                            MemOpIdx oi, uintptr_t retaddr)
2454{
2455    validate_memop(oi, MO_BEUL);
2456    store_helper(env, addr, val, oi, retaddr, MO_BEUL);
2457}
2458
2459void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2460                       MemOpIdx oi, uintptr_t retaddr)
2461{
2462    full_be_stl_mmu(env, addr, val, oi, retaddr);
2463}
2464
2465void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2466                       MemOpIdx oi, uintptr_t retaddr)
2467{
2468    validate_memop(oi, MO_LEQ);
2469    store_helper(env, addr, val, oi, retaddr, MO_LEQ);
2470}
2471
2472void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2473                       MemOpIdx oi, uintptr_t retaddr)
2474{
2475    validate_memop(oi, MO_BEQ);
2476    store_helper(env, addr, val, oi, retaddr, MO_BEQ);
2477}
2478
2479/*
2480 * Store Helpers for cpu_ldst.h
2481 */
2482
2483typedef void FullStoreHelper(CPUArchState *env, target_ulong addr,
2484                             uint64_t val, MemOpIdx oi, uintptr_t retaddr);
2485
2486static inline void cpu_store_helper(CPUArchState *env, target_ulong addr,
2487                                    uint64_t val, MemOpIdx oi, uintptr_t ra,
2488                                    FullStoreHelper *full_store)
2489{
2490    trace_guest_st_before_exec(env_cpu(env), addr, oi);
2491    full_store(env, addr, val, oi, ra);
2492    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2493}
2494
2495void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2496                 MemOpIdx oi, uintptr_t retaddr)
2497{
2498    cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu);
2499}
2500
2501void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2502                    MemOpIdx oi, uintptr_t retaddr)
2503{
2504    cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu);
2505}
2506
2507void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2508                    MemOpIdx oi, uintptr_t retaddr)
2509{
2510    cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu);
2511}
2512
2513void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2514                    MemOpIdx oi, uintptr_t retaddr)
2515{
2516    cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu);
2517}
2518
2519void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2520                    MemOpIdx oi, uintptr_t retaddr)
2521{
2522    cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu);
2523}
2524
2525void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2526                    MemOpIdx oi, uintptr_t retaddr)
2527{
2528    cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu);
2529}
2530
2531void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2532                    MemOpIdx oi, uintptr_t retaddr)
2533{
2534    cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu);
2535}
2536
2537#include "ldst_common.c.inc"
2538
2539/*
2540 * First set of functions passes in OI and RETADDR.
2541 * This makes them callable from other helpers.
2542 */
2543
2544#define ATOMIC_NAME(X) \
2545    glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2546
2547#define ATOMIC_MMU_CLEANUP
2548#define ATOMIC_MMU_IDX   get_mmuidx(oi)
2549
2550#include "atomic_common.c.inc"
2551
2552#define DATA_SIZE 1
2553#include "atomic_template.h"
2554
2555#define DATA_SIZE 2
2556#include "atomic_template.h"
2557
2558#define DATA_SIZE 4
2559#include "atomic_template.h"
2560
2561#ifdef CONFIG_ATOMIC64
2562#define DATA_SIZE 8
2563#include "atomic_template.h"
2564#endif
2565
2566#if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2567#define DATA_SIZE 16
2568#include "atomic_template.h"
2569#endif
2570
2571/* Code access functions.  */
2572
2573static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
2574                               MemOpIdx oi, uintptr_t retaddr)
2575{
2576    return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
2577}
2578
2579uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2580{
2581    MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
2582    return full_ldub_code(env, addr, oi, 0);
2583}
2584
2585static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
2586                               MemOpIdx oi, uintptr_t retaddr)
2587{
2588    return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
2589}
2590
2591uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2592{
2593    MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
2594    return full_lduw_code(env, addr, oi, 0);
2595}
2596
2597static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
2598                              MemOpIdx oi, uintptr_t retaddr)
2599{
2600    return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
2601}
2602
2603uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2604{
2605    MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
2606    return full_ldl_code(env, addr, oi, 0);
2607}
2608
2609static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
2610                              MemOpIdx oi, uintptr_t retaddr)
2611{
2612    return load_helper(env, addr, oi, retaddr, MO_TEQ, true, full_ldq_code);
2613}
2614
2615uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2616{
2617    MemOpIdx oi = make_memop_idx(MO_TEQ, cpu_mmu_index(env, true));
2618    return full_ldq_code(env, addr, oi, 0);
2619}
2620