qemu/block/block-copy.c
<<
>>
Prefs
   1/*
   2 * block_copy API
   3 *
   4 * Copyright (C) 2013 Proxmox Server Solutions
   5 * Copyright (c) 2019 Virtuozzo International GmbH.
   6 *
   7 * Authors:
   8 *  Dietmar Maurer (dietmar@proxmox.com)
   9 *  Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
  10 *
  11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12 * See the COPYING file in the top-level directory.
  13 */
  14
  15#include "qemu/osdep.h"
  16
  17#include "trace.h"
  18#include "qapi/error.h"
  19#include "block/block-copy.h"
  20#include "sysemu/block-backend.h"
  21#include "qemu/units.h"
  22#include "qemu/coroutine.h"
  23#include "block/aio_task.h"
  24#include "qemu/error-report.h"
  25
  26#define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
  27#define BLOCK_COPY_MAX_BUFFER (1 * MiB)
  28#define BLOCK_COPY_MAX_MEM (128 * MiB)
  29#define BLOCK_COPY_MAX_WORKERS 64
  30#define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
  31#define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16)
  32
  33typedef enum {
  34    COPY_READ_WRITE_CLUSTER,
  35    COPY_READ_WRITE,
  36    COPY_WRITE_ZEROES,
  37    COPY_RANGE_SMALL,
  38    COPY_RANGE_FULL
  39} BlockCopyMethod;
  40
  41static coroutine_fn int block_copy_task_entry(AioTask *task);
  42
  43typedef struct BlockCopyCallState {
  44    /* Fields initialized in block_copy_async() and never changed. */
  45    BlockCopyState *s;
  46    int64_t offset;
  47    int64_t bytes;
  48    int max_workers;
  49    int64_t max_chunk;
  50    bool ignore_ratelimit;
  51    BlockCopyAsyncCallbackFunc cb;
  52    void *cb_opaque;
  53    /* Coroutine where async block-copy is running */
  54    Coroutine *co;
  55
  56    /* Fields whose state changes throughout the execution */
  57    bool finished; /* atomic */
  58    QemuCoSleep sleep; /* TODO: protect API with a lock */
  59    bool cancelled; /* atomic */
  60    /* To reference all call states from BlockCopyState */
  61    QLIST_ENTRY(BlockCopyCallState) list;
  62
  63    /*
  64     * Fields that report information about return values and erros.
  65     * Protected by lock in BlockCopyState.
  66     */
  67    bool error_is_read;
  68    /*
  69     * @ret is set concurrently by tasks under mutex. Only set once by first
  70     * failed task (and untouched if no task failed).
  71     * After finishing (call_state->finished is true), it is not modified
  72     * anymore and may be safely read without mutex.
  73     */
  74    int ret;
  75} BlockCopyCallState;
  76
  77typedef struct BlockCopyTask {
  78    AioTask task;
  79
  80    /*
  81     * Fields initialized in block_copy_task_create()
  82     * and never changed.
  83     */
  84    BlockCopyState *s;
  85    BlockCopyCallState *call_state;
  86    int64_t offset;
  87    /*
  88     * @method can also be set again in the while loop of
  89     * block_copy_dirty_clusters(), but it is never accessed concurrently
  90     * because the only other function that reads it is
  91     * block_copy_task_entry() and it is invoked afterwards in the same
  92     * iteration.
  93     */
  94    BlockCopyMethod method;
  95
  96    /*
  97     * Fields whose state changes throughout the execution
  98     * Protected by lock in BlockCopyState.
  99     */
 100    CoQueue wait_queue; /* coroutines blocked on this task */
 101    /*
 102     * Only protect the case of parallel read while updating @bytes
 103     * value in block_copy_task_shrink().
 104     */
 105    int64_t bytes;
 106    QLIST_ENTRY(BlockCopyTask) list;
 107} BlockCopyTask;
 108
 109static int64_t task_end(BlockCopyTask *task)
 110{
 111    return task->offset + task->bytes;
 112}
 113
 114typedef struct BlockCopyState {
 115    /*
 116     * BdrvChild objects are not owned or managed by block-copy. They are
 117     * provided by block-copy user and user is responsible for appropriate
 118     * permissions on these children.
 119     */
 120    BdrvChild *source;
 121    BdrvChild *target;
 122
 123    /*
 124     * Fields initialized in block_copy_state_new()
 125     * and never changed.
 126     */
 127    int64_t cluster_size;
 128    int64_t max_transfer;
 129    uint64_t len;
 130    BdrvRequestFlags write_flags;
 131
 132    /*
 133     * Fields whose state changes throughout the execution
 134     * Protected by lock.
 135     */
 136    CoMutex lock;
 137    int64_t in_flight_bytes;
 138    BlockCopyMethod method;
 139    QLIST_HEAD(, BlockCopyTask) tasks; /* All tasks from all block-copy calls */
 140    QLIST_HEAD(, BlockCopyCallState) calls;
 141    /*
 142     * skip_unallocated:
 143     *
 144     * Used by sync=top jobs, which first scan the source node for unallocated
 145     * areas and clear them in the copy_bitmap.  During this process, the bitmap
 146     * is thus not fully initialized: It may still have bits set for areas that
 147     * are unallocated and should actually not be copied.
 148     *
 149     * This is indicated by skip_unallocated.
 150     *
 151     * In this case, block_copy() will query the source’s allocation status,
 152     * skip unallocated regions, clear them in the copy_bitmap, and invoke
 153     * block_copy_reset_unallocated() every time it does.
 154     */
 155    bool skip_unallocated; /* atomic */
 156    /* State fields that use a thread-safe API */
 157    BdrvDirtyBitmap *copy_bitmap;
 158    ProgressMeter *progress;
 159    SharedResource *mem;
 160    RateLimit rate_limit;
 161} BlockCopyState;
 162
 163/* Called with lock held */
 164static BlockCopyTask *find_conflicting_task(BlockCopyState *s,
 165                                            int64_t offset, int64_t bytes)
 166{
 167    BlockCopyTask *t;
 168
 169    QLIST_FOREACH(t, &s->tasks, list) {
 170        if (offset + bytes > t->offset && offset < t->offset + t->bytes) {
 171            return t;
 172        }
 173    }
 174
 175    return NULL;
 176}
 177
 178/*
 179 * If there are no intersecting tasks return false. Otherwise, wait for the
 180 * first found intersecting tasks to finish and return true.
 181 *
 182 * Called with lock held. May temporary release the lock.
 183 * Return value of 0 proves that lock was NOT released.
 184 */
 185static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset,
 186                                             int64_t bytes)
 187{
 188    BlockCopyTask *task = find_conflicting_task(s, offset, bytes);
 189
 190    if (!task) {
 191        return false;
 192    }
 193
 194    qemu_co_queue_wait(&task->wait_queue, &s->lock);
 195
 196    return true;
 197}
 198
 199/* Called with lock held */
 200static int64_t block_copy_chunk_size(BlockCopyState *s)
 201{
 202    switch (s->method) {
 203    case COPY_READ_WRITE_CLUSTER:
 204        return s->cluster_size;
 205    case COPY_READ_WRITE:
 206    case COPY_RANGE_SMALL:
 207        return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER),
 208                   s->max_transfer);
 209    case COPY_RANGE_FULL:
 210        return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
 211                   s->max_transfer);
 212    default:
 213        /* Cannot have COPY_WRITE_ZEROES here.  */
 214        abort();
 215    }
 216}
 217
 218/*
 219 * Search for the first dirty area in offset/bytes range and create task at
 220 * the beginning of it.
 221 */
 222static coroutine_fn BlockCopyTask *
 223block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state,
 224                       int64_t offset, int64_t bytes)
 225{
 226    BlockCopyTask *task;
 227    int64_t max_chunk;
 228
 229    QEMU_LOCK_GUARD(&s->lock);
 230    max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk);
 231    if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
 232                                           offset, offset + bytes,
 233                                           max_chunk, &offset, &bytes))
 234    {
 235        return NULL;
 236    }
 237
 238    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
 239    bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
 240
 241    /* region is dirty, so no existent tasks possible in it */
 242    assert(!find_conflicting_task(s, offset, bytes));
 243
 244    bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
 245    s->in_flight_bytes += bytes;
 246
 247    task = g_new(BlockCopyTask, 1);
 248    *task = (BlockCopyTask) {
 249        .task.func = block_copy_task_entry,
 250        .s = s,
 251        .call_state = call_state,
 252        .offset = offset,
 253        .bytes = bytes,
 254        .method = s->method,
 255    };
 256    qemu_co_queue_init(&task->wait_queue);
 257    QLIST_INSERT_HEAD(&s->tasks, task, list);
 258
 259    return task;
 260}
 261
 262/*
 263 * block_copy_task_shrink
 264 *
 265 * Drop the tail of the task to be handled later. Set dirty bits back and
 266 * wake up all tasks waiting for us (may be some of them are not intersecting
 267 * with shrunk task)
 268 */
 269static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
 270                                                int64_t new_bytes)
 271{
 272    QEMU_LOCK_GUARD(&task->s->lock);
 273    if (new_bytes == task->bytes) {
 274        return;
 275    }
 276
 277    assert(new_bytes > 0 && new_bytes < task->bytes);
 278
 279    task->s->in_flight_bytes -= task->bytes - new_bytes;
 280    bdrv_set_dirty_bitmap(task->s->copy_bitmap,
 281                          task->offset + new_bytes, task->bytes - new_bytes);
 282
 283    task->bytes = new_bytes;
 284    qemu_co_queue_restart_all(&task->wait_queue);
 285}
 286
 287static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
 288{
 289    QEMU_LOCK_GUARD(&task->s->lock);
 290    task->s->in_flight_bytes -= task->bytes;
 291    if (ret < 0) {
 292        bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes);
 293    }
 294    QLIST_REMOVE(task, list);
 295    if (task->s->progress) {
 296        progress_set_remaining(task->s->progress,
 297                               bdrv_get_dirty_count(task->s->copy_bitmap) +
 298                               task->s->in_flight_bytes);
 299    }
 300    qemu_co_queue_restart_all(&task->wait_queue);
 301}
 302
 303void block_copy_state_free(BlockCopyState *s)
 304{
 305    if (!s) {
 306        return;
 307    }
 308
 309    ratelimit_destroy(&s->rate_limit);
 310    bdrv_release_dirty_bitmap(s->copy_bitmap);
 311    shres_destroy(s->mem);
 312    g_free(s);
 313}
 314
 315static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
 316{
 317    return MIN_NON_ZERO(INT_MAX,
 318                        MIN_NON_ZERO(source->bs->bl.max_transfer,
 319                                     target->bs->bl.max_transfer));
 320}
 321
 322void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range,
 323                              bool compress)
 324{
 325    /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */
 326    s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) |
 327        (compress ? BDRV_REQ_WRITE_COMPRESSED : 0);
 328
 329    if (s->max_transfer < s->cluster_size) {
 330        /*
 331         * copy_range does not respect max_transfer. We don't want to bother
 332         * with requests smaller than block-copy cluster size, so fallback to
 333         * buffered copying (read and write respect max_transfer on their
 334         * behalf).
 335         */
 336        s->method = COPY_READ_WRITE_CLUSTER;
 337    } else if (compress) {
 338        /* Compression supports only cluster-size writes and no copy-range. */
 339        s->method = COPY_READ_WRITE_CLUSTER;
 340    } else {
 341        /*
 342         * If copy range enabled, start with COPY_RANGE_SMALL, until first
 343         * successful copy_range (look at block_copy_do_copy).
 344         */
 345        s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE;
 346    }
 347}
 348
 349static int64_t block_copy_calculate_cluster_size(BlockDriverState *target,
 350                                                 Error **errp)
 351{
 352    int ret;
 353    BlockDriverInfo bdi;
 354    bool target_does_cow = bdrv_backing_chain_next(target);
 355
 356    /*
 357     * If there is no backing file on the target, we cannot rely on COW if our
 358     * backup cluster size is smaller than the target cluster size. Even for
 359     * targets with a backing file, try to avoid COW if possible.
 360     */
 361    ret = bdrv_get_info(target, &bdi);
 362    if (ret == -ENOTSUP && !target_does_cow) {
 363        /* Cluster size is not defined */
 364        warn_report("The target block device doesn't provide "
 365                    "information about the block size and it doesn't have a "
 366                    "backing file. The default block size of %u bytes is "
 367                    "used. If the actual block size of the target exceeds "
 368                    "this default, the backup may be unusable",
 369                    BLOCK_COPY_CLUSTER_SIZE_DEFAULT);
 370        return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
 371    } else if (ret < 0 && !target_does_cow) {
 372        error_setg_errno(errp, -ret,
 373            "Couldn't determine the cluster size of the target image, "
 374            "which has no backing file");
 375        error_append_hint(errp,
 376            "Aborting, since this may create an unusable destination image\n");
 377        return ret;
 378    } else if (ret < 0 && target_does_cow) {
 379        /* Not fatal; just trudge on ahead. */
 380        return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
 381    }
 382
 383    return MAX(BLOCK_COPY_CLUSTER_SIZE_DEFAULT, bdi.cluster_size);
 384}
 385
 386BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
 387                                     Error **errp)
 388{
 389    BlockCopyState *s;
 390    int64_t cluster_size;
 391    BdrvDirtyBitmap *copy_bitmap;
 392    bool is_fleecing;
 393
 394    cluster_size = block_copy_calculate_cluster_size(target->bs, errp);
 395    if (cluster_size < 0) {
 396        return NULL;
 397    }
 398
 399    copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
 400                                           errp);
 401    if (!copy_bitmap) {
 402        return NULL;
 403    }
 404    bdrv_disable_dirty_bitmap(copy_bitmap);
 405
 406    /*
 407     * If source is in backing chain of target assume that target is going to be
 408     * used for "image fleecing", i.e. it should represent a kind of snapshot of
 409     * source at backup-start point in time. And target is going to be read by
 410     * somebody (for example, used as NBD export) during backup job.
 411     *
 412     * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid
 413     * intersection of backup writes and third party reads from target,
 414     * otherwise reading from target we may occasionally read already updated by
 415     * guest data.
 416     *
 417     * For more information see commit f8d59dfb40bb and test
 418     * tests/qemu-iotests/222
 419     */
 420    is_fleecing = bdrv_chain_contains(target->bs, source->bs);
 421
 422    s = g_new(BlockCopyState, 1);
 423    *s = (BlockCopyState) {
 424        .source = source,
 425        .target = target,
 426        .copy_bitmap = copy_bitmap,
 427        .cluster_size = cluster_size,
 428        .len = bdrv_dirty_bitmap_size(copy_bitmap),
 429        .write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0),
 430        .mem = shres_create(BLOCK_COPY_MAX_MEM),
 431        .max_transfer = QEMU_ALIGN_DOWN(
 432                                    block_copy_max_transfer(source, target),
 433                                    cluster_size),
 434    };
 435
 436    block_copy_set_copy_opts(s, false, false);
 437
 438    ratelimit_init(&s->rate_limit);
 439    qemu_co_mutex_init(&s->lock);
 440    QLIST_INIT(&s->tasks);
 441    QLIST_INIT(&s->calls);
 442
 443    return s;
 444}
 445
 446/* Only set before running the job, no need for locking. */
 447void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
 448{
 449    s->progress = pm;
 450}
 451
 452/*
 453 * Takes ownership of @task
 454 *
 455 * If pool is NULL directly run the task, otherwise schedule it into the pool.
 456 *
 457 * Returns: task.func return code if pool is NULL
 458 *          otherwise -ECANCELED if pool status is bad
 459 *          otherwise 0 (successfully scheduled)
 460 */
 461static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
 462                                            BlockCopyTask *task)
 463{
 464    if (!pool) {
 465        int ret = task->task.func(&task->task);
 466
 467        g_free(task);
 468        return ret;
 469    }
 470
 471    aio_task_pool_wait_slot(pool);
 472    if (aio_task_pool_status(pool) < 0) {
 473        co_put_to_shres(task->s->mem, task->bytes);
 474        block_copy_task_end(task, -ECANCELED);
 475        g_free(task);
 476        return -ECANCELED;
 477    }
 478
 479    aio_task_pool_start_task(pool, &task->task);
 480
 481    return 0;
 482}
 483
 484/*
 485 * block_copy_do_copy
 486 *
 487 * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
 488 * s->len only to cover last cluster when s->len is not aligned to clusters.
 489 *
 490 * No sync here: nor bitmap neighter intersecting requests handling, only copy.
 491 *
 492 * @method is an in-out argument, so that copy_range can be either extended to
 493 * a full-size buffer or disabled if the copy_range attempt fails.  The output
 494 * value of @method should be used for subsequent tasks.
 495 * Returns 0 on success.
 496 */
 497static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
 498                                           int64_t offset, int64_t bytes,
 499                                           BlockCopyMethod *method,
 500                                           bool *error_is_read)
 501{
 502    int ret;
 503    int64_t nbytes = MIN(offset + bytes, s->len) - offset;
 504    void *bounce_buffer = NULL;
 505
 506    assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
 507    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
 508    assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
 509    assert(offset < s->len);
 510    assert(offset + bytes <= s->len ||
 511           offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
 512    assert(nbytes < INT_MAX);
 513
 514    switch (*method) {
 515    case COPY_WRITE_ZEROES:
 516        ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
 517                                    ~BDRV_REQ_WRITE_COMPRESSED);
 518        if (ret < 0) {
 519            trace_block_copy_write_zeroes_fail(s, offset, ret);
 520            *error_is_read = false;
 521        }
 522        return ret;
 523
 524    case COPY_RANGE_SMALL:
 525    case COPY_RANGE_FULL:
 526        ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
 527                                 0, s->write_flags);
 528        if (ret >= 0) {
 529            /* Successful copy-range, increase chunk size.  */
 530            *method = COPY_RANGE_FULL;
 531            return 0;
 532        }
 533
 534        trace_block_copy_copy_range_fail(s, offset, ret);
 535        *method = COPY_READ_WRITE;
 536        /* Fall through to read+write with allocated buffer */
 537
 538    case COPY_READ_WRITE_CLUSTER:
 539    case COPY_READ_WRITE:
 540        /*
 541         * In case of failed copy_range request above, we may proceed with
 542         * buffered request larger than BLOCK_COPY_MAX_BUFFER.
 543         * Still, further requests will be properly limited, so don't care too
 544         * much. Moreover the most likely case (copy_range is unsupported for
 545         * the configuration, so the very first copy_range request fails)
 546         * is handled by setting large copy_size only after first successful
 547         * copy_range.
 548         */
 549
 550        bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
 551
 552        ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
 553        if (ret < 0) {
 554            trace_block_copy_read_fail(s, offset, ret);
 555            *error_is_read = true;
 556            goto out;
 557        }
 558
 559        ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
 560                             s->write_flags);
 561        if (ret < 0) {
 562            trace_block_copy_write_fail(s, offset, ret);
 563            *error_is_read = false;
 564            goto out;
 565        }
 566
 567    out:
 568        qemu_vfree(bounce_buffer);
 569        break;
 570
 571    default:
 572        abort();
 573    }
 574
 575    return ret;
 576}
 577
 578static coroutine_fn int block_copy_task_entry(AioTask *task)
 579{
 580    BlockCopyTask *t = container_of(task, BlockCopyTask, task);
 581    BlockCopyState *s = t->s;
 582    bool error_is_read = false;
 583    BlockCopyMethod method = t->method;
 584    int ret;
 585
 586    ret = block_copy_do_copy(s, t->offset, t->bytes, &method, &error_is_read);
 587
 588    WITH_QEMU_LOCK_GUARD(&s->lock) {
 589        if (s->method == t->method) {
 590            s->method = method;
 591        }
 592
 593        if (ret < 0) {
 594            if (!t->call_state->ret) {
 595                t->call_state->ret = ret;
 596                t->call_state->error_is_read = error_is_read;
 597            }
 598        } else if (s->progress) {
 599            progress_work_done(s->progress, t->bytes);
 600        }
 601    }
 602    co_put_to_shres(s->mem, t->bytes);
 603    block_copy_task_end(t, ret);
 604
 605    return ret;
 606}
 607
 608static int block_copy_block_status(BlockCopyState *s, int64_t offset,
 609                                   int64_t bytes, int64_t *pnum)
 610{
 611    int64_t num;
 612    BlockDriverState *base;
 613    int ret;
 614
 615    if (qatomic_read(&s->skip_unallocated)) {
 616        base = bdrv_backing_chain_next(s->source->bs);
 617    } else {
 618        base = NULL;
 619    }
 620
 621    ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num,
 622                                  NULL, NULL);
 623    if (ret < 0 || num < s->cluster_size) {
 624        /*
 625         * On error or if failed to obtain large enough chunk just fallback to
 626         * copy one cluster.
 627         */
 628        num = s->cluster_size;
 629        ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
 630    } else if (offset + num == s->len) {
 631        num = QEMU_ALIGN_UP(num, s->cluster_size);
 632    } else {
 633        num = QEMU_ALIGN_DOWN(num, s->cluster_size);
 634    }
 635
 636    *pnum = num;
 637    return ret;
 638}
 639
 640/*
 641 * Check if the cluster starting at offset is allocated or not.
 642 * return via pnum the number of contiguous clusters sharing this allocation.
 643 */
 644static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
 645                                           int64_t *pnum)
 646{
 647    BlockDriverState *bs = s->source->bs;
 648    int64_t count, total_count = 0;
 649    int64_t bytes = s->len - offset;
 650    int ret;
 651
 652    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
 653
 654    while (true) {
 655        ret = bdrv_is_allocated(bs, offset, bytes, &count);
 656        if (ret < 0) {
 657            return ret;
 658        }
 659
 660        total_count += count;
 661
 662        if (ret || count == 0) {
 663            /*
 664             * ret: partial segment(s) are considered allocated.
 665             * otherwise: unallocated tail is treated as an entire segment.
 666             */
 667            *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
 668            return ret;
 669        }
 670
 671        /* Unallocated segment(s) with uncertain following segment(s) */
 672        if (total_count >= s->cluster_size) {
 673            *pnum = total_count / s->cluster_size;
 674            return 0;
 675        }
 676
 677        offset += count;
 678        bytes -= count;
 679    }
 680}
 681
 682/*
 683 * Reset bits in copy_bitmap starting at offset if they represent unallocated
 684 * data in the image. May reset subsequent contiguous bits.
 685 * @return 0 when the cluster at @offset was unallocated,
 686 *         1 otherwise, and -ret on error.
 687 */
 688int64_t block_copy_reset_unallocated(BlockCopyState *s,
 689                                     int64_t offset, int64_t *count)
 690{
 691    int ret;
 692    int64_t clusters, bytes;
 693
 694    ret = block_copy_is_cluster_allocated(s, offset, &clusters);
 695    if (ret < 0) {
 696        return ret;
 697    }
 698
 699    bytes = clusters * s->cluster_size;
 700
 701    if (!ret) {
 702        qemu_co_mutex_lock(&s->lock);
 703        bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
 704        if (s->progress) {
 705            progress_set_remaining(s->progress,
 706                                   bdrv_get_dirty_count(s->copy_bitmap) +
 707                                   s->in_flight_bytes);
 708        }
 709        qemu_co_mutex_unlock(&s->lock);
 710    }
 711
 712    *count = bytes;
 713    return ret;
 714}
 715
 716/*
 717 * block_copy_dirty_clusters
 718 *
 719 * Copy dirty clusters in @offset/@bytes range.
 720 * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
 721 * clusters found and -errno on failure.
 722 */
 723static int coroutine_fn
 724block_copy_dirty_clusters(BlockCopyCallState *call_state)
 725{
 726    BlockCopyState *s = call_state->s;
 727    int64_t offset = call_state->offset;
 728    int64_t bytes = call_state->bytes;
 729
 730    int ret = 0;
 731    bool found_dirty = false;
 732    int64_t end = offset + bytes;
 733    AioTaskPool *aio = NULL;
 734
 735    /*
 736     * block_copy() user is responsible for keeping source and target in same
 737     * aio context
 738     */
 739    assert(bdrv_get_aio_context(s->source->bs) ==
 740           bdrv_get_aio_context(s->target->bs));
 741
 742    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
 743    assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
 744
 745    while (bytes && aio_task_pool_status(aio) == 0 &&
 746           !qatomic_read(&call_state->cancelled)) {
 747        BlockCopyTask *task;
 748        int64_t status_bytes;
 749
 750        task = block_copy_task_create(s, call_state, offset, bytes);
 751        if (!task) {
 752            /* No more dirty bits in the bitmap */
 753            trace_block_copy_skip_range(s, offset, bytes);
 754            break;
 755        }
 756        if (task->offset > offset) {
 757            trace_block_copy_skip_range(s, offset, task->offset - offset);
 758        }
 759
 760        found_dirty = true;
 761
 762        ret = block_copy_block_status(s, task->offset, task->bytes,
 763                                      &status_bytes);
 764        assert(ret >= 0); /* never fail */
 765        if (status_bytes < task->bytes) {
 766            block_copy_task_shrink(task, status_bytes);
 767        }
 768        if (qatomic_read(&s->skip_unallocated) &&
 769            !(ret & BDRV_BLOCK_ALLOCATED)) {
 770            block_copy_task_end(task, 0);
 771            trace_block_copy_skip_range(s, task->offset, task->bytes);
 772            offset = task_end(task);
 773            bytes = end - offset;
 774            g_free(task);
 775            continue;
 776        }
 777        if (ret & BDRV_BLOCK_ZERO) {
 778            task->method = COPY_WRITE_ZEROES;
 779        }
 780
 781        if (!call_state->ignore_ratelimit) {
 782            uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
 783            if (ns > 0) {
 784                block_copy_task_end(task, -EAGAIN);
 785                g_free(task);
 786                qemu_co_sleep_ns_wakeable(&call_state->sleep,
 787                                          QEMU_CLOCK_REALTIME, ns);
 788                continue;
 789            }
 790        }
 791
 792        ratelimit_calculate_delay(&s->rate_limit, task->bytes);
 793
 794        trace_block_copy_process(s, task->offset);
 795
 796        co_get_from_shres(s->mem, task->bytes);
 797
 798        offset = task_end(task);
 799        bytes = end - offset;
 800
 801        if (!aio && bytes) {
 802            aio = aio_task_pool_new(call_state->max_workers);
 803        }
 804
 805        ret = block_copy_task_run(aio, task);
 806        if (ret < 0) {
 807            goto out;
 808        }
 809    }
 810
 811out:
 812    if (aio) {
 813        aio_task_pool_wait_all(aio);
 814
 815        /*
 816         * We are not really interested in -ECANCELED returned from
 817         * block_copy_task_run. If it fails, it means some task already failed
 818         * for real reason, let's return first failure.
 819         * Still, assert that we don't rewrite failure by success.
 820         *
 821         * Note: ret may be positive here because of block-status result.
 822         */
 823        assert(ret >= 0 || aio_task_pool_status(aio) < 0);
 824        ret = aio_task_pool_status(aio);
 825
 826        aio_task_pool_free(aio);
 827    }
 828
 829    return ret < 0 ? ret : found_dirty;
 830}
 831
 832void block_copy_kick(BlockCopyCallState *call_state)
 833{
 834    qemu_co_sleep_wake(&call_state->sleep);
 835}
 836
 837/*
 838 * block_copy_common
 839 *
 840 * Copy requested region, accordingly to dirty bitmap.
 841 * Collaborate with parallel block_copy requests: if they succeed it will help
 842 * us. If they fail, we will retry not-copied regions. So, if we return error,
 843 * it means that some I/O operation failed in context of _this_ block_copy call,
 844 * not some parallel operation.
 845 */
 846static int coroutine_fn block_copy_common(BlockCopyCallState *call_state)
 847{
 848    int ret;
 849    BlockCopyState *s = call_state->s;
 850
 851    qemu_co_mutex_lock(&s->lock);
 852    QLIST_INSERT_HEAD(&s->calls, call_state, list);
 853    qemu_co_mutex_unlock(&s->lock);
 854
 855    do {
 856        ret = block_copy_dirty_clusters(call_state);
 857
 858        if (ret == 0 && !qatomic_read(&call_state->cancelled)) {
 859            WITH_QEMU_LOCK_GUARD(&s->lock) {
 860                /*
 861                 * Check that there is no task we still need to
 862                 * wait to complete
 863                 */
 864                ret = block_copy_wait_one(s, call_state->offset,
 865                                          call_state->bytes);
 866                if (ret == 0) {
 867                    /*
 868                     * No pending tasks, but check again the bitmap in this
 869                     * same critical section, since a task might have failed
 870                     * between this and the critical section in
 871                     * block_copy_dirty_clusters().
 872                     *
 873                     * block_copy_wait_one return value 0 also means that it
 874                     * didn't release the lock. So, we are still in the same
 875                     * critical section, not interrupted by any concurrent
 876                     * access to state.
 877                     */
 878                    ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap,
 879                                                       call_state->offset,
 880                                                       call_state->bytes) >= 0;
 881                }
 882            }
 883        }
 884
 885        /*
 886         * We retry in two cases:
 887         * 1. Some progress done
 888         *    Something was copied, which means that there were yield points
 889         *    and some new dirty bits may have appeared (due to failed parallel
 890         *    block-copy requests).
 891         * 2. We have waited for some intersecting block-copy request
 892         *    It may have failed and produced new dirty bits.
 893         */
 894    } while (ret > 0 && !qatomic_read(&call_state->cancelled));
 895
 896    qatomic_store_release(&call_state->finished, true);
 897
 898    if (call_state->cb) {
 899        call_state->cb(call_state->cb_opaque);
 900    }
 901
 902    qemu_co_mutex_lock(&s->lock);
 903    QLIST_REMOVE(call_state, list);
 904    qemu_co_mutex_unlock(&s->lock);
 905
 906    return ret;
 907}
 908
 909int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
 910                            bool ignore_ratelimit)
 911{
 912    BlockCopyCallState call_state = {
 913        .s = s,
 914        .offset = start,
 915        .bytes = bytes,
 916        .ignore_ratelimit = ignore_ratelimit,
 917        .max_workers = BLOCK_COPY_MAX_WORKERS,
 918    };
 919
 920    return block_copy_common(&call_state);
 921}
 922
 923static void coroutine_fn block_copy_async_co_entry(void *opaque)
 924{
 925    block_copy_common(opaque);
 926}
 927
 928BlockCopyCallState *block_copy_async(BlockCopyState *s,
 929                                     int64_t offset, int64_t bytes,
 930                                     int max_workers, int64_t max_chunk,
 931                                     BlockCopyAsyncCallbackFunc cb,
 932                                     void *cb_opaque)
 933{
 934    BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
 935
 936    *call_state = (BlockCopyCallState) {
 937        .s = s,
 938        .offset = offset,
 939        .bytes = bytes,
 940        .max_workers = max_workers,
 941        .max_chunk = max_chunk,
 942        .cb = cb,
 943        .cb_opaque = cb_opaque,
 944
 945        .co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
 946    };
 947
 948    qemu_coroutine_enter(call_state->co);
 949
 950    return call_state;
 951}
 952
 953void block_copy_call_free(BlockCopyCallState *call_state)
 954{
 955    if (!call_state) {
 956        return;
 957    }
 958
 959    assert(qatomic_read(&call_state->finished));
 960    g_free(call_state);
 961}
 962
 963bool block_copy_call_finished(BlockCopyCallState *call_state)
 964{
 965    return qatomic_read(&call_state->finished);
 966}
 967
 968bool block_copy_call_succeeded(BlockCopyCallState *call_state)
 969{
 970    return qatomic_load_acquire(&call_state->finished) &&
 971           !qatomic_read(&call_state->cancelled) &&
 972           call_state->ret == 0;
 973}
 974
 975bool block_copy_call_failed(BlockCopyCallState *call_state)
 976{
 977    return qatomic_load_acquire(&call_state->finished) &&
 978           !qatomic_read(&call_state->cancelled) &&
 979           call_state->ret < 0;
 980}
 981
 982bool block_copy_call_cancelled(BlockCopyCallState *call_state)
 983{
 984    return qatomic_read(&call_state->cancelled);
 985}
 986
 987int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
 988{
 989    assert(qatomic_load_acquire(&call_state->finished));
 990    if (error_is_read) {
 991        *error_is_read = call_state->error_is_read;
 992    }
 993    return call_state->ret;
 994}
 995
 996/*
 997 * Note that cancelling and finishing are racy.
 998 * User can cancel a block-copy that is already finished.
 999 */
1000void block_copy_call_cancel(BlockCopyCallState *call_state)
1001{
1002    qatomic_set(&call_state->cancelled, true);
1003    block_copy_kick(call_state);
1004}
1005
1006BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
1007{
1008    return s->copy_bitmap;
1009}
1010
1011int64_t block_copy_cluster_size(BlockCopyState *s)
1012{
1013    return s->cluster_size;
1014}
1015
1016void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
1017{
1018    qatomic_set(&s->skip_unallocated, skip);
1019}
1020
1021void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
1022{
1023    ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
1024
1025    /*
1026     * Note: it's good to kick all call states from here, but it should be done
1027     * only from a coroutine, to not crash if s->calls list changed while
1028     * entering one call. So for now, the only user of this function kicks its
1029     * only one call_state by hand.
1030     */
1031}
1032