qemu/block/nvme.c
<<
>>
Prefs
   1/*
   2 * NVMe block driver based on vfio
   3 *
   4 * Copyright 2016 - 2018 Red Hat, Inc.
   5 *
   6 * Authors:
   7 *   Fam Zheng <famz@redhat.com>
   8 *   Paolo Bonzini <pbonzini@redhat.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 */
  13
  14#include "qemu/osdep.h"
  15#include <linux/vfio.h>
  16#include "qapi/error.h"
  17#include "qapi/qmp/qdict.h"
  18#include "qapi/qmp/qstring.h"
  19#include "qemu/error-report.h"
  20#include "qemu/main-loop.h"
  21#include "qemu/module.h"
  22#include "qemu/cutils.h"
  23#include "qemu/option.h"
  24#include "qemu/vfio-helpers.h"
  25#include "block/block_int.h"
  26#include "sysemu/replay.h"
  27#include "trace.h"
  28
  29#include "block/nvme.h"
  30
  31#define NVME_SQ_ENTRY_BYTES 64
  32#define NVME_CQ_ENTRY_BYTES 16
  33#define NVME_QUEUE_SIZE 128
  34#define NVME_DOORBELL_SIZE 4096
  35
  36/*
  37 * We have to leave one slot empty as that is the full queue case where
  38 * head == tail + 1.
  39 */
  40#define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
  41
  42typedef struct BDRVNVMeState BDRVNVMeState;
  43
  44/* Same index is used for queues and IRQs */
  45#define INDEX_ADMIN     0
  46#define INDEX_IO(n)     (1 + n)
  47
  48/* This driver shares a single MSIX IRQ for the admin and I/O queues */
  49enum {
  50    MSIX_SHARED_IRQ_IDX = 0,
  51    MSIX_IRQ_COUNT = 1
  52};
  53
  54typedef struct {
  55    int32_t  head, tail;
  56    uint8_t  *queue;
  57    uint64_t iova;
  58    /* Hardware MMIO register */
  59    volatile uint32_t *doorbell;
  60} NVMeQueue;
  61
  62typedef struct {
  63    BlockCompletionFunc *cb;
  64    void *opaque;
  65    int cid;
  66    void *prp_list_page;
  67    uint64_t prp_list_iova;
  68    int free_req_next; /* q->reqs[] index of next free req */
  69} NVMeRequest;
  70
  71typedef struct {
  72    QemuMutex   lock;
  73
  74    /* Read from I/O code path, initialized under BQL */
  75    BDRVNVMeState   *s;
  76    int             index;
  77
  78    /* Fields protected by BQL */
  79    uint8_t     *prp_list_pages;
  80
  81    /* Fields protected by @lock */
  82    CoQueue     free_req_queue;
  83    NVMeQueue   sq, cq;
  84    int         cq_phase;
  85    int         free_req_head;
  86    NVMeRequest reqs[NVME_NUM_REQS];
  87    int         need_kick;
  88    int         inflight;
  89
  90    /* Thread-safe, no lock necessary */
  91    QEMUBH      *completion_bh;
  92} NVMeQueuePair;
  93
  94struct BDRVNVMeState {
  95    AioContext *aio_context;
  96    QEMUVFIOState *vfio;
  97    void *bar0_wo_map;
  98    /* Memory mapped registers */
  99    volatile struct {
 100        uint32_t sq_tail;
 101        uint32_t cq_head;
 102    } *doorbells;
 103    /* The submission/completion queue pairs.
 104     * [0]: admin queue.
 105     * [1..]: io queues.
 106     */
 107    NVMeQueuePair **queues;
 108    unsigned queue_count;
 109    size_t page_size;
 110    /* How many uint32_t elements does each doorbell entry take. */
 111    size_t doorbell_scale;
 112    bool write_cache_supported;
 113    EventNotifier irq_notifier[MSIX_IRQ_COUNT];
 114
 115    uint64_t nsze; /* Namespace size reported by identify command */
 116    int nsid;      /* The namespace id to read/write data. */
 117    int blkshift;
 118
 119    uint64_t max_transfer;
 120    bool plugged;
 121
 122    bool supports_write_zeroes;
 123    bool supports_discard;
 124
 125    CoMutex dma_map_lock;
 126    CoQueue dma_flush_queue;
 127
 128    /* Total size of mapped qiov, accessed under dma_map_lock */
 129    int dma_map_count;
 130
 131    /* PCI address (required for nvme_refresh_filename()) */
 132    char *device;
 133
 134    struct {
 135        uint64_t completion_errors;
 136        uint64_t aligned_accesses;
 137        uint64_t unaligned_accesses;
 138    } stats;
 139};
 140
 141#define NVME_BLOCK_OPT_DEVICE "device"
 142#define NVME_BLOCK_OPT_NAMESPACE "namespace"
 143
 144static void nvme_process_completion_bh(void *opaque);
 145
 146static QemuOptsList runtime_opts = {
 147    .name = "nvme",
 148    .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
 149    .desc = {
 150        {
 151            .name = NVME_BLOCK_OPT_DEVICE,
 152            .type = QEMU_OPT_STRING,
 153            .help = "NVMe PCI device address",
 154        },
 155        {
 156            .name = NVME_BLOCK_OPT_NAMESPACE,
 157            .type = QEMU_OPT_NUMBER,
 158            .help = "NVMe namespace",
 159        },
 160        { /* end of list */ }
 161    },
 162};
 163
 164/* Returns true on success, false on failure. */
 165static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
 166                            unsigned nentries, size_t entry_bytes, Error **errp)
 167{
 168    size_t bytes;
 169    int r;
 170
 171    bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size);
 172    q->head = q->tail = 0;
 173    q->queue = qemu_try_memalign(qemu_real_host_page_size, bytes);
 174    if (!q->queue) {
 175        error_setg(errp, "Cannot allocate queue");
 176        return false;
 177    }
 178    memset(q->queue, 0, bytes);
 179    r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
 180    if (r) {
 181        error_prepend(errp, "Cannot map queue: ");
 182    }
 183    return r == 0;
 184}
 185
 186static void nvme_free_queue(NVMeQueue *q)
 187{
 188    qemu_vfree(q->queue);
 189}
 190
 191static void nvme_free_queue_pair(NVMeQueuePair *q)
 192{
 193    trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
 194    if (q->completion_bh) {
 195        qemu_bh_delete(q->completion_bh);
 196    }
 197    nvme_free_queue(&q->sq);
 198    nvme_free_queue(&q->cq);
 199    qemu_vfree(q->prp_list_pages);
 200    qemu_mutex_destroy(&q->lock);
 201    g_free(q);
 202}
 203
 204static void nvme_free_req_queue_cb(void *opaque)
 205{
 206    NVMeQueuePair *q = opaque;
 207
 208    qemu_mutex_lock(&q->lock);
 209    while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
 210        /* Retry all pending requests */
 211    }
 212    qemu_mutex_unlock(&q->lock);
 213}
 214
 215static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
 216                                             AioContext *aio_context,
 217                                             unsigned idx, size_t size,
 218                                             Error **errp)
 219{
 220    int i, r;
 221    NVMeQueuePair *q;
 222    uint64_t prp_list_iova;
 223    size_t bytes;
 224
 225    q = g_try_new0(NVMeQueuePair, 1);
 226    if (!q) {
 227        error_setg(errp, "Cannot allocate queue pair");
 228        return NULL;
 229    }
 230    trace_nvme_create_queue_pair(idx, q, size, aio_context,
 231                                 event_notifier_get_fd(s->irq_notifier));
 232    bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
 233                          qemu_real_host_page_size);
 234    q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size, bytes);
 235    if (!q->prp_list_pages) {
 236        error_setg(errp, "Cannot allocate PRP page list");
 237        goto fail;
 238    }
 239    memset(q->prp_list_pages, 0, bytes);
 240    qemu_mutex_init(&q->lock);
 241    q->s = s;
 242    q->index = idx;
 243    qemu_co_queue_init(&q->free_req_queue);
 244    q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
 245    r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
 246                          false, &prp_list_iova, errp);
 247    if (r) {
 248        error_prepend(errp, "Cannot map buffer for DMA: ");
 249        goto fail;
 250    }
 251    q->free_req_head = -1;
 252    for (i = 0; i < NVME_NUM_REQS; i++) {
 253        NVMeRequest *req = &q->reqs[i];
 254        req->cid = i + 1;
 255        req->free_req_next = q->free_req_head;
 256        q->free_req_head = i;
 257        req->prp_list_page = q->prp_list_pages + i * s->page_size;
 258        req->prp_list_iova = prp_list_iova + i * s->page_size;
 259    }
 260
 261    if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
 262        goto fail;
 263    }
 264    q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
 265
 266    if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
 267        goto fail;
 268    }
 269    q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
 270
 271    return q;
 272fail:
 273    nvme_free_queue_pair(q);
 274    return NULL;
 275}
 276
 277/* With q->lock */
 278static void nvme_kick(NVMeQueuePair *q)
 279{
 280    BDRVNVMeState *s = q->s;
 281
 282    if (s->plugged || !q->need_kick) {
 283        return;
 284    }
 285    trace_nvme_kick(s, q->index);
 286    assert(!(q->sq.tail & 0xFF00));
 287    /* Fence the write to submission queue entry before notifying the device. */
 288    smp_wmb();
 289    *q->sq.doorbell = cpu_to_le32(q->sq.tail);
 290    q->inflight += q->need_kick;
 291    q->need_kick = 0;
 292}
 293
 294/* Find a free request element if any, otherwise:
 295 * a) if in coroutine context, try to wait for one to become available;
 296 * b) if not in coroutine, return NULL;
 297 */
 298static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
 299{
 300    NVMeRequest *req;
 301
 302    qemu_mutex_lock(&q->lock);
 303
 304    while (q->free_req_head == -1) {
 305        if (qemu_in_coroutine()) {
 306            trace_nvme_free_req_queue_wait(q->s, q->index);
 307            qemu_co_queue_wait(&q->free_req_queue, &q->lock);
 308        } else {
 309            qemu_mutex_unlock(&q->lock);
 310            return NULL;
 311        }
 312    }
 313
 314    req = &q->reqs[q->free_req_head];
 315    q->free_req_head = req->free_req_next;
 316    req->free_req_next = -1;
 317
 318    qemu_mutex_unlock(&q->lock);
 319    return req;
 320}
 321
 322/* With q->lock */
 323static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
 324{
 325    req->free_req_next = q->free_req_head;
 326    q->free_req_head = req - q->reqs;
 327}
 328
 329/* With q->lock */
 330static void nvme_wake_free_req_locked(NVMeQueuePair *q)
 331{
 332    if (!qemu_co_queue_empty(&q->free_req_queue)) {
 333        replay_bh_schedule_oneshot_event(q->s->aio_context,
 334                nvme_free_req_queue_cb, q);
 335    }
 336}
 337
 338/* Insert a request in the freelist and wake waiters */
 339static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
 340{
 341    qemu_mutex_lock(&q->lock);
 342    nvme_put_free_req_locked(q, req);
 343    nvme_wake_free_req_locked(q);
 344    qemu_mutex_unlock(&q->lock);
 345}
 346
 347static inline int nvme_translate_error(const NvmeCqe *c)
 348{
 349    uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
 350    if (status) {
 351        trace_nvme_error(le32_to_cpu(c->result),
 352                         le16_to_cpu(c->sq_head),
 353                         le16_to_cpu(c->sq_id),
 354                         le16_to_cpu(c->cid),
 355                         le16_to_cpu(status));
 356    }
 357    switch (status) {
 358    case 0:
 359        return 0;
 360    case 1:
 361        return -ENOSYS;
 362    case 2:
 363        return -EINVAL;
 364    default:
 365        return -EIO;
 366    }
 367}
 368
 369/* With q->lock */
 370static bool nvme_process_completion(NVMeQueuePair *q)
 371{
 372    BDRVNVMeState *s = q->s;
 373    bool progress = false;
 374    NVMeRequest *preq;
 375    NVMeRequest req;
 376    NvmeCqe *c;
 377
 378    trace_nvme_process_completion(s, q->index, q->inflight);
 379    if (s->plugged) {
 380        trace_nvme_process_completion_queue_plugged(s, q->index);
 381        return false;
 382    }
 383
 384    /*
 385     * Support re-entrancy when a request cb() function invokes aio_poll().
 386     * Pending completions must be visible to aio_poll() so that a cb()
 387     * function can wait for the completion of another request.
 388     *
 389     * The aio_poll() loop will execute our BH and we'll resume completion
 390     * processing there.
 391     */
 392    qemu_bh_schedule(q->completion_bh);
 393
 394    assert(q->inflight >= 0);
 395    while (q->inflight) {
 396        int ret;
 397        int16_t cid;
 398
 399        c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
 400        if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
 401            break;
 402        }
 403        ret = nvme_translate_error(c);
 404        if (ret) {
 405            s->stats.completion_errors++;
 406        }
 407        q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
 408        if (!q->cq.head) {
 409            q->cq_phase = !q->cq_phase;
 410        }
 411        cid = le16_to_cpu(c->cid);
 412        if (cid == 0 || cid > NVME_QUEUE_SIZE) {
 413            warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
 414                        "queue size: %u", cid, NVME_QUEUE_SIZE);
 415            continue;
 416        }
 417        trace_nvme_complete_command(s, q->index, cid);
 418        preq = &q->reqs[cid - 1];
 419        req = *preq;
 420        assert(req.cid == cid);
 421        assert(req.cb);
 422        nvme_put_free_req_locked(q, preq);
 423        preq->cb = preq->opaque = NULL;
 424        q->inflight--;
 425        qemu_mutex_unlock(&q->lock);
 426        req.cb(req.opaque, ret);
 427        qemu_mutex_lock(&q->lock);
 428        progress = true;
 429    }
 430    if (progress) {
 431        /* Notify the device so it can post more completions. */
 432        smp_mb_release();
 433        *q->cq.doorbell = cpu_to_le32(q->cq.head);
 434        nvme_wake_free_req_locked(q);
 435    }
 436
 437    qemu_bh_cancel(q->completion_bh);
 438
 439    return progress;
 440}
 441
 442static void nvme_process_completion_bh(void *opaque)
 443{
 444    NVMeQueuePair *q = opaque;
 445
 446    /*
 447     * We're being invoked because a nvme_process_completion() cb() function
 448     * called aio_poll(). The callback may be waiting for further completions
 449     * so notify the device that it has space to fill in more completions now.
 450     */
 451    smp_mb_release();
 452    *q->cq.doorbell = cpu_to_le32(q->cq.head);
 453    nvme_wake_free_req_locked(q);
 454
 455    nvme_process_completion(q);
 456}
 457
 458static void nvme_trace_command(const NvmeCmd *cmd)
 459{
 460    int i;
 461
 462    if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
 463        return;
 464    }
 465    for (i = 0; i < 8; ++i) {
 466        uint8_t *cmdp = (uint8_t *)cmd + i * 8;
 467        trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
 468                                      cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
 469    }
 470}
 471
 472static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
 473                                NvmeCmd *cmd, BlockCompletionFunc cb,
 474                                void *opaque)
 475{
 476    assert(!req->cb);
 477    req->cb = cb;
 478    req->opaque = opaque;
 479    cmd->cid = cpu_to_le16(req->cid);
 480
 481    trace_nvme_submit_command(q->s, q->index, req->cid);
 482    nvme_trace_command(cmd);
 483    qemu_mutex_lock(&q->lock);
 484    memcpy((uint8_t *)q->sq.queue +
 485           q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
 486    q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
 487    q->need_kick++;
 488    nvme_kick(q);
 489    nvme_process_completion(q);
 490    qemu_mutex_unlock(&q->lock);
 491}
 492
 493static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
 494{
 495    int *pret = opaque;
 496    *pret = ret;
 497    aio_wait_kick();
 498}
 499
 500static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
 501{
 502    BDRVNVMeState *s = bs->opaque;
 503    NVMeQueuePair *q = s->queues[INDEX_ADMIN];
 504    AioContext *aio_context = bdrv_get_aio_context(bs);
 505    NVMeRequest *req;
 506    int ret = -EINPROGRESS;
 507    req = nvme_get_free_req(q);
 508    if (!req) {
 509        return -EBUSY;
 510    }
 511    nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
 512
 513    AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
 514    return ret;
 515}
 516
 517/* Returns true on success, false on failure. */
 518static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
 519{
 520    BDRVNVMeState *s = bs->opaque;
 521    bool ret = false;
 522    QEMU_AUTO_VFREE union {
 523        NvmeIdCtrl ctrl;
 524        NvmeIdNs ns;
 525    } *id = NULL;
 526    NvmeLBAF *lbaf;
 527    uint16_t oncs;
 528    int r;
 529    uint64_t iova;
 530    NvmeCmd cmd = {
 531        .opcode = NVME_ADM_CMD_IDENTIFY,
 532        .cdw10 = cpu_to_le32(0x1),
 533    };
 534    size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size);
 535
 536    id = qemu_try_memalign(qemu_real_host_page_size, id_size);
 537    if (!id) {
 538        error_setg(errp, "Cannot allocate buffer for identify response");
 539        goto out;
 540    }
 541    r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
 542    if (r) {
 543        error_prepend(errp, "Cannot map buffer for DMA: ");
 544        goto out;
 545    }
 546
 547    memset(id, 0, id_size);
 548    cmd.dptr.prp1 = cpu_to_le64(iova);
 549    if (nvme_admin_cmd_sync(bs, &cmd)) {
 550        error_setg(errp, "Failed to identify controller");
 551        goto out;
 552    }
 553
 554    if (le32_to_cpu(id->ctrl.nn) < namespace) {
 555        error_setg(errp, "Invalid namespace");
 556        goto out;
 557    }
 558    s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
 559    s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
 560    /* For now the page list buffer per command is one page, to hold at most
 561     * s->page_size / sizeof(uint64_t) entries. */
 562    s->max_transfer = MIN_NON_ZERO(s->max_transfer,
 563                          s->page_size / sizeof(uint64_t) * s->page_size);
 564
 565    oncs = le16_to_cpu(id->ctrl.oncs);
 566    s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
 567    s->supports_discard = !!(oncs & NVME_ONCS_DSM);
 568
 569    memset(id, 0, id_size);
 570    cmd.cdw10 = 0;
 571    cmd.nsid = cpu_to_le32(namespace);
 572    if (nvme_admin_cmd_sync(bs, &cmd)) {
 573        error_setg(errp, "Failed to identify namespace");
 574        goto out;
 575    }
 576
 577    s->nsze = le64_to_cpu(id->ns.nsze);
 578    lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
 579
 580    if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
 581            NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
 582                    NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
 583        bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
 584    }
 585
 586    if (lbaf->ms) {
 587        error_setg(errp, "Namespaces with metadata are not yet supported");
 588        goto out;
 589    }
 590
 591    if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
 592        (1 << lbaf->ds) > s->page_size)
 593    {
 594        error_setg(errp, "Namespace has unsupported block size (2^%d)",
 595                   lbaf->ds);
 596        goto out;
 597    }
 598
 599    ret = true;
 600    s->blkshift = lbaf->ds;
 601out:
 602    qemu_vfio_dma_unmap(s->vfio, id);
 603
 604    return ret;
 605}
 606
 607static bool nvme_poll_queue(NVMeQueuePair *q)
 608{
 609    bool progress = false;
 610
 611    const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
 612    NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
 613
 614    trace_nvme_poll_queue(q->s, q->index);
 615    /*
 616     * Do an early check for completions. q->lock isn't needed because
 617     * nvme_process_completion() only runs in the event loop thread and
 618     * cannot race with itself.
 619     */
 620    if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
 621        return false;
 622    }
 623
 624    qemu_mutex_lock(&q->lock);
 625    while (nvme_process_completion(q)) {
 626        /* Keep polling */
 627        progress = true;
 628    }
 629    qemu_mutex_unlock(&q->lock);
 630
 631    return progress;
 632}
 633
 634static bool nvme_poll_queues(BDRVNVMeState *s)
 635{
 636    bool progress = false;
 637    int i;
 638
 639    for (i = 0; i < s->queue_count; i++) {
 640        if (nvme_poll_queue(s->queues[i])) {
 641            progress = true;
 642        }
 643    }
 644    return progress;
 645}
 646
 647static void nvme_handle_event(EventNotifier *n)
 648{
 649    BDRVNVMeState *s = container_of(n, BDRVNVMeState,
 650                                    irq_notifier[MSIX_SHARED_IRQ_IDX]);
 651
 652    trace_nvme_handle_event(s);
 653    event_notifier_test_and_clear(n);
 654    nvme_poll_queues(s);
 655}
 656
 657static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
 658{
 659    BDRVNVMeState *s = bs->opaque;
 660    unsigned n = s->queue_count;
 661    NVMeQueuePair *q;
 662    NvmeCmd cmd;
 663    unsigned queue_size = NVME_QUEUE_SIZE;
 664
 665    assert(n <= UINT16_MAX);
 666    q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
 667                               n, queue_size, errp);
 668    if (!q) {
 669        return false;
 670    }
 671    cmd = (NvmeCmd) {
 672        .opcode = NVME_ADM_CMD_CREATE_CQ,
 673        .dptr.prp1 = cpu_to_le64(q->cq.iova),
 674        .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
 675        .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
 676    };
 677    if (nvme_admin_cmd_sync(bs, &cmd)) {
 678        error_setg(errp, "Failed to create CQ io queue [%u]", n);
 679        goto out_error;
 680    }
 681    cmd = (NvmeCmd) {
 682        .opcode = NVME_ADM_CMD_CREATE_SQ,
 683        .dptr.prp1 = cpu_to_le64(q->sq.iova),
 684        .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
 685        .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
 686    };
 687    if (nvme_admin_cmd_sync(bs, &cmd)) {
 688        error_setg(errp, "Failed to create SQ io queue [%u]", n);
 689        goto out_error;
 690    }
 691    s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
 692    s->queues[n] = q;
 693    s->queue_count++;
 694    return true;
 695out_error:
 696    nvme_free_queue_pair(q);
 697    return false;
 698}
 699
 700static bool nvme_poll_cb(void *opaque)
 701{
 702    EventNotifier *e = opaque;
 703    BDRVNVMeState *s = container_of(e, BDRVNVMeState,
 704                                    irq_notifier[MSIX_SHARED_IRQ_IDX]);
 705
 706    return nvme_poll_queues(s);
 707}
 708
 709static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
 710                     Error **errp)
 711{
 712    BDRVNVMeState *s = bs->opaque;
 713    NVMeQueuePair *q;
 714    AioContext *aio_context = bdrv_get_aio_context(bs);
 715    int ret;
 716    uint64_t cap;
 717    uint32_t ver;
 718    uint64_t timeout_ms;
 719    uint64_t deadline, now;
 720    volatile NvmeBar *regs = NULL;
 721
 722    qemu_co_mutex_init(&s->dma_map_lock);
 723    qemu_co_queue_init(&s->dma_flush_queue);
 724    s->device = g_strdup(device);
 725    s->nsid = namespace;
 726    s->aio_context = bdrv_get_aio_context(bs);
 727    ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
 728    if (ret) {
 729        error_setg(errp, "Failed to init event notifier");
 730        return ret;
 731    }
 732
 733    s->vfio = qemu_vfio_open_pci(device, errp);
 734    if (!s->vfio) {
 735        ret = -EINVAL;
 736        goto out;
 737    }
 738
 739    regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
 740                                 PROT_READ | PROT_WRITE, errp);
 741    if (!regs) {
 742        ret = -EINVAL;
 743        goto out;
 744    }
 745    /* Perform initialize sequence as described in NVMe spec "7.6.1
 746     * Initialization". */
 747
 748    cap = le64_to_cpu(regs->cap);
 749    trace_nvme_controller_capability_raw(cap);
 750    trace_nvme_controller_capability("Maximum Queue Entries Supported",
 751                                     1 + NVME_CAP_MQES(cap));
 752    trace_nvme_controller_capability("Contiguous Queues Required",
 753                                     NVME_CAP_CQR(cap));
 754    trace_nvme_controller_capability("Doorbell Stride",
 755                                     1 << (2 + NVME_CAP_DSTRD(cap)));
 756    trace_nvme_controller_capability("Subsystem Reset Supported",
 757                                     NVME_CAP_NSSRS(cap));
 758    trace_nvme_controller_capability("Memory Page Size Minimum",
 759                                     1 << (12 + NVME_CAP_MPSMIN(cap)));
 760    trace_nvme_controller_capability("Memory Page Size Maximum",
 761                                     1 << (12 + NVME_CAP_MPSMAX(cap)));
 762    if (!NVME_CAP_CSS(cap)) {
 763        error_setg(errp, "Device doesn't support NVMe command set");
 764        ret = -EINVAL;
 765        goto out;
 766    }
 767
 768    s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
 769    s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
 770    bs->bl.opt_mem_alignment = s->page_size;
 771    bs->bl.request_alignment = s->page_size;
 772    timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
 773
 774    ver = le32_to_cpu(regs->vs);
 775    trace_nvme_controller_spec_version(extract32(ver, 16, 16),
 776                                       extract32(ver, 8, 8),
 777                                       extract32(ver, 0, 8));
 778
 779    /* Reset device to get a clean state. */
 780    regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
 781    /* Wait for CSTS.RDY = 0. */
 782    deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
 783    while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
 784        if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
 785            error_setg(errp, "Timeout while waiting for device to reset (%"
 786                             PRId64 " ms)",
 787                       timeout_ms);
 788            ret = -ETIMEDOUT;
 789            goto out;
 790        }
 791    }
 792
 793    s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
 794                                           sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
 795                                           PROT_WRITE, errp);
 796    s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
 797    if (!s->doorbells) {
 798        ret = -EINVAL;
 799        goto out;
 800    }
 801
 802    /* Set up admin queue. */
 803    s->queues = g_new(NVMeQueuePair *, 1);
 804    q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
 805    if (!q) {
 806        ret = -EINVAL;
 807        goto out;
 808    }
 809    s->queues[INDEX_ADMIN] = q;
 810    s->queue_count = 1;
 811    QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
 812    regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
 813                            ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
 814    regs->asq = cpu_to_le64(q->sq.iova);
 815    regs->acq = cpu_to_le64(q->cq.iova);
 816
 817    /* After setting up all control registers we can enable device now. */
 818    regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
 819                           (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
 820                           CC_EN_MASK);
 821    /* Wait for CSTS.RDY = 1. */
 822    now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 823    deadline = now + timeout_ms * SCALE_MS;
 824    while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
 825        if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
 826            error_setg(errp, "Timeout while waiting for device to start (%"
 827                             PRId64 " ms)",
 828                       timeout_ms);
 829            ret = -ETIMEDOUT;
 830            goto out;
 831        }
 832    }
 833
 834    ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
 835                                 VFIO_PCI_MSIX_IRQ_INDEX, errp);
 836    if (ret) {
 837        goto out;
 838    }
 839    aio_set_event_notifier(bdrv_get_aio_context(bs),
 840                           &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
 841                           false, nvme_handle_event, nvme_poll_cb);
 842
 843    if (!nvme_identify(bs, namespace, errp)) {
 844        ret = -EIO;
 845        goto out;
 846    }
 847
 848    /* Set up command queues. */
 849    if (!nvme_add_io_queue(bs, errp)) {
 850        ret = -EIO;
 851    }
 852out:
 853    if (regs) {
 854        qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
 855    }
 856
 857    /* Cleaning up is done in nvme_file_open() upon error. */
 858    return ret;
 859}
 860
 861/* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
 862 *
 863 *     nvme://0000:44:00.0/1
 864 *
 865 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
 866 * is the PCI address, and the last part is the namespace number starting from
 867 * 1 according to the NVMe spec. */
 868static void nvme_parse_filename(const char *filename, QDict *options,
 869                                Error **errp)
 870{
 871    int pref = strlen("nvme://");
 872
 873    if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
 874        const char *tmp = filename + pref;
 875        char *device;
 876        const char *namespace;
 877        unsigned long ns;
 878        const char *slash = strchr(tmp, '/');
 879        if (!slash) {
 880            qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
 881            return;
 882        }
 883        device = g_strndup(tmp, slash - tmp);
 884        qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
 885        g_free(device);
 886        namespace = slash + 1;
 887        if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
 888            error_setg(errp, "Invalid namespace '%s', positive number expected",
 889                       namespace);
 890            return;
 891        }
 892        qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
 893                      *namespace ? namespace : "1");
 894    }
 895}
 896
 897static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
 898                                           Error **errp)
 899{
 900    int ret;
 901    BDRVNVMeState *s = bs->opaque;
 902    NvmeCmd cmd = {
 903        .opcode = NVME_ADM_CMD_SET_FEATURES,
 904        .nsid = cpu_to_le32(s->nsid),
 905        .cdw10 = cpu_to_le32(0x06),
 906        .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
 907    };
 908
 909    ret = nvme_admin_cmd_sync(bs, &cmd);
 910    if (ret) {
 911        error_setg(errp, "Failed to configure NVMe write cache");
 912    }
 913    return ret;
 914}
 915
 916static void nvme_close(BlockDriverState *bs)
 917{
 918    BDRVNVMeState *s = bs->opaque;
 919
 920    for (unsigned i = 0; i < s->queue_count; ++i) {
 921        nvme_free_queue_pair(s->queues[i]);
 922    }
 923    g_free(s->queues);
 924    aio_set_event_notifier(bdrv_get_aio_context(bs),
 925                           &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
 926                           false, NULL, NULL);
 927    event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
 928    qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
 929                            0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
 930    qemu_vfio_close(s->vfio);
 931
 932    g_free(s->device);
 933}
 934
 935static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
 936                          Error **errp)
 937{
 938    const char *device;
 939    QemuOpts *opts;
 940    int namespace;
 941    int ret;
 942    BDRVNVMeState *s = bs->opaque;
 943
 944    bs->supported_write_flags = BDRV_REQ_FUA;
 945
 946    opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
 947    qemu_opts_absorb_qdict(opts, options, &error_abort);
 948    device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
 949    if (!device) {
 950        error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
 951        qemu_opts_del(opts);
 952        return -EINVAL;
 953    }
 954
 955    namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
 956    ret = nvme_init(bs, device, namespace, errp);
 957    qemu_opts_del(opts);
 958    if (ret) {
 959        goto fail;
 960    }
 961    if (flags & BDRV_O_NOCACHE) {
 962        if (!s->write_cache_supported) {
 963            error_setg(errp,
 964                       "NVMe controller doesn't support write cache configuration");
 965            ret = -EINVAL;
 966        } else {
 967            ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
 968                                                  errp);
 969        }
 970        if (ret) {
 971            goto fail;
 972        }
 973    }
 974    return 0;
 975fail:
 976    nvme_close(bs);
 977    return ret;
 978}
 979
 980static int64_t nvme_getlength(BlockDriverState *bs)
 981{
 982    BDRVNVMeState *s = bs->opaque;
 983    return s->nsze << s->blkshift;
 984}
 985
 986static uint32_t nvme_get_blocksize(BlockDriverState *bs)
 987{
 988    BDRVNVMeState *s = bs->opaque;
 989    assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
 990    return UINT32_C(1) << s->blkshift;
 991}
 992
 993static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
 994{
 995    uint32_t blocksize = nvme_get_blocksize(bs);
 996    bsz->phys = blocksize;
 997    bsz->log = blocksize;
 998    return 0;
 999}
1000
1001/* Called with s->dma_map_lock */
1002static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1003                                            QEMUIOVector *qiov)
1004{
1005    int r = 0;
1006    BDRVNVMeState *s = bs->opaque;
1007
1008    s->dma_map_count -= qiov->size;
1009    if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1010        r = qemu_vfio_dma_reset_temporary(s->vfio);
1011        if (!r) {
1012            qemu_co_queue_restart_all(&s->dma_flush_queue);
1013        }
1014    }
1015    return r;
1016}
1017
1018/* Called with s->dma_map_lock */
1019static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1020                                          NVMeRequest *req, QEMUIOVector *qiov)
1021{
1022    BDRVNVMeState *s = bs->opaque;
1023    uint64_t *pagelist = req->prp_list_page;
1024    int i, j, r;
1025    int entries = 0;
1026    Error *local_err = NULL, **errp = NULL;
1027
1028    assert(qiov->size);
1029    assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1030    assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1031    for (i = 0; i < qiov->niov; ++i) {
1032        bool retry = true;
1033        uint64_t iova;
1034        size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1035                                   qemu_real_host_page_size);
1036try_map:
1037        r = qemu_vfio_dma_map(s->vfio,
1038                              qiov->iov[i].iov_base,
1039                              len, true, &iova, errp);
1040        if (r == -ENOSPC) {
1041            /*
1042             * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1043             * ioctl returns -ENOSPC to signal the user exhausted the DMA
1044             * mappings available for a container since Linux kernel commit
1045             * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1046             * April 2019, see CVE-2019-3882).
1047             *
1048             * This block driver already handles this error path by checking
1049             * for the -ENOMEM error, so we directly replace -ENOSPC by
1050             * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1051             * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1052             * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1053             * to add more storage to the blockdev. Not something we can do
1054             * easily with an IOMMU :)
1055             */
1056            r = -ENOMEM;
1057        }
1058        if (r == -ENOMEM && retry) {
1059            /*
1060             * We exhausted the DMA mappings available for our container:
1061             * recycle the volatile IOVA mappings.
1062             */
1063            retry = false;
1064            trace_nvme_dma_flush_queue_wait(s);
1065            if (s->dma_map_count) {
1066                trace_nvme_dma_map_flush(s);
1067                qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1068            } else {
1069                r = qemu_vfio_dma_reset_temporary(s->vfio);
1070                if (r) {
1071                    goto fail;
1072                }
1073            }
1074            errp = &local_err;
1075
1076            goto try_map;
1077        }
1078        if (r) {
1079            goto fail;
1080        }
1081
1082        for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1083            pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1084        }
1085        trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1086                                    qiov->iov[i].iov_len / s->page_size);
1087    }
1088
1089    s->dma_map_count += qiov->size;
1090
1091    assert(entries <= s->page_size / sizeof(uint64_t));
1092    switch (entries) {
1093    case 0:
1094        abort();
1095    case 1:
1096        cmd->dptr.prp1 = pagelist[0];
1097        cmd->dptr.prp2 = 0;
1098        break;
1099    case 2:
1100        cmd->dptr.prp1 = pagelist[0];
1101        cmd->dptr.prp2 = pagelist[1];
1102        break;
1103    default:
1104        cmd->dptr.prp1 = pagelist[0];
1105        cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1106        break;
1107    }
1108    trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1109    for (i = 0; i < entries; ++i) {
1110        trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1111    }
1112    return 0;
1113fail:
1114    /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1115     * increment s->dma_map_count. This is okay for fixed mapping memory areas
1116     * because they are already mapped before calling this function; for
1117     * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1118     * calling qemu_vfio_dma_reset_temporary when necessary. */
1119    if (local_err) {
1120        error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1121    }
1122    return r;
1123}
1124
1125typedef struct {
1126    Coroutine *co;
1127    int ret;
1128    AioContext *ctx;
1129} NVMeCoData;
1130
1131static void nvme_rw_cb_bh(void *opaque)
1132{
1133    NVMeCoData *data = opaque;
1134    qemu_coroutine_enter(data->co);
1135}
1136
1137static void nvme_rw_cb(void *opaque, int ret)
1138{
1139    NVMeCoData *data = opaque;
1140    data->ret = ret;
1141    if (!data->co) {
1142        /* The rw coroutine hasn't yielded, don't try to enter. */
1143        return;
1144    }
1145    replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1146}
1147
1148static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1149                                            uint64_t offset, uint64_t bytes,
1150                                            QEMUIOVector *qiov,
1151                                            bool is_write,
1152                                            int flags)
1153{
1154    int r;
1155    BDRVNVMeState *s = bs->opaque;
1156    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1157    NVMeRequest *req;
1158
1159    uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1160                       (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1161    NvmeCmd cmd = {
1162        .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1163        .nsid = cpu_to_le32(s->nsid),
1164        .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1165        .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1166        .cdw12 = cpu_to_le32(cdw12),
1167    };
1168    NVMeCoData data = {
1169        .ctx = bdrv_get_aio_context(bs),
1170        .ret = -EINPROGRESS,
1171    };
1172
1173    trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1174    assert(s->queue_count > 1);
1175    req = nvme_get_free_req(ioq);
1176    assert(req);
1177
1178    qemu_co_mutex_lock(&s->dma_map_lock);
1179    r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1180    qemu_co_mutex_unlock(&s->dma_map_lock);
1181    if (r) {
1182        nvme_put_free_req_and_wake(ioq, req);
1183        return r;
1184    }
1185    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1186
1187    data.co = qemu_coroutine_self();
1188    while (data.ret == -EINPROGRESS) {
1189        qemu_coroutine_yield();
1190    }
1191
1192    qemu_co_mutex_lock(&s->dma_map_lock);
1193    r = nvme_cmd_unmap_qiov(bs, qiov);
1194    qemu_co_mutex_unlock(&s->dma_map_lock);
1195    if (r) {
1196        return r;
1197    }
1198
1199    trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1200    return data.ret;
1201}
1202
1203static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1204                                     const QEMUIOVector *qiov)
1205{
1206    int i;
1207    BDRVNVMeState *s = bs->opaque;
1208
1209    for (i = 0; i < qiov->niov; ++i) {
1210        if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1211                                 qemu_real_host_page_size) ||
1212            !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size)) {
1213            trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1214                                      qiov->iov[i].iov_len, s->page_size);
1215            return false;
1216        }
1217    }
1218    return true;
1219}
1220
1221static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1222                       QEMUIOVector *qiov, bool is_write, int flags)
1223{
1224    BDRVNVMeState *s = bs->opaque;
1225    int r;
1226    QEMU_AUTO_VFREE uint8_t *buf = NULL;
1227    QEMUIOVector local_qiov;
1228    size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size);
1229    assert(QEMU_IS_ALIGNED(offset, s->page_size));
1230    assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1231    assert(bytes <= s->max_transfer);
1232    if (nvme_qiov_aligned(bs, qiov)) {
1233        s->stats.aligned_accesses++;
1234        return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1235    }
1236    s->stats.unaligned_accesses++;
1237    trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1238    buf = qemu_try_memalign(qemu_real_host_page_size, len);
1239
1240    if (!buf) {
1241        return -ENOMEM;
1242    }
1243    qemu_iovec_init(&local_qiov, 1);
1244    if (is_write) {
1245        qemu_iovec_to_buf(qiov, 0, buf, bytes);
1246    }
1247    qemu_iovec_add(&local_qiov, buf, bytes);
1248    r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1249    qemu_iovec_destroy(&local_qiov);
1250    if (!r && !is_write) {
1251        qemu_iovec_from_buf(qiov, 0, buf, bytes);
1252    }
1253    return r;
1254}
1255
1256static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1257                                       int64_t offset, int64_t bytes,
1258                                       QEMUIOVector *qiov,
1259                                       BdrvRequestFlags flags)
1260{
1261    return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1262}
1263
1264static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1265                                        int64_t offset, int64_t bytes,
1266                                        QEMUIOVector *qiov,
1267                                        BdrvRequestFlags flags)
1268{
1269    return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1270}
1271
1272static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1273{
1274    BDRVNVMeState *s = bs->opaque;
1275    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1276    NVMeRequest *req;
1277    NvmeCmd cmd = {
1278        .opcode = NVME_CMD_FLUSH,
1279        .nsid = cpu_to_le32(s->nsid),
1280    };
1281    NVMeCoData data = {
1282        .ctx = bdrv_get_aio_context(bs),
1283        .ret = -EINPROGRESS,
1284    };
1285
1286    assert(s->queue_count > 1);
1287    req = nvme_get_free_req(ioq);
1288    assert(req);
1289    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1290
1291    data.co = qemu_coroutine_self();
1292    if (data.ret == -EINPROGRESS) {
1293        qemu_coroutine_yield();
1294    }
1295
1296    return data.ret;
1297}
1298
1299
1300static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1301                                              int64_t offset,
1302                                              int64_t bytes,
1303                                              BdrvRequestFlags flags)
1304{
1305    BDRVNVMeState *s = bs->opaque;
1306    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1307    NVMeRequest *req;
1308    uint32_t cdw12;
1309
1310    if (!s->supports_write_zeroes) {
1311        return -ENOTSUP;
1312    }
1313
1314    if (bytes == 0) {
1315        return 0;
1316    }
1317
1318    cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1319    /*
1320     * We should not lose information. pwrite_zeroes_alignment and
1321     * max_pwrite_zeroes guarantees it.
1322     */
1323    assert(((cdw12 + 1) << s->blkshift) == bytes);
1324
1325    NvmeCmd cmd = {
1326        .opcode = NVME_CMD_WRITE_ZEROES,
1327        .nsid = cpu_to_le32(s->nsid),
1328        .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1329        .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1330    };
1331
1332    NVMeCoData data = {
1333        .ctx = bdrv_get_aio_context(bs),
1334        .ret = -EINPROGRESS,
1335    };
1336
1337    if (flags & BDRV_REQ_MAY_UNMAP) {
1338        cdw12 |= (1 << 25);
1339    }
1340
1341    if (flags & BDRV_REQ_FUA) {
1342        cdw12 |= (1 << 30);
1343    }
1344
1345    cmd.cdw12 = cpu_to_le32(cdw12);
1346
1347    trace_nvme_write_zeroes(s, offset, bytes, flags);
1348    assert(s->queue_count > 1);
1349    req = nvme_get_free_req(ioq);
1350    assert(req);
1351
1352    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1353
1354    data.co = qemu_coroutine_self();
1355    while (data.ret == -EINPROGRESS) {
1356        qemu_coroutine_yield();
1357    }
1358
1359    trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1360    return data.ret;
1361}
1362
1363
1364static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1365                                         int64_t offset,
1366                                         int64_t bytes)
1367{
1368    BDRVNVMeState *s = bs->opaque;
1369    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1370    NVMeRequest *req;
1371    QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1372    QEMUIOVector local_qiov;
1373    int ret;
1374
1375    NvmeCmd cmd = {
1376        .opcode = NVME_CMD_DSM,
1377        .nsid = cpu_to_le32(s->nsid),
1378        .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1379        .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1380    };
1381
1382    NVMeCoData data = {
1383        .ctx = bdrv_get_aio_context(bs),
1384        .ret = -EINPROGRESS,
1385    };
1386
1387    if (!s->supports_discard) {
1388        return -ENOTSUP;
1389    }
1390
1391    assert(s->queue_count > 1);
1392
1393    /*
1394     * Filling the @buf requires @offset and @bytes to satisfy restrictions
1395     * defined in nvme_refresh_limits().
1396     */
1397    assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1398    assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1399    assert((bytes >> s->blkshift) <= UINT32_MAX);
1400
1401    buf = qemu_try_memalign(s->page_size, s->page_size);
1402    if (!buf) {
1403        return -ENOMEM;
1404    }
1405    memset(buf, 0, s->page_size);
1406    buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1407    buf->slba = cpu_to_le64(offset >> s->blkshift);
1408    buf->cattr = 0;
1409
1410    qemu_iovec_init(&local_qiov, 1);
1411    qemu_iovec_add(&local_qiov, buf, 4096);
1412
1413    req = nvme_get_free_req(ioq);
1414    assert(req);
1415
1416    qemu_co_mutex_lock(&s->dma_map_lock);
1417    ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1418    qemu_co_mutex_unlock(&s->dma_map_lock);
1419
1420    if (ret) {
1421        nvme_put_free_req_and_wake(ioq, req);
1422        goto out;
1423    }
1424
1425    trace_nvme_dsm(s, offset, bytes);
1426
1427    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1428
1429    data.co = qemu_coroutine_self();
1430    while (data.ret == -EINPROGRESS) {
1431        qemu_coroutine_yield();
1432    }
1433
1434    qemu_co_mutex_lock(&s->dma_map_lock);
1435    ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1436    qemu_co_mutex_unlock(&s->dma_map_lock);
1437
1438    if (ret) {
1439        goto out;
1440    }
1441
1442    ret = data.ret;
1443    trace_nvme_dsm_done(s, offset, bytes, ret);
1444out:
1445    qemu_iovec_destroy(&local_qiov);
1446    return ret;
1447
1448}
1449
1450static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1451                                         bool exact, PreallocMode prealloc,
1452                                         BdrvRequestFlags flags, Error **errp)
1453{
1454    int64_t cur_length;
1455
1456    if (prealloc != PREALLOC_MODE_OFF) {
1457        error_setg(errp, "Unsupported preallocation mode '%s'",
1458                   PreallocMode_str(prealloc));
1459        return -ENOTSUP;
1460    }
1461
1462    cur_length = nvme_getlength(bs);
1463    if (offset != cur_length && exact) {
1464        error_setg(errp, "Cannot resize NVMe devices");
1465        return -ENOTSUP;
1466    } else if (offset > cur_length) {
1467        error_setg(errp, "Cannot grow NVMe devices");
1468        return -EINVAL;
1469    }
1470
1471    return 0;
1472}
1473
1474static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1475                               BlockReopenQueue *queue, Error **errp)
1476{
1477    return 0;
1478}
1479
1480static void nvme_refresh_filename(BlockDriverState *bs)
1481{
1482    BDRVNVMeState *s = bs->opaque;
1483
1484    snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1485             s->device, s->nsid);
1486}
1487
1488static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1489{
1490    BDRVNVMeState *s = bs->opaque;
1491
1492    bs->bl.opt_mem_alignment = s->page_size;
1493    bs->bl.request_alignment = s->page_size;
1494    bs->bl.max_transfer = s->max_transfer;
1495
1496    /*
1497     * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1498     * at most 0xFFFF
1499     */
1500    bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1501    bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1502                                         1UL << s->blkshift);
1503
1504    bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1505    bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1506                                    1UL << s->blkshift);
1507}
1508
1509static void nvme_detach_aio_context(BlockDriverState *bs)
1510{
1511    BDRVNVMeState *s = bs->opaque;
1512
1513    for (unsigned i = 0; i < s->queue_count; i++) {
1514        NVMeQueuePair *q = s->queues[i];
1515
1516        qemu_bh_delete(q->completion_bh);
1517        q->completion_bh = NULL;
1518    }
1519
1520    aio_set_event_notifier(bdrv_get_aio_context(bs),
1521                           &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1522                           false, NULL, NULL);
1523}
1524
1525static void nvme_attach_aio_context(BlockDriverState *bs,
1526                                    AioContext *new_context)
1527{
1528    BDRVNVMeState *s = bs->opaque;
1529
1530    s->aio_context = new_context;
1531    aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1532                           false, nvme_handle_event, nvme_poll_cb);
1533
1534    for (unsigned i = 0; i < s->queue_count; i++) {
1535        NVMeQueuePair *q = s->queues[i];
1536
1537        q->completion_bh =
1538            aio_bh_new(new_context, nvme_process_completion_bh, q);
1539    }
1540}
1541
1542static void nvme_aio_plug(BlockDriverState *bs)
1543{
1544    BDRVNVMeState *s = bs->opaque;
1545    assert(!s->plugged);
1546    s->plugged = true;
1547}
1548
1549static void nvme_aio_unplug(BlockDriverState *bs)
1550{
1551    BDRVNVMeState *s = bs->opaque;
1552    assert(s->plugged);
1553    s->plugged = false;
1554    for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) {
1555        NVMeQueuePair *q = s->queues[i];
1556        qemu_mutex_lock(&q->lock);
1557        nvme_kick(q);
1558        nvme_process_completion(q);
1559        qemu_mutex_unlock(&q->lock);
1560    }
1561}
1562
1563static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1564{
1565    int ret;
1566    Error *local_err = NULL;
1567    BDRVNVMeState *s = bs->opaque;
1568
1569    ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, &local_err);
1570    if (ret) {
1571        /* FIXME: we may run out of IOVA addresses after repeated
1572         * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1573         * doesn't reclaim addresses for fixed mappings. */
1574        error_reportf_err(local_err, "nvme_register_buf failed: ");
1575    }
1576}
1577
1578static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1579{
1580    BDRVNVMeState *s = bs->opaque;
1581
1582    qemu_vfio_dma_unmap(s->vfio, host);
1583}
1584
1585static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1586{
1587    BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1588    BDRVNVMeState *s = bs->opaque;
1589
1590    stats->driver = BLOCKDEV_DRIVER_NVME;
1591    stats->u.nvme = (BlockStatsSpecificNvme) {
1592        .completion_errors = s->stats.completion_errors,
1593        .aligned_accesses = s->stats.aligned_accesses,
1594        .unaligned_accesses = s->stats.unaligned_accesses,
1595    };
1596
1597    return stats;
1598}
1599
1600static const char *const nvme_strong_runtime_opts[] = {
1601    NVME_BLOCK_OPT_DEVICE,
1602    NVME_BLOCK_OPT_NAMESPACE,
1603
1604    NULL
1605};
1606
1607static BlockDriver bdrv_nvme = {
1608    .format_name              = "nvme",
1609    .protocol_name            = "nvme",
1610    .instance_size            = sizeof(BDRVNVMeState),
1611
1612    .bdrv_co_create_opts      = bdrv_co_create_opts_simple,
1613    .create_opts              = &bdrv_create_opts_simple,
1614
1615    .bdrv_parse_filename      = nvme_parse_filename,
1616    .bdrv_file_open           = nvme_file_open,
1617    .bdrv_close               = nvme_close,
1618    .bdrv_getlength           = nvme_getlength,
1619    .bdrv_probe_blocksizes    = nvme_probe_blocksizes,
1620    .bdrv_co_truncate         = nvme_co_truncate,
1621
1622    .bdrv_co_preadv           = nvme_co_preadv,
1623    .bdrv_co_pwritev          = nvme_co_pwritev,
1624
1625    .bdrv_co_pwrite_zeroes    = nvme_co_pwrite_zeroes,
1626    .bdrv_co_pdiscard         = nvme_co_pdiscard,
1627
1628    .bdrv_co_flush_to_disk    = nvme_co_flush,
1629    .bdrv_reopen_prepare      = nvme_reopen_prepare,
1630
1631    .bdrv_refresh_filename    = nvme_refresh_filename,
1632    .bdrv_refresh_limits      = nvme_refresh_limits,
1633    .strong_runtime_opts      = nvme_strong_runtime_opts,
1634    .bdrv_get_specific_stats  = nvme_get_specific_stats,
1635
1636    .bdrv_detach_aio_context  = nvme_detach_aio_context,
1637    .bdrv_attach_aio_context  = nvme_attach_aio_context,
1638
1639    .bdrv_io_plug             = nvme_aio_plug,
1640    .bdrv_io_unplug           = nvme_aio_unplug,
1641
1642    .bdrv_register_buf        = nvme_register_buf,
1643    .bdrv_unregister_buf      = nvme_unregister_buf,
1644};
1645
1646static void bdrv_nvme_init(void)
1647{
1648    bdrv_register(&bdrv_nvme);
1649}
1650
1651block_init(bdrv_nvme_init);
1652