qemu/block/qcow2-cluster.c
<<
>>
Prefs
   1/*
   2 * Block driver for the QCOW version 2 format
   3 *
   4 * Copyright (c) 2004-2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include <zlib.h>
  27
  28#include "qapi/error.h"
  29#include "qcow2.h"
  30#include "qemu/bswap.h"
  31#include "trace.h"
  32
  33int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
  34{
  35    BDRVQcow2State *s = bs->opaque;
  36    int new_l1_size, i, ret;
  37
  38    if (exact_size >= s->l1_size) {
  39        return 0;
  40    }
  41
  42    new_l1_size = exact_size;
  43
  44#ifdef DEBUG_ALLOC2
  45    fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
  46#endif
  47
  48    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
  49    ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
  50                                       new_l1_size * L1E_SIZE,
  51                             (s->l1_size - new_l1_size) * L1E_SIZE, 0);
  52    if (ret < 0) {
  53        goto fail;
  54    }
  55
  56    ret = bdrv_flush(bs->file->bs);
  57    if (ret < 0) {
  58        goto fail;
  59    }
  60
  61    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
  62    for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
  63        if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
  64            continue;
  65        }
  66        qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
  67                            s->cluster_size, QCOW2_DISCARD_ALWAYS);
  68        s->l1_table[i] = 0;
  69    }
  70    return 0;
  71
  72fail:
  73    /*
  74     * If the write in the l1_table failed the image may contain a partially
  75     * overwritten l1_table. In this case it would be better to clear the
  76     * l1_table in memory to avoid possible image corruption.
  77     */
  78    memset(s->l1_table + new_l1_size, 0,
  79           (s->l1_size - new_l1_size) * L1E_SIZE);
  80    return ret;
  81}
  82
  83int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
  84                        bool exact_size)
  85{
  86    BDRVQcow2State *s = bs->opaque;
  87    int new_l1_size2, ret, i;
  88    uint64_t *new_l1_table;
  89    int64_t old_l1_table_offset, old_l1_size;
  90    int64_t new_l1_table_offset, new_l1_size;
  91    uint8_t data[12];
  92
  93    if (min_size <= s->l1_size)
  94        return 0;
  95
  96    /* Do a sanity check on min_size before trying to calculate new_l1_size
  97     * (this prevents overflows during the while loop for the calculation of
  98     * new_l1_size) */
  99    if (min_size > INT_MAX / L1E_SIZE) {
 100        return -EFBIG;
 101    }
 102
 103    if (exact_size) {
 104        new_l1_size = min_size;
 105    } else {
 106        /* Bump size up to reduce the number of times we have to grow */
 107        new_l1_size = s->l1_size;
 108        if (new_l1_size == 0) {
 109            new_l1_size = 1;
 110        }
 111        while (min_size > new_l1_size) {
 112            new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
 113        }
 114    }
 115
 116    QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
 117    if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
 118        return -EFBIG;
 119    }
 120
 121#ifdef DEBUG_ALLOC2
 122    fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
 123            s->l1_size, new_l1_size);
 124#endif
 125
 126    new_l1_size2 = L1E_SIZE * new_l1_size;
 127    new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
 128    if (new_l1_table == NULL) {
 129        return -ENOMEM;
 130    }
 131    memset(new_l1_table, 0, new_l1_size2);
 132
 133    if (s->l1_size) {
 134        memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE);
 135    }
 136
 137    /* write new table (align to cluster) */
 138    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
 139    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
 140    if (new_l1_table_offset < 0) {
 141        qemu_vfree(new_l1_table);
 142        return new_l1_table_offset;
 143    }
 144
 145    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 146    if (ret < 0) {
 147        goto fail;
 148    }
 149
 150    /* the L1 position has not yet been updated, so these clusters must
 151     * indeed be completely free */
 152    ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
 153                                        new_l1_size2, false);
 154    if (ret < 0) {
 155        goto fail;
 156    }
 157
 158    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
 159    for(i = 0; i < s->l1_size; i++)
 160        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
 161    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
 162                           new_l1_table, new_l1_size2);
 163    if (ret < 0)
 164        goto fail;
 165    for(i = 0; i < s->l1_size; i++)
 166        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
 167
 168    /* set new table */
 169    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
 170    stl_be_p(data, new_l1_size);
 171    stq_be_p(data + 4, new_l1_table_offset);
 172    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
 173                           data, sizeof(data));
 174    if (ret < 0) {
 175        goto fail;
 176    }
 177    qemu_vfree(s->l1_table);
 178    old_l1_table_offset = s->l1_table_offset;
 179    s->l1_table_offset = new_l1_table_offset;
 180    s->l1_table = new_l1_table;
 181    old_l1_size = s->l1_size;
 182    s->l1_size = new_l1_size;
 183    qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE,
 184                        QCOW2_DISCARD_OTHER);
 185    return 0;
 186 fail:
 187    qemu_vfree(new_l1_table);
 188    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
 189                        QCOW2_DISCARD_OTHER);
 190    return ret;
 191}
 192
 193/*
 194 * l2_load
 195 *
 196 * @bs: The BlockDriverState
 197 * @offset: A guest offset, used to calculate what slice of the L2
 198 *          table to load.
 199 * @l2_offset: Offset to the L2 table in the image file.
 200 * @l2_slice: Location to store the pointer to the L2 slice.
 201 *
 202 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
 203 * that are loaded by the qcow2 cache). If the slice is in the cache,
 204 * the cache is used; otherwise the L2 slice is loaded from the image
 205 * file.
 206 */
 207static int l2_load(BlockDriverState *bs, uint64_t offset,
 208                   uint64_t l2_offset, uint64_t **l2_slice)
 209{
 210    BDRVQcow2State *s = bs->opaque;
 211    int start_of_slice = l2_entry_size(s) *
 212        (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
 213
 214    return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
 215                           (void **)l2_slice);
 216}
 217
 218/*
 219 * Writes an L1 entry to disk (note that depending on the alignment
 220 * requirements this function may write more that just one entry in
 221 * order to prevent bdrv_pwrite from performing a read-modify-write)
 222 */
 223int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
 224{
 225    BDRVQcow2State *s = bs->opaque;
 226    int l1_start_index;
 227    int i, ret;
 228    int bufsize = MAX(L1E_SIZE,
 229                      MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
 230    int nentries = bufsize / L1E_SIZE;
 231    g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
 232
 233    if (buf == NULL) {
 234        return -ENOMEM;
 235    }
 236
 237    l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
 238    for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
 239        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
 240    }
 241
 242    ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
 243            s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false);
 244    if (ret < 0) {
 245        return ret;
 246    }
 247
 248    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
 249    ret = bdrv_pwrite_sync(bs->file,
 250                           s->l1_table_offset + L1E_SIZE * l1_start_index,
 251                           buf, bufsize);
 252    if (ret < 0) {
 253        return ret;
 254    }
 255
 256    return 0;
 257}
 258
 259/*
 260 * l2_allocate
 261 *
 262 * Allocate a new l2 entry in the file. If l1_index points to an already
 263 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
 264 * table) copy the contents of the old L2 table into the newly allocated one.
 265 * Otherwise the new table is initialized with zeros.
 266 *
 267 */
 268
 269static int l2_allocate(BlockDriverState *bs, int l1_index)
 270{
 271    BDRVQcow2State *s = bs->opaque;
 272    uint64_t old_l2_offset;
 273    uint64_t *l2_slice = NULL;
 274    unsigned slice, slice_size2, n_slices;
 275    int64_t l2_offset;
 276    int ret;
 277
 278    old_l2_offset = s->l1_table[l1_index];
 279
 280    trace_qcow2_l2_allocate(bs, l1_index);
 281
 282    /* allocate a new l2 entry */
 283
 284    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s));
 285    if (l2_offset < 0) {
 286        ret = l2_offset;
 287        goto fail;
 288    }
 289
 290    /* The offset must fit in the offset field of the L1 table entry */
 291    assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
 292
 293    /* If we're allocating the table at offset 0 then something is wrong */
 294    if (l2_offset == 0) {
 295        qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
 296                                "allocation of L2 table at offset 0");
 297        ret = -EIO;
 298        goto fail;
 299    }
 300
 301    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 302    if (ret < 0) {
 303        goto fail;
 304    }
 305
 306    /* allocate a new entry in the l2 cache */
 307
 308    slice_size2 = s->l2_slice_size * l2_entry_size(s);
 309    n_slices = s->cluster_size / slice_size2;
 310
 311    trace_qcow2_l2_allocate_get_empty(bs, l1_index);
 312    for (slice = 0; slice < n_slices; slice++) {
 313        ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
 314                                    l2_offset + slice * slice_size2,
 315                                    (void **) &l2_slice);
 316        if (ret < 0) {
 317            goto fail;
 318        }
 319
 320        if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
 321            /* if there was no old l2 table, clear the new slice */
 322            memset(l2_slice, 0, slice_size2);
 323        } else {
 324            uint64_t *old_slice;
 325            uint64_t old_l2_slice_offset =
 326                (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
 327
 328            /* if there was an old l2 table, read a slice from the disk */
 329            BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
 330            ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
 331                                  (void **) &old_slice);
 332            if (ret < 0) {
 333                goto fail;
 334            }
 335
 336            memcpy(l2_slice, old_slice, slice_size2);
 337
 338            qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
 339        }
 340
 341        /* write the l2 slice to the file */
 342        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
 343
 344        trace_qcow2_l2_allocate_write_l2(bs, l1_index);
 345        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 346        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 347    }
 348
 349    ret = qcow2_cache_flush(bs, s->l2_table_cache);
 350    if (ret < 0) {
 351        goto fail;
 352    }
 353
 354    /* update the L1 entry */
 355    trace_qcow2_l2_allocate_write_l1(bs, l1_index);
 356    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
 357    ret = qcow2_write_l1_entry(bs, l1_index);
 358    if (ret < 0) {
 359        goto fail;
 360    }
 361
 362    trace_qcow2_l2_allocate_done(bs, l1_index, 0);
 363    return 0;
 364
 365fail:
 366    trace_qcow2_l2_allocate_done(bs, l1_index, ret);
 367    if (l2_slice != NULL) {
 368        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 369    }
 370    s->l1_table[l1_index] = old_l2_offset;
 371    if (l2_offset > 0) {
 372        qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
 373                            QCOW2_DISCARD_ALWAYS);
 374    }
 375    return ret;
 376}
 377
 378/*
 379 * For a given L2 entry, count the number of contiguous subclusters of
 380 * the same type starting from @sc_from. Compressed clusters are
 381 * treated as if they were divided into subclusters of size
 382 * s->subcluster_size.
 383 *
 384 * Return the number of contiguous subclusters and set @type to the
 385 * subcluster type.
 386 *
 387 * If the L2 entry is invalid return -errno and set @type to
 388 * QCOW2_SUBCLUSTER_INVALID.
 389 */
 390static int qcow2_get_subcluster_range_type(BlockDriverState *bs,
 391                                           uint64_t l2_entry,
 392                                           uint64_t l2_bitmap,
 393                                           unsigned sc_from,
 394                                           QCow2SubclusterType *type)
 395{
 396    BDRVQcow2State *s = bs->opaque;
 397    uint32_t val;
 398
 399    *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from);
 400
 401    if (*type == QCOW2_SUBCLUSTER_INVALID) {
 402        return -EINVAL;
 403    } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) {
 404        return s->subclusters_per_cluster - sc_from;
 405    }
 406
 407    switch (*type) {
 408    case QCOW2_SUBCLUSTER_NORMAL:
 409        val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
 410        return cto32(val) - sc_from;
 411
 412    case QCOW2_SUBCLUSTER_ZERO_PLAIN:
 413    case QCOW2_SUBCLUSTER_ZERO_ALLOC:
 414        val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32;
 415        return cto32(val) - sc_from;
 416
 417    case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
 418    case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
 419        val = ((l2_bitmap >> 32) | l2_bitmap)
 420            & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
 421        return ctz32(val) - sc_from;
 422
 423    default:
 424        g_assert_not_reached();
 425    }
 426}
 427
 428/*
 429 * Return the number of contiguous subclusters of the exact same type
 430 * in a given L2 slice, starting from cluster @l2_index, subcluster
 431 * @sc_index. Allocated subclusters are required to be contiguous in
 432 * the image file.
 433 * At most @nb_clusters are checked (note that this means clusters,
 434 * not subclusters).
 435 * Compressed clusters are always processed one by one but for the
 436 * purpose of this count they are treated as if they were divided into
 437 * subclusters of size s->subcluster_size.
 438 * On failure return -errno and update @l2_index to point to the
 439 * invalid entry.
 440 */
 441static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters,
 442                                        unsigned sc_index, uint64_t *l2_slice,
 443                                        unsigned *l2_index)
 444{
 445    BDRVQcow2State *s = bs->opaque;
 446    int i, count = 0;
 447    bool check_offset = false;
 448    uint64_t expected_offset = 0;
 449    QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type;
 450
 451    assert(*l2_index + nb_clusters <= s->l2_slice_size);
 452
 453    for (i = 0; i < nb_clusters; i++) {
 454        unsigned first_sc = (i == 0) ? sc_index : 0;
 455        uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i);
 456        uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i);
 457        int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
 458                                                  first_sc, &type);
 459        if (ret < 0) {
 460            *l2_index += i; /* Point to the invalid entry */
 461            return -EIO;
 462        }
 463        if (i == 0) {
 464            if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
 465                /* Compressed clusters are always processed one by one */
 466                return ret;
 467            }
 468            expected_type = type;
 469            expected_offset = l2_entry & L2E_OFFSET_MASK;
 470            check_offset = (type == QCOW2_SUBCLUSTER_NORMAL ||
 471                            type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
 472                            type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC);
 473        } else if (type != expected_type) {
 474            break;
 475        } else if (check_offset) {
 476            expected_offset += s->cluster_size;
 477            if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
 478                break;
 479            }
 480        }
 481        count += ret;
 482        /* Stop if there are type changes before the end of the cluster */
 483        if (first_sc + ret < s->subclusters_per_cluster) {
 484            break;
 485        }
 486    }
 487
 488    return count;
 489}
 490
 491static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
 492                                            uint64_t src_cluster_offset,
 493                                            unsigned offset_in_cluster,
 494                                            QEMUIOVector *qiov)
 495{
 496    int ret;
 497
 498    if (qiov->size == 0) {
 499        return 0;
 500    }
 501
 502    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
 503
 504    if (!bs->drv) {
 505        return -ENOMEDIUM;
 506    }
 507
 508    /*
 509     * We never deal with requests that don't satisfy
 510     * bdrv_check_qiov_request(), and aligning requests to clusters never
 511     * breaks this condition. So, do some assertions before calling
 512     * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
 513     */
 514    assert(src_cluster_offset <= INT64_MAX);
 515    assert(src_cluster_offset + offset_in_cluster <= INT64_MAX);
 516    /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */
 517    assert((uint64_t)qiov->size <= INT64_MAX);
 518    bdrv_check_qiov_request(src_cluster_offset + offset_in_cluster, qiov->size,
 519                            qiov, 0, &error_abort);
 520    /*
 521     * Call .bdrv_co_readv() directly instead of using the public block-layer
 522     * interface.  This avoids double I/O throttling and request tracking,
 523     * which can lead to deadlock when block layer copy-on-read is enabled.
 524     */
 525    ret = bs->drv->bdrv_co_preadv_part(bs,
 526                                       src_cluster_offset + offset_in_cluster,
 527                                       qiov->size, qiov, 0, 0);
 528    if (ret < 0) {
 529        return ret;
 530    }
 531
 532    return 0;
 533}
 534
 535static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
 536                                             uint64_t cluster_offset,
 537                                             unsigned offset_in_cluster,
 538                                             QEMUIOVector *qiov)
 539{
 540    BDRVQcow2State *s = bs->opaque;
 541    int ret;
 542
 543    if (qiov->size == 0) {
 544        return 0;
 545    }
 546
 547    ret = qcow2_pre_write_overlap_check(bs, 0,
 548            cluster_offset + offset_in_cluster, qiov->size, true);
 549    if (ret < 0) {
 550        return ret;
 551    }
 552
 553    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
 554    ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
 555                          qiov->size, qiov, 0);
 556    if (ret < 0) {
 557        return ret;
 558    }
 559
 560    return 0;
 561}
 562
 563
 564/*
 565 * get_host_offset
 566 *
 567 * For a given offset of the virtual disk find the equivalent host
 568 * offset in the qcow2 file and store it in *host_offset. Neither
 569 * offset needs to be aligned to a cluster boundary.
 570 *
 571 * If the cluster is unallocated then *host_offset will be 0.
 572 * If the cluster is compressed then *host_offset will contain the l2 entry.
 573 *
 574 * On entry, *bytes is the maximum number of contiguous bytes starting at
 575 * offset that we are interested in.
 576 *
 577 * On exit, *bytes is the number of bytes starting at offset that have the same
 578 * subcluster type and (if applicable) are stored contiguously in the image
 579 * file. The subcluster type is stored in *subcluster_type.
 580 * Compressed clusters are always processed one by one.
 581 *
 582 * Returns 0 on success, -errno in error cases.
 583 */
 584int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
 585                          unsigned int *bytes, uint64_t *host_offset,
 586                          QCow2SubclusterType *subcluster_type)
 587{
 588    BDRVQcow2State *s = bs->opaque;
 589    unsigned int l2_index, sc_index;
 590    uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap;
 591    int sc;
 592    unsigned int offset_in_cluster;
 593    uint64_t bytes_available, bytes_needed, nb_clusters;
 594    QCow2SubclusterType type;
 595    int ret;
 596
 597    offset_in_cluster = offset_into_cluster(s, offset);
 598    bytes_needed = (uint64_t) *bytes + offset_in_cluster;
 599
 600    /* compute how many bytes there are between the start of the cluster
 601     * containing offset and the end of the l2 slice that contains
 602     * the entry pointing to it */
 603    bytes_available =
 604        ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
 605        << s->cluster_bits;
 606
 607    if (bytes_needed > bytes_available) {
 608        bytes_needed = bytes_available;
 609    }
 610
 611    *host_offset = 0;
 612
 613    /* seek to the l2 offset in the l1 table */
 614
 615    l1_index = offset_to_l1_index(s, offset);
 616    if (l1_index >= s->l1_size) {
 617        type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
 618        goto out;
 619    }
 620
 621    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 622    if (!l2_offset) {
 623        type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
 624        goto out;
 625    }
 626
 627    if (offset_into_cluster(s, l2_offset)) {
 628        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 629                                " unaligned (L1 index: %#" PRIx64 ")",
 630                                l2_offset, l1_index);
 631        return -EIO;
 632    }
 633
 634    /* load the l2 slice in memory */
 635
 636    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 637    if (ret < 0) {
 638        return ret;
 639    }
 640
 641    /* find the cluster offset for the given disk offset */
 642
 643    l2_index = offset_to_l2_slice_index(s, offset);
 644    sc_index = offset_to_sc_index(s, offset);
 645    l2_entry = get_l2_entry(s, l2_slice, l2_index);
 646    l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
 647
 648    nb_clusters = size_to_clusters(s, bytes_needed);
 649    /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
 650     * integers; the minimum cluster size is 512, so this assertion is always
 651     * true */
 652    assert(nb_clusters <= INT_MAX);
 653
 654    type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
 655    if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
 656                                type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
 657        qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
 658                                " in pre-v3 image (L2 offset: %#" PRIx64
 659                                ", L2 index: %#x)", l2_offset, l2_index);
 660        ret = -EIO;
 661        goto fail;
 662    }
 663    switch (type) {
 664    case QCOW2_SUBCLUSTER_INVALID:
 665        break; /* This is handled by count_contiguous_subclusters() below */
 666    case QCOW2_SUBCLUSTER_COMPRESSED:
 667        if (has_data_file(bs)) {
 668            qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
 669                                    "entry found in image with external data "
 670                                    "file (L2 offset: %#" PRIx64 ", L2 index: "
 671                                    "%#x)", l2_offset, l2_index);
 672            ret = -EIO;
 673            goto fail;
 674        }
 675        *host_offset = l2_entry;
 676        break;
 677    case QCOW2_SUBCLUSTER_ZERO_PLAIN:
 678    case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
 679        break;
 680    case QCOW2_SUBCLUSTER_ZERO_ALLOC:
 681    case QCOW2_SUBCLUSTER_NORMAL:
 682    case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: {
 683        uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
 684        *host_offset = host_cluster_offset + offset_in_cluster;
 685        if (offset_into_cluster(s, host_cluster_offset)) {
 686            qcow2_signal_corruption(bs, true, -1, -1,
 687                                    "Cluster allocation offset %#"
 688                                    PRIx64 " unaligned (L2 offset: %#" PRIx64
 689                                    ", L2 index: %#x)", host_cluster_offset,
 690                                    l2_offset, l2_index);
 691            ret = -EIO;
 692            goto fail;
 693        }
 694        if (has_data_file(bs) && *host_offset != offset) {
 695            qcow2_signal_corruption(bs, true, -1, -1,
 696                                    "External data file host cluster offset %#"
 697                                    PRIx64 " does not match guest cluster "
 698                                    "offset: %#" PRIx64
 699                                    ", L2 index: %#x)", host_cluster_offset,
 700                                    offset - offset_in_cluster, l2_index);
 701            ret = -EIO;
 702            goto fail;
 703        }
 704        break;
 705    }
 706    default:
 707        abort();
 708    }
 709
 710    sc = count_contiguous_subclusters(bs, nb_clusters, sc_index,
 711                                      l2_slice, &l2_index);
 712    if (sc < 0) {
 713        qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found "
 714                                " (L2 offset: %#" PRIx64 ", L2 index: %#x)",
 715                                l2_offset, l2_index);
 716        ret = -EIO;
 717        goto fail;
 718    }
 719    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 720
 721    bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits;
 722
 723out:
 724    if (bytes_available > bytes_needed) {
 725        bytes_available = bytes_needed;
 726    }
 727
 728    /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
 729     * subtracting offset_in_cluster will therefore definitely yield something
 730     * not exceeding UINT_MAX */
 731    assert(bytes_available - offset_in_cluster <= UINT_MAX);
 732    *bytes = bytes_available - offset_in_cluster;
 733
 734    *subcluster_type = type;
 735
 736    return 0;
 737
 738fail:
 739    qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
 740    return ret;
 741}
 742
 743/*
 744 * get_cluster_table
 745 *
 746 * for a given disk offset, load (and allocate if needed)
 747 * the appropriate slice of its l2 table.
 748 *
 749 * the cluster index in the l2 slice is given to the caller.
 750 *
 751 * Returns 0 on success, -errno in failure case
 752 */
 753static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
 754                             uint64_t **new_l2_slice,
 755                             int *new_l2_index)
 756{
 757    BDRVQcow2State *s = bs->opaque;
 758    unsigned int l2_index;
 759    uint64_t l1_index, l2_offset;
 760    uint64_t *l2_slice = NULL;
 761    int ret;
 762
 763    /* seek to the l2 offset in the l1 table */
 764
 765    l1_index = offset_to_l1_index(s, offset);
 766    if (l1_index >= s->l1_size) {
 767        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
 768        if (ret < 0) {
 769            return ret;
 770        }
 771    }
 772
 773    assert(l1_index < s->l1_size);
 774    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 775    if (offset_into_cluster(s, l2_offset)) {
 776        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 777                                " unaligned (L1 index: %#" PRIx64 ")",
 778                                l2_offset, l1_index);
 779        return -EIO;
 780    }
 781
 782    if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
 783        /* First allocate a new L2 table (and do COW if needed) */
 784        ret = l2_allocate(bs, l1_index);
 785        if (ret < 0) {
 786            return ret;
 787        }
 788
 789        /* Then decrease the refcount of the old table */
 790        if (l2_offset) {
 791            qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
 792                                QCOW2_DISCARD_OTHER);
 793        }
 794
 795        /* Get the offset of the newly-allocated l2 table */
 796        l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 797        assert(offset_into_cluster(s, l2_offset) == 0);
 798    }
 799
 800    /* load the l2 slice in memory */
 801    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 802    if (ret < 0) {
 803        return ret;
 804    }
 805
 806    /* find the cluster offset for the given disk offset */
 807
 808    l2_index = offset_to_l2_slice_index(s, offset);
 809
 810    *new_l2_slice = l2_slice;
 811    *new_l2_index = l2_index;
 812
 813    return 0;
 814}
 815
 816/*
 817 * alloc_compressed_cluster_offset
 818 *
 819 * For a given offset on the virtual disk, allocate a new compressed cluster
 820 * and put the host offset of the cluster into *host_offset. If a cluster is
 821 * already allocated at the offset, return an error.
 822 *
 823 * Return 0 on success and -errno in error cases
 824 */
 825int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
 826                                          uint64_t offset,
 827                                          int compressed_size,
 828                                          uint64_t *host_offset)
 829{
 830    BDRVQcow2State *s = bs->opaque;
 831    int l2_index, ret;
 832    uint64_t *l2_slice;
 833    int64_t cluster_offset;
 834    int nb_csectors;
 835
 836    if (has_data_file(bs)) {
 837        return 0;
 838    }
 839
 840    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
 841    if (ret < 0) {
 842        return ret;
 843    }
 844
 845    /* Compression can't overwrite anything. Fail if the cluster was already
 846     * allocated. */
 847    cluster_offset = get_l2_entry(s, l2_slice, l2_index);
 848    if (cluster_offset & L2E_OFFSET_MASK) {
 849        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 850        return -EIO;
 851    }
 852
 853    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
 854    if (cluster_offset < 0) {
 855        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 856        return cluster_offset;
 857    }
 858
 859    nb_csectors =
 860        (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
 861        (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
 862
 863    /* The offset and size must fit in their fields of the L2 table entry */
 864    assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
 865    assert((nb_csectors & s->csize_mask) == nb_csectors);
 866
 867    cluster_offset |= QCOW_OFLAG_COMPRESSED |
 868                      ((uint64_t)nb_csectors << s->csize_shift);
 869
 870    /* update L2 table */
 871
 872    /* compressed clusters never have the copied flag */
 873
 874    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
 875    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 876    set_l2_entry(s, l2_slice, l2_index, cluster_offset);
 877    if (has_subclusters(s)) {
 878        set_l2_bitmap(s, l2_slice, l2_index, 0);
 879    }
 880    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 881
 882    *host_offset = cluster_offset & s->cluster_offset_mask;
 883    return 0;
 884}
 885
 886static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
 887{
 888    BDRVQcow2State *s = bs->opaque;
 889    Qcow2COWRegion *start = &m->cow_start;
 890    Qcow2COWRegion *end = &m->cow_end;
 891    unsigned buffer_size;
 892    unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
 893    bool merge_reads;
 894    uint8_t *start_buffer, *end_buffer;
 895    QEMUIOVector qiov;
 896    int ret;
 897
 898    assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
 899    assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
 900    assert(start->offset + start->nb_bytes <= end->offset);
 901
 902    if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
 903        return 0;
 904    }
 905
 906    /* If we have to read both the start and end COW regions and the
 907     * middle region is not too large then perform just one read
 908     * operation */
 909    merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
 910    if (merge_reads) {
 911        buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
 912    } else {
 913        /* If we have to do two reads, add some padding in the middle
 914         * if necessary to make sure that the end region is optimally
 915         * aligned. */
 916        size_t align = bdrv_opt_mem_align(bs);
 917        assert(align > 0 && align <= UINT_MAX);
 918        assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
 919               UINT_MAX - end->nb_bytes);
 920        buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
 921    }
 922
 923    /* Reserve a buffer large enough to store all the data that we're
 924     * going to read */
 925    start_buffer = qemu_try_blockalign(bs, buffer_size);
 926    if (start_buffer == NULL) {
 927        return -ENOMEM;
 928    }
 929    /* The part of the buffer where the end region is located */
 930    end_buffer = start_buffer + buffer_size - end->nb_bytes;
 931
 932    qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
 933                                qemu_iovec_subvec_niov(m->data_qiov,
 934                                                       m->data_qiov_offset,
 935                                                       data_bytes)
 936                                : 0));
 937
 938    qemu_co_mutex_unlock(&s->lock);
 939    /* First we read the existing data from both COW regions. We
 940     * either read the whole region in one go, or the start and end
 941     * regions separately. */
 942    if (merge_reads) {
 943        qemu_iovec_add(&qiov, start_buffer, buffer_size);
 944        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 945    } else {
 946        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 947        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 948        if (ret < 0) {
 949            goto fail;
 950        }
 951
 952        qemu_iovec_reset(&qiov);
 953        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 954        ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
 955    }
 956    if (ret < 0) {
 957        goto fail;
 958    }
 959
 960    /* Encrypt the data if necessary before writing it */
 961    if (bs->encrypted) {
 962        ret = qcow2_co_encrypt(bs,
 963                               m->alloc_offset + start->offset,
 964                               m->offset + start->offset,
 965                               start_buffer, start->nb_bytes);
 966        if (ret < 0) {
 967            goto fail;
 968        }
 969
 970        ret = qcow2_co_encrypt(bs,
 971                               m->alloc_offset + end->offset,
 972                               m->offset + end->offset,
 973                               end_buffer, end->nb_bytes);
 974        if (ret < 0) {
 975            goto fail;
 976        }
 977    }
 978
 979    /* And now we can write everything. If we have the guest data we
 980     * can write everything in one single operation */
 981    if (m->data_qiov) {
 982        qemu_iovec_reset(&qiov);
 983        if (start->nb_bytes) {
 984            qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 985        }
 986        qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
 987        if (end->nb_bytes) {
 988            qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 989        }
 990        /* NOTE: we have a write_aio blkdebug event here followed by
 991         * a cow_write one in do_perform_cow_write(), but there's only
 992         * one single I/O operation */
 993        BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
 994        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 995    } else {
 996        /* If there's no guest data then write both COW regions separately */
 997        qemu_iovec_reset(&qiov);
 998        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 999        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
1000        if (ret < 0) {
1001            goto fail;
1002        }
1003
1004        qemu_iovec_reset(&qiov);
1005        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
1006        ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
1007    }
1008
1009fail:
1010    qemu_co_mutex_lock(&s->lock);
1011
1012    /*
1013     * Before we update the L2 table to actually point to the new cluster, we
1014     * need to be sure that the refcounts have been increased and COW was
1015     * handled.
1016     */
1017    if (ret == 0) {
1018        qcow2_cache_depends_on_flush(s->l2_table_cache);
1019    }
1020
1021    qemu_vfree(start_buffer);
1022    qemu_iovec_destroy(&qiov);
1023    return ret;
1024}
1025
1026int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
1027{
1028    BDRVQcow2State *s = bs->opaque;
1029    int i, j = 0, l2_index, ret;
1030    uint64_t *old_cluster, *l2_slice;
1031    uint64_t cluster_offset = m->alloc_offset;
1032
1033    trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
1034    assert(m->nb_clusters > 0);
1035
1036    old_cluster = g_try_new(uint64_t, m->nb_clusters);
1037    if (old_cluster == NULL) {
1038        ret = -ENOMEM;
1039        goto err;
1040    }
1041
1042    /* copy content of unmodified sectors */
1043    ret = perform_cow(bs, m);
1044    if (ret < 0) {
1045        goto err;
1046    }
1047
1048    /* Update L2 table. */
1049    if (s->use_lazy_refcounts) {
1050        qcow2_mark_dirty(bs);
1051    }
1052    if (qcow2_need_accurate_refcounts(s)) {
1053        qcow2_cache_set_dependency(bs, s->l2_table_cache,
1054                                   s->refcount_block_cache);
1055    }
1056
1057    ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1058    if (ret < 0) {
1059        goto err;
1060    }
1061    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1062
1063    assert(l2_index + m->nb_clusters <= s->l2_slice_size);
1064    assert(m->cow_end.offset + m->cow_end.nb_bytes <=
1065           m->nb_clusters << s->cluster_bits);
1066    for (i = 0; i < m->nb_clusters; i++) {
1067        uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
1068        /* if two concurrent writes happen to the same unallocated cluster
1069         * each write allocates separate cluster and writes data concurrently.
1070         * The first one to complete updates l2 table with pointer to its
1071         * cluster the second one has to do RMW (which is done above by
1072         * perform_cow()), update l2 table with its cluster pointer and free
1073         * old cluster. This is what this loop does */
1074        if (get_l2_entry(s, l2_slice, l2_index + i) != 0) {
1075            old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i);
1076        }
1077
1078        /* The offset must fit in the offset field of the L2 table entry */
1079        assert((offset & L2E_OFFSET_MASK) == offset);
1080
1081        set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED);
1082
1083        /* Update bitmap with the subclusters that were just written */
1084        if (has_subclusters(s) && !m->prealloc) {
1085            uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1086            unsigned written_from = m->cow_start.offset;
1087            unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes;
1088            int first_sc, last_sc;
1089            /* Narrow written_from and written_to down to the current cluster */
1090            written_from = MAX(written_from, i << s->cluster_bits);
1091            written_to   = MIN(written_to, (i + 1) << s->cluster_bits);
1092            assert(written_from < written_to);
1093            first_sc = offset_to_sc_index(s, written_from);
1094            last_sc  = offset_to_sc_index(s, written_to - 1);
1095            l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1);
1096            l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1);
1097            set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap);
1098        }
1099     }
1100
1101
1102    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1103
1104    /*
1105     * If this was a COW, we need to decrease the refcount of the old cluster.
1106     *
1107     * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1108     * clusters), the next write will reuse them anyway.
1109     */
1110    if (!m->keep_old_clusters && j != 0) {
1111        for (i = 0; i < j; i++) {
1112            qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER);
1113        }
1114    }
1115
1116    ret = 0;
1117err:
1118    g_free(old_cluster);
1119    return ret;
1120 }
1121
1122/**
1123 * Frees the allocated clusters because the request failed and they won't
1124 * actually be linked.
1125 */
1126void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1127{
1128    BDRVQcow2State *s = bs->opaque;
1129    if (!has_data_file(bs) && !m->keep_old_clusters) {
1130        qcow2_free_clusters(bs, m->alloc_offset,
1131                            m->nb_clusters << s->cluster_bits,
1132                            QCOW2_DISCARD_NEVER);
1133    }
1134}
1135
1136/*
1137 * For a given write request, create a new QCowL2Meta structure, add
1138 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1139 * request does not need copy-on-write or changes to the L2 metadata
1140 * then this function does nothing.
1141 *
1142 * @host_cluster_offset points to the beginning of the first cluster.
1143 *
1144 * @guest_offset and @bytes indicate the offset and length of the
1145 * request.
1146 *
1147 * @l2_slice contains the L2 entries of all clusters involved in this
1148 * write request.
1149 *
1150 * If @keep_old is true it means that the clusters were already
1151 * allocated and will be overwritten. If false then the clusters are
1152 * new and we have to decrease the reference count of the old ones.
1153 *
1154 * Returns 0 on success, -errno on failure.
1155 */
1156static int calculate_l2_meta(BlockDriverState *bs, uint64_t host_cluster_offset,
1157                             uint64_t guest_offset, unsigned bytes,
1158                             uint64_t *l2_slice, QCowL2Meta **m, bool keep_old)
1159{
1160    BDRVQcow2State *s = bs->opaque;
1161    int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset);
1162    uint64_t l2_entry, l2_bitmap;
1163    unsigned cow_start_from, cow_end_to;
1164    unsigned cow_start_to = offset_into_cluster(s, guest_offset);
1165    unsigned cow_end_from = cow_start_to + bytes;
1166    unsigned nb_clusters = size_to_clusters(s, cow_end_from);
1167    QCowL2Meta *old_m = *m;
1168    QCow2SubclusterType type;
1169    int i;
1170    bool skip_cow = keep_old;
1171
1172    assert(nb_clusters <= s->l2_slice_size - l2_index);
1173
1174    /* Check the type of all affected subclusters */
1175    for (i = 0; i < nb_clusters; i++) {
1176        l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1177        l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1178        if (skip_cow) {
1179            unsigned write_from = MAX(cow_start_to, i << s->cluster_bits);
1180            unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits);
1181            int first_sc = offset_to_sc_index(s, write_from);
1182            int last_sc = offset_to_sc_index(s, write_to - 1);
1183            int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
1184                                                      first_sc, &type);
1185            /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1186            if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) {
1187                skip_cow = false;
1188            }
1189        } else {
1190            /* If we can't skip the cow we can still look for invalid entries */
1191            type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0);
1192        }
1193        if (type == QCOW2_SUBCLUSTER_INVALID) {
1194            int l1_index = offset_to_l1_index(s, guest_offset);
1195            uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
1196            qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster "
1197                                    "entry found (L2 offset: %#" PRIx64
1198                                    ", L2 index: %#x)",
1199                                    l2_offset, l2_index + i);
1200            return -EIO;
1201        }
1202    }
1203
1204    if (skip_cow) {
1205        return 0;
1206    }
1207
1208    /* Get the L2 entry of the first cluster */
1209    l2_entry = get_l2_entry(s, l2_slice, l2_index);
1210    l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1211    sc_index = offset_to_sc_index(s, guest_offset);
1212    type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1213
1214    if (!keep_old) {
1215        switch (type) {
1216        case QCOW2_SUBCLUSTER_COMPRESSED:
1217            cow_start_from = 0;
1218            break;
1219        case QCOW2_SUBCLUSTER_NORMAL:
1220        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1221        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1222            if (has_subclusters(s)) {
1223                /* Skip all leading zero and unallocated subclusters */
1224                uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1225                cow_start_from =
1226                    MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits;
1227            } else {
1228                cow_start_from = 0;
1229            }
1230            break;
1231        case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1232        case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1233            cow_start_from = sc_index << s->subcluster_bits;
1234            break;
1235        default:
1236            g_assert_not_reached();
1237        }
1238    } else {
1239        switch (type) {
1240        case QCOW2_SUBCLUSTER_NORMAL:
1241            cow_start_from = cow_start_to;
1242            break;
1243        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1244        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1245            cow_start_from = sc_index << s->subcluster_bits;
1246            break;
1247        default:
1248            g_assert_not_reached();
1249        }
1250    }
1251
1252    /* Get the L2 entry of the last cluster */
1253    l2_index += nb_clusters - 1;
1254    l2_entry = get_l2_entry(s, l2_slice, l2_index);
1255    l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1256    sc_index = offset_to_sc_index(s, guest_offset + bytes - 1);
1257    type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1258
1259    if (!keep_old) {
1260        switch (type) {
1261        case QCOW2_SUBCLUSTER_COMPRESSED:
1262            cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1263            break;
1264        case QCOW2_SUBCLUSTER_NORMAL:
1265        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1266        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1267            cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1268            if (has_subclusters(s)) {
1269                /* Skip all trailing zero and unallocated subclusters */
1270                uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1271                cow_end_to -=
1272                    MIN(s->subclusters_per_cluster - sc_index - 1,
1273                        clz32(alloc_bitmap)) << s->subcluster_bits;
1274            }
1275            break;
1276        case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1277        case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1278            cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1279            break;
1280        default:
1281            g_assert_not_reached();
1282        }
1283    } else {
1284        switch (type) {
1285        case QCOW2_SUBCLUSTER_NORMAL:
1286            cow_end_to = cow_end_from;
1287            break;
1288        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1289        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1290            cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1291            break;
1292        default:
1293            g_assert_not_reached();
1294        }
1295    }
1296
1297    *m = g_malloc0(sizeof(**m));
1298    **m = (QCowL2Meta) {
1299        .next           = old_m,
1300
1301        .alloc_offset   = host_cluster_offset,
1302        .offset         = start_of_cluster(s, guest_offset),
1303        .nb_clusters    = nb_clusters,
1304
1305        .keep_old_clusters = keep_old,
1306
1307        .cow_start = {
1308            .offset     = cow_start_from,
1309            .nb_bytes   = cow_start_to - cow_start_from,
1310        },
1311        .cow_end = {
1312            .offset     = cow_end_from,
1313            .nb_bytes   = cow_end_to - cow_end_from,
1314        },
1315    };
1316
1317    qemu_co_queue_init(&(*m)->dependent_requests);
1318    QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1319
1320    return 0;
1321}
1322
1323/*
1324 * Returns true if writing to the cluster pointed to by @l2_entry
1325 * requires a new allocation (that is, if the cluster is unallocated
1326 * or has refcount > 1 and therefore cannot be written in-place).
1327 */
1328static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry)
1329{
1330    switch (qcow2_get_cluster_type(bs, l2_entry)) {
1331    case QCOW2_CLUSTER_NORMAL:
1332    case QCOW2_CLUSTER_ZERO_ALLOC:
1333        if (l2_entry & QCOW_OFLAG_COPIED) {
1334            return false;
1335        }
1336        /* fallthrough */
1337    case QCOW2_CLUSTER_UNALLOCATED:
1338    case QCOW2_CLUSTER_COMPRESSED:
1339    case QCOW2_CLUSTER_ZERO_PLAIN:
1340        return true;
1341    default:
1342        abort();
1343    }
1344}
1345
1346/*
1347 * Returns the number of contiguous clusters that can be written to
1348 * using one single write request, starting from @l2_index.
1349 * At most @nb_clusters are checked.
1350 *
1351 * If @new_alloc is true this counts clusters that are either
1352 * unallocated, or allocated but with refcount > 1 (so they need to be
1353 * newly allocated and COWed).
1354 *
1355 * If @new_alloc is false this counts clusters that are already
1356 * allocated and can be overwritten in-place (this includes clusters
1357 * of type QCOW2_CLUSTER_ZERO_ALLOC).
1358 */
1359static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters,
1360                                       uint64_t *l2_slice, int l2_index,
1361                                       bool new_alloc)
1362{
1363    BDRVQcow2State *s = bs->opaque;
1364    uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index);
1365    uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK;
1366    int i;
1367
1368    for (i = 0; i < nb_clusters; i++) {
1369        l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1370        if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) {
1371            break;
1372        }
1373        if (!new_alloc) {
1374            if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
1375                break;
1376            }
1377            expected_offset += s->cluster_size;
1378        }
1379    }
1380
1381    assert(i <= nb_clusters);
1382    return i;
1383}
1384
1385/*
1386 * Check if there already is an AIO write request in flight which allocates
1387 * the same cluster. In this case we need to wait until the previous
1388 * request has completed and updated the L2 table accordingly.
1389 *
1390 * Returns:
1391 *   0       if there was no dependency. *cur_bytes indicates the number of
1392 *           bytes from guest_offset that can be read before the next
1393 *           dependency must be processed (or the request is complete)
1394 *
1395 *   -EAGAIN if we had to wait for another request, previously gathered
1396 *           information on cluster allocation may be invalid now. The caller
1397 *           must start over anyway, so consider *cur_bytes undefined.
1398 */
1399static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1400    uint64_t *cur_bytes, QCowL2Meta **m)
1401{
1402    BDRVQcow2State *s = bs->opaque;
1403    QCowL2Meta *old_alloc;
1404    uint64_t bytes = *cur_bytes;
1405
1406    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1407
1408        uint64_t start = guest_offset;
1409        uint64_t end = start + bytes;
1410        uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc));
1411        uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size);
1412
1413        if (end <= old_start || start >= old_end) {
1414            /* No intersection */
1415            continue;
1416        }
1417
1418        if (old_alloc->keep_old_clusters &&
1419            (end <= l2meta_cow_start(old_alloc) ||
1420             start >= l2meta_cow_end(old_alloc)))
1421        {
1422            /*
1423             * Clusters intersect but COW areas don't. And cluster itself is
1424             * already allocated. So, there is no actual conflict.
1425             */
1426            continue;
1427        }
1428
1429        /* Conflict */
1430
1431        if (start < old_start) {
1432            /* Stop at the start of a running allocation */
1433            bytes = old_start - start;
1434        } else {
1435            bytes = 0;
1436        }
1437
1438        /*
1439         * Stop if an l2meta already exists. After yielding, it wouldn't
1440         * be valid any more, so we'd have to clean up the old L2Metas
1441         * and deal with requests depending on them before starting to
1442         * gather new ones. Not worth the trouble.
1443         */
1444        if (bytes == 0 && *m) {
1445            *cur_bytes = 0;
1446            return 0;
1447        }
1448
1449        if (bytes == 0) {
1450            /*
1451             * Wait for the dependency to complete. We need to recheck
1452             * the free/allocated clusters when we continue.
1453             */
1454            qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1455            return -EAGAIN;
1456        }
1457    }
1458
1459    /* Make sure that existing clusters and new allocations are only used up to
1460     * the next dependency if we shortened the request above */
1461    *cur_bytes = bytes;
1462
1463    return 0;
1464}
1465
1466/*
1467 * Checks how many already allocated clusters that don't require a new
1468 * allocation there are at the given guest_offset (up to *bytes).
1469 * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1470 * beginning at this host offset are counted.
1471 *
1472 * Note that guest_offset may not be cluster aligned. In this case, the
1473 * returned *host_offset points to exact byte referenced by guest_offset and
1474 * therefore isn't cluster aligned as well.
1475 *
1476 * Returns:
1477 *   0:     if no allocated clusters are available at the given offset.
1478 *          *bytes is normally unchanged. It is set to 0 if the cluster
1479 *          is allocated and can be overwritten in-place but doesn't have
1480 *          the right physical offset.
1481 *
1482 *   1:     if allocated clusters that can be overwritten in place are
1483 *          available at the requested offset. *bytes may have decreased
1484 *          and describes the length of the area that can be written to.
1485 *
1486 *  -errno: in error cases
1487 */
1488static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1489    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1490{
1491    BDRVQcow2State *s = bs->opaque;
1492    int l2_index;
1493    uint64_t l2_entry, cluster_offset;
1494    uint64_t *l2_slice;
1495    uint64_t nb_clusters;
1496    unsigned int keep_clusters;
1497    int ret;
1498
1499    trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1500                              *bytes);
1501
1502    assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1503                                      == offset_into_cluster(s, *host_offset));
1504
1505    /*
1506     * Calculate the number of clusters to look for. We stop at L2 slice
1507     * boundaries to keep things simple.
1508     */
1509    nb_clusters =
1510        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1511
1512    l2_index = offset_to_l2_slice_index(s, guest_offset);
1513    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1514    /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1515    nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1516
1517    /* Find L2 entry for the first involved cluster */
1518    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1519    if (ret < 0) {
1520        return ret;
1521    }
1522
1523    l2_entry = get_l2_entry(s, l2_slice, l2_index);
1524    cluster_offset = l2_entry & L2E_OFFSET_MASK;
1525
1526    if (!cluster_needs_new_alloc(bs, l2_entry)) {
1527        if (offset_into_cluster(s, cluster_offset)) {
1528            qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset "
1529                                    "%#" PRIx64 " unaligned (guest offset: %#"
1530                                    PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ?
1531                                    "Preallocated zero" : "Data",
1532                                    cluster_offset, guest_offset);
1533            ret = -EIO;
1534            goto out;
1535        }
1536
1537        /* If a specific host_offset is required, check it */
1538        if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) {
1539            *bytes = 0;
1540            ret = 0;
1541            goto out;
1542        }
1543
1544        /* We keep all QCOW_OFLAG_COPIED clusters */
1545        keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice,
1546                                                    l2_index, false);
1547        assert(keep_clusters <= nb_clusters);
1548
1549        *bytes = MIN(*bytes,
1550                 keep_clusters * s->cluster_size
1551                 - offset_into_cluster(s, guest_offset));
1552        assert(*bytes != 0);
1553
1554        ret = calculate_l2_meta(bs, cluster_offset, guest_offset,
1555                                *bytes, l2_slice, m, true);
1556        if (ret < 0) {
1557            goto out;
1558        }
1559
1560        ret = 1;
1561    } else {
1562        ret = 0;
1563    }
1564
1565    /* Cleanup */
1566out:
1567    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1568
1569    /* Only return a host offset if we actually made progress. Otherwise we
1570     * would make requirements for handle_alloc() that it can't fulfill */
1571    if (ret > 0) {
1572        *host_offset = cluster_offset + offset_into_cluster(s, guest_offset);
1573    }
1574
1575    return ret;
1576}
1577
1578/*
1579 * Allocates new clusters for the given guest_offset.
1580 *
1581 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1582 * contain the number of clusters that have been allocated and are contiguous
1583 * in the image file.
1584 *
1585 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1586 * at which the new clusters must start. *nb_clusters can be 0 on return in
1587 * this case if the cluster at host_offset is already in use. If *host_offset
1588 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1589 *
1590 * *host_offset is updated to contain the offset into the image file at which
1591 * the first allocated cluster starts.
1592 *
1593 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1594 * function has been waiting for another request and the allocation must be
1595 * restarted, but the whole request should not be failed.
1596 */
1597static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1598                                   uint64_t *host_offset, uint64_t *nb_clusters)
1599{
1600    BDRVQcow2State *s = bs->opaque;
1601
1602    trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1603                                         *host_offset, *nb_clusters);
1604
1605    if (has_data_file(bs)) {
1606        assert(*host_offset == INV_OFFSET ||
1607               *host_offset == start_of_cluster(s, guest_offset));
1608        *host_offset = start_of_cluster(s, guest_offset);
1609        return 0;
1610    }
1611
1612    /* Allocate new clusters */
1613    trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1614    if (*host_offset == INV_OFFSET) {
1615        int64_t cluster_offset =
1616            qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1617        if (cluster_offset < 0) {
1618            return cluster_offset;
1619        }
1620        *host_offset = cluster_offset;
1621        return 0;
1622    } else {
1623        int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1624        if (ret < 0) {
1625            return ret;
1626        }
1627        *nb_clusters = ret;
1628        return 0;
1629    }
1630}
1631
1632/*
1633 * Allocates new clusters for an area that is either still unallocated or
1634 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1635 * clusters are only allocated if the new allocation can match the specified
1636 * host offset.
1637 *
1638 * Note that guest_offset may not be cluster aligned. In this case, the
1639 * returned *host_offset points to exact byte referenced by guest_offset and
1640 * therefore isn't cluster aligned as well.
1641 *
1642 * Returns:
1643 *   0:     if no clusters could be allocated. *bytes is set to 0,
1644 *          *host_offset is left unchanged.
1645 *
1646 *   1:     if new clusters were allocated. *bytes may be decreased if the
1647 *          new allocation doesn't cover all of the requested area.
1648 *          *host_offset is updated to contain the host offset of the first
1649 *          newly allocated cluster.
1650 *
1651 *  -errno: in error cases
1652 */
1653static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1654    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1655{
1656    BDRVQcow2State *s = bs->opaque;
1657    int l2_index;
1658    uint64_t *l2_slice;
1659    uint64_t nb_clusters;
1660    int ret;
1661
1662    uint64_t alloc_cluster_offset;
1663
1664    trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1665                             *bytes);
1666    assert(*bytes > 0);
1667
1668    /*
1669     * Calculate the number of clusters to look for. We stop at L2 slice
1670     * boundaries to keep things simple.
1671     */
1672    nb_clusters =
1673        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1674
1675    l2_index = offset_to_l2_slice_index(s, guest_offset);
1676    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1677    /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1678    nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1679
1680    /* Find L2 entry for the first involved cluster */
1681    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1682    if (ret < 0) {
1683        return ret;
1684    }
1685
1686    nb_clusters = count_single_write_clusters(bs, nb_clusters,
1687                                              l2_slice, l2_index, true);
1688
1689    /* This function is only called when there were no non-COW clusters, so if
1690     * we can't find any unallocated or COW clusters either, something is
1691     * wrong with our code. */
1692    assert(nb_clusters > 0);
1693
1694    /* Allocate at a given offset in the image file */
1695    alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1696        start_of_cluster(s, *host_offset);
1697    ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1698                                  &nb_clusters);
1699    if (ret < 0) {
1700        goto out;
1701    }
1702
1703    /* Can't extend contiguous allocation */
1704    if (nb_clusters == 0) {
1705        *bytes = 0;
1706        ret = 0;
1707        goto out;
1708    }
1709
1710    assert(alloc_cluster_offset != INV_OFFSET);
1711
1712    /*
1713     * Save info needed for meta data update.
1714     *
1715     * requested_bytes: Number of bytes from the start of the first
1716     * newly allocated cluster to the end of the (possibly shortened
1717     * before) write request.
1718     *
1719     * avail_bytes: Number of bytes from the start of the first
1720     * newly allocated to the end of the last newly allocated cluster.
1721     *
1722     * nb_bytes: The number of bytes from the start of the first
1723     * newly allocated cluster to the end of the area that the write
1724     * request actually writes to (excluding COW at the end)
1725     */
1726    uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1727    int avail_bytes = nb_clusters << s->cluster_bits;
1728    int nb_bytes = MIN(requested_bytes, avail_bytes);
1729
1730    *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1731    *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1732    assert(*bytes != 0);
1733
1734    ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes,
1735                            l2_slice, m, false);
1736    if (ret < 0) {
1737        goto out;
1738    }
1739
1740    ret = 1;
1741
1742out:
1743    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1744    return ret;
1745}
1746
1747/*
1748 * For a given area on the virtual disk defined by @offset and @bytes,
1749 * find the corresponding area on the qcow2 image, allocating new
1750 * clusters (or subclusters) if necessary. The result can span a
1751 * combination of allocated and previously unallocated clusters.
1752 *
1753 * Note that offset may not be cluster aligned. In this case, the returned
1754 * *host_offset points to exact byte referenced by offset and therefore
1755 * isn't cluster aligned as well.
1756 *
1757 * On return, @host_offset is set to the beginning of the requested
1758 * area. This area is guaranteed to be contiguous on the qcow2 file
1759 * but it can be smaller than initially requested. In this case @bytes
1760 * is updated with the actual size.
1761 *
1762 * If any clusters or subclusters were allocated then @m contains a
1763 * list with the information of all the affected regions. Note that
1764 * this can happen regardless of whether this function succeeds or
1765 * not. The caller is responsible for updating the L2 metadata of the
1766 * allocated clusters (on success) or freeing them (on failure), and
1767 * for clearing the contents of @m afterwards in both cases.
1768 *
1769 * If the request conflicts with another write request in flight, the coroutine
1770 * is queued and will be reentered when the dependency has completed.
1771 *
1772 * Return 0 on success and -errno in error cases
1773 */
1774int qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset,
1775                            unsigned int *bytes, uint64_t *host_offset,
1776                            QCowL2Meta **m)
1777{
1778    BDRVQcow2State *s = bs->opaque;
1779    uint64_t start, remaining;
1780    uint64_t cluster_offset;
1781    uint64_t cur_bytes;
1782    int ret;
1783
1784    trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1785
1786again:
1787    start = offset;
1788    remaining = *bytes;
1789    cluster_offset = INV_OFFSET;
1790    *host_offset = INV_OFFSET;
1791    cur_bytes = 0;
1792    *m = NULL;
1793
1794    while (true) {
1795
1796        if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1797            *host_offset = cluster_offset;
1798        }
1799
1800        assert(remaining >= cur_bytes);
1801
1802        start           += cur_bytes;
1803        remaining       -= cur_bytes;
1804
1805        if (cluster_offset != INV_OFFSET) {
1806            cluster_offset += cur_bytes;
1807        }
1808
1809        if (remaining == 0) {
1810            break;
1811        }
1812
1813        cur_bytes = remaining;
1814
1815        /*
1816         * Now start gathering as many contiguous clusters as possible:
1817         *
1818         * 1. Check for overlaps with in-flight allocations
1819         *
1820         *      a) Overlap not in the first cluster -> shorten this request and
1821         *         let the caller handle the rest in its next loop iteration.
1822         *
1823         *      b) Real overlaps of two requests. Yield and restart the search
1824         *         for contiguous clusters (the situation could have changed
1825         *         while we were sleeping)
1826         *
1827         *      c) TODO: Request starts in the same cluster as the in-flight
1828         *         allocation ends. Shorten the COW of the in-fight allocation,
1829         *         set cluster_offset to write to the same cluster and set up
1830         *         the right synchronisation between the in-flight request and
1831         *         the new one.
1832         */
1833        ret = handle_dependencies(bs, start, &cur_bytes, m);
1834        if (ret == -EAGAIN) {
1835            /* Currently handle_dependencies() doesn't yield if we already had
1836             * an allocation. If it did, we would have to clean up the L2Meta
1837             * structs before starting over. */
1838            assert(*m == NULL);
1839            goto again;
1840        } else if (ret < 0) {
1841            return ret;
1842        } else if (cur_bytes == 0) {
1843            break;
1844        } else {
1845            /* handle_dependencies() may have decreased cur_bytes (shortened
1846             * the allocations below) so that the next dependency is processed
1847             * correctly during the next loop iteration. */
1848        }
1849
1850        /*
1851         * 2. Count contiguous COPIED clusters.
1852         */
1853        ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1854        if (ret < 0) {
1855            return ret;
1856        } else if (ret) {
1857            continue;
1858        } else if (cur_bytes == 0) {
1859            break;
1860        }
1861
1862        /*
1863         * 3. If the request still hasn't completed, allocate new clusters,
1864         *    considering any cluster_offset of steps 1c or 2.
1865         */
1866        ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1867        if (ret < 0) {
1868            return ret;
1869        } else if (ret) {
1870            continue;
1871        } else {
1872            assert(cur_bytes == 0);
1873            break;
1874        }
1875    }
1876
1877    *bytes -= remaining;
1878    assert(*bytes > 0);
1879    assert(*host_offset != INV_OFFSET);
1880    assert(offset_into_cluster(s, *host_offset) ==
1881           offset_into_cluster(s, offset));
1882
1883    return 0;
1884}
1885
1886/*
1887 * This discards as many clusters of nb_clusters as possible at once (i.e.
1888 * all clusters in the same L2 slice) and returns the number of discarded
1889 * clusters.
1890 */
1891static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1892                               uint64_t nb_clusters,
1893                               enum qcow2_discard_type type, bool full_discard)
1894{
1895    BDRVQcow2State *s = bs->opaque;
1896    uint64_t *l2_slice;
1897    int l2_index;
1898    int ret;
1899    int i;
1900
1901    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1902    if (ret < 0) {
1903        return ret;
1904    }
1905
1906    /* Limit nb_clusters to one L2 slice */
1907    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1908    assert(nb_clusters <= INT_MAX);
1909
1910    for (i = 0; i < nb_clusters; i++) {
1911        uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1912        uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1913        uint64_t new_l2_entry = old_l2_entry;
1914        uint64_t new_l2_bitmap = old_l2_bitmap;
1915        QCow2ClusterType cluster_type =
1916            qcow2_get_cluster_type(bs, old_l2_entry);
1917
1918        /*
1919         * If full_discard is true, the cluster should not read back as zeroes,
1920         * but rather fall through to the backing file.
1921         *
1922         * If full_discard is false, make sure that a discarded area reads back
1923         * as zeroes for v3 images (we cannot do it for v2 without actually
1924         * writing a zero-filled buffer). We can skip the operation if the
1925         * cluster is already marked as zero, or if it's unallocated and we
1926         * don't have a backing file.
1927         *
1928         * TODO We might want to use bdrv_block_status(bs) here, but we're
1929         * holding s->lock, so that doesn't work today.
1930         */
1931        if (full_discard) {
1932            new_l2_entry = new_l2_bitmap = 0;
1933        } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) {
1934            if (has_subclusters(s)) {
1935                new_l2_entry = 0;
1936                new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
1937            } else {
1938                new_l2_entry = s->qcow_version >= 3 ? QCOW_OFLAG_ZERO : 0;
1939            }
1940        }
1941
1942        if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
1943            continue;
1944        }
1945
1946        /* First remove L2 entries */
1947        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1948        set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
1949        if (has_subclusters(s)) {
1950            set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
1951        }
1952        /* Then decrease the refcount */
1953        qcow2_free_any_cluster(bs, old_l2_entry, type);
1954    }
1955
1956    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1957
1958    return nb_clusters;
1959}
1960
1961int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1962                          uint64_t bytes, enum qcow2_discard_type type,
1963                          bool full_discard)
1964{
1965    BDRVQcow2State *s = bs->opaque;
1966    uint64_t end_offset = offset + bytes;
1967    uint64_t nb_clusters;
1968    int64_t cleared;
1969    int ret;
1970
1971    /* Caller must pass aligned values, except at image end */
1972    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1973    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1974           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1975
1976    nb_clusters = size_to_clusters(s, bytes);
1977
1978    s->cache_discards = true;
1979
1980    /* Each L2 slice is handled by its own loop iteration */
1981    while (nb_clusters > 0) {
1982        cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1983                                      full_discard);
1984        if (cleared < 0) {
1985            ret = cleared;
1986            goto fail;
1987        }
1988
1989        nb_clusters -= cleared;
1990        offset += (cleared * s->cluster_size);
1991    }
1992
1993    ret = 0;
1994fail:
1995    s->cache_discards = false;
1996    qcow2_process_discards(bs, ret);
1997
1998    return ret;
1999}
2000
2001/*
2002 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
2003 * all clusters in the same L2 slice) and returns the number of zeroed
2004 * clusters.
2005 */
2006static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
2007                            uint64_t nb_clusters, int flags)
2008{
2009    BDRVQcow2State *s = bs->opaque;
2010    uint64_t *l2_slice;
2011    int l2_index;
2012    int ret;
2013    int i;
2014
2015    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2016    if (ret < 0) {
2017        return ret;
2018    }
2019
2020    /* Limit nb_clusters to one L2 slice */
2021    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
2022    assert(nb_clusters <= INT_MAX);
2023
2024    for (i = 0; i < nb_clusters; i++) {
2025        uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
2026        uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
2027        QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry);
2028        bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) ||
2029            ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type));
2030        uint64_t new_l2_entry = unmap ? 0 : old_l2_entry;
2031        uint64_t new_l2_bitmap = old_l2_bitmap;
2032
2033        if (has_subclusters(s)) {
2034            new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
2035        } else {
2036            new_l2_entry |= QCOW_OFLAG_ZERO;
2037        }
2038
2039        if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
2040            continue;
2041        }
2042
2043        /* First update L2 entries */
2044        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2045        set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
2046        if (has_subclusters(s)) {
2047            set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
2048        }
2049
2050        /* Then decrease the refcount */
2051        if (unmap) {
2052            qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST);
2053        }
2054    }
2055
2056    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2057
2058    return nb_clusters;
2059}
2060
2061static int zero_l2_subclusters(BlockDriverState *bs, uint64_t offset,
2062                               unsigned nb_subclusters)
2063{
2064    BDRVQcow2State *s = bs->opaque;
2065    uint64_t *l2_slice;
2066    uint64_t old_l2_bitmap, l2_bitmap;
2067    int l2_index, ret, sc = offset_to_sc_index(s, offset);
2068
2069    /* For full clusters use zero_in_l2_slice() instead */
2070    assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster);
2071    assert(sc + nb_subclusters <= s->subclusters_per_cluster);
2072    assert(offset_into_subcluster(s, offset) == 0);
2073
2074    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2075    if (ret < 0) {
2076        return ret;
2077    }
2078
2079    switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) {
2080    case QCOW2_CLUSTER_COMPRESSED:
2081        ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */
2082        goto out;
2083    case QCOW2_CLUSTER_NORMAL:
2084    case QCOW2_CLUSTER_UNALLOCATED:
2085        break;
2086    default:
2087        g_assert_not_reached();
2088    }
2089
2090    old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
2091
2092    l2_bitmap |=  QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters);
2093    l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters);
2094
2095    if (old_l2_bitmap != l2_bitmap) {
2096        set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap);
2097        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2098    }
2099
2100    ret = 0;
2101out:
2102    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2103
2104    return ret;
2105}
2106
2107int qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset,
2108                             uint64_t bytes, int flags)
2109{
2110    BDRVQcow2State *s = bs->opaque;
2111    uint64_t end_offset = offset + bytes;
2112    uint64_t nb_clusters;
2113    unsigned head, tail;
2114    int64_t cleared;
2115    int ret;
2116
2117    /* If we have to stay in sync with an external data file, zero out
2118     * s->data_file first. */
2119    if (data_file_is_raw(bs)) {
2120        assert(has_data_file(bs));
2121        ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
2122        if (ret < 0) {
2123            return ret;
2124        }
2125    }
2126
2127    /* Caller must pass aligned values, except at image end */
2128    assert(offset_into_subcluster(s, offset) == 0);
2129    assert(offset_into_subcluster(s, end_offset) == 0 ||
2130           end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
2131
2132    /*
2133     * The zero flag is only supported by version 3 and newer. However, if we
2134     * have no backing file, we can resort to discard in version 2.
2135     */
2136    if (s->qcow_version < 3) {
2137        if (!bs->backing) {
2138            return qcow2_cluster_discard(bs, offset, bytes,
2139                                         QCOW2_DISCARD_REQUEST, false);
2140        }
2141        return -ENOTSUP;
2142    }
2143
2144    head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset;
2145    offset += head;
2146
2147    tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 :
2148        end_offset - MAX(offset, start_of_cluster(s, end_offset));
2149    end_offset -= tail;
2150
2151    s->cache_discards = true;
2152
2153    if (head) {
2154        ret = zero_l2_subclusters(bs, offset - head,
2155                                  size_to_subclusters(s, head));
2156        if (ret < 0) {
2157            goto fail;
2158        }
2159    }
2160
2161    /* Each L2 slice is handled by its own loop iteration */
2162    nb_clusters = size_to_clusters(s, end_offset - offset);
2163
2164    while (nb_clusters > 0) {
2165        cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
2166        if (cleared < 0) {
2167            ret = cleared;
2168            goto fail;
2169        }
2170
2171        nb_clusters -= cleared;
2172        offset += (cleared * s->cluster_size);
2173    }
2174
2175    if (tail) {
2176        ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail));
2177        if (ret < 0) {
2178            goto fail;
2179        }
2180    }
2181
2182    ret = 0;
2183fail:
2184    s->cache_discards = false;
2185    qcow2_process_discards(bs, ret);
2186
2187    return ret;
2188}
2189
2190/*
2191 * Expands all zero clusters in a specific L1 table (or deallocates them, for
2192 * non-backed non-pre-allocated zero clusters).
2193 *
2194 * l1_entries and *visited_l1_entries are used to keep track of progress for
2195 * status_cb(). l1_entries contains the total number of L1 entries and
2196 * *visited_l1_entries counts all visited L1 entries.
2197 */
2198static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
2199                                      int l1_size, int64_t *visited_l1_entries,
2200                                      int64_t l1_entries,
2201                                      BlockDriverAmendStatusCB *status_cb,
2202                                      void *cb_opaque)
2203{
2204    BDRVQcow2State *s = bs->opaque;
2205    bool is_active_l1 = (l1_table == s->l1_table);
2206    uint64_t *l2_slice = NULL;
2207    unsigned slice, slice_size2, n_slices;
2208    int ret;
2209    int i, j;
2210
2211    /* qcow2_downgrade() is not allowed in images with subclusters */
2212    assert(!has_subclusters(s));
2213
2214    slice_size2 = s->l2_slice_size * l2_entry_size(s);
2215    n_slices = s->cluster_size / slice_size2;
2216
2217    if (!is_active_l1) {
2218        /* inactive L2 tables require a buffer to be stored in when loading
2219         * them from disk */
2220        l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
2221        if (l2_slice == NULL) {
2222            return -ENOMEM;
2223        }
2224    }
2225
2226    for (i = 0; i < l1_size; i++) {
2227        uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
2228        uint64_t l2_refcount;
2229
2230        if (!l2_offset) {
2231            /* unallocated */
2232            (*visited_l1_entries)++;
2233            if (status_cb) {
2234                status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2235            }
2236            continue;
2237        }
2238
2239        if (offset_into_cluster(s, l2_offset)) {
2240            qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
2241                                    PRIx64 " unaligned (L1 index: %#x)",
2242                                    l2_offset, i);
2243            ret = -EIO;
2244            goto fail;
2245        }
2246
2247        ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
2248                                 &l2_refcount);
2249        if (ret < 0) {
2250            goto fail;
2251        }
2252
2253        for (slice = 0; slice < n_slices; slice++) {
2254            uint64_t slice_offset = l2_offset + slice * slice_size2;
2255            bool l2_dirty = false;
2256            if (is_active_l1) {
2257                /* get active L2 tables from cache */
2258                ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
2259                                      (void **)&l2_slice);
2260            } else {
2261                /* load inactive L2 tables from disk */
2262                ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
2263            }
2264            if (ret < 0) {
2265                goto fail;
2266            }
2267
2268            for (j = 0; j < s->l2_slice_size; j++) {
2269                uint64_t l2_entry = get_l2_entry(s, l2_slice, j);
2270                int64_t offset = l2_entry & L2E_OFFSET_MASK;
2271                QCow2ClusterType cluster_type =
2272                    qcow2_get_cluster_type(bs, l2_entry);
2273
2274                if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
2275                    cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
2276                    continue;
2277                }
2278
2279                if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2280                    if (!bs->backing) {
2281                        /*
2282                         * not backed; therefore we can simply deallocate the
2283                         * cluster. No need to call set_l2_bitmap(), this
2284                         * function doesn't support images with subclusters.
2285                         */
2286                        set_l2_entry(s, l2_slice, j, 0);
2287                        l2_dirty = true;
2288                        continue;
2289                    }
2290
2291                    offset = qcow2_alloc_clusters(bs, s->cluster_size);
2292                    if (offset < 0) {
2293                        ret = offset;
2294                        goto fail;
2295                    }
2296
2297                    /* The offset must fit in the offset field */
2298                    assert((offset & L2E_OFFSET_MASK) == offset);
2299
2300                    if (l2_refcount > 1) {
2301                        /* For shared L2 tables, set the refcount accordingly
2302                         * (it is already 1 and needs to be l2_refcount) */
2303                        ret = qcow2_update_cluster_refcount(
2304                            bs, offset >> s->cluster_bits,
2305                            refcount_diff(1, l2_refcount), false,
2306                            QCOW2_DISCARD_OTHER);
2307                        if (ret < 0) {
2308                            qcow2_free_clusters(bs, offset, s->cluster_size,
2309                                                QCOW2_DISCARD_OTHER);
2310                            goto fail;
2311                        }
2312                    }
2313                }
2314
2315                if (offset_into_cluster(s, offset)) {
2316                    int l2_index = slice * s->l2_slice_size + j;
2317                    qcow2_signal_corruption(
2318                        bs, true, -1, -1,
2319                        "Cluster allocation offset "
2320                        "%#" PRIx64 " unaligned (L2 offset: %#"
2321                        PRIx64 ", L2 index: %#x)", offset,
2322                        l2_offset, l2_index);
2323                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2324                        qcow2_free_clusters(bs, offset, s->cluster_size,
2325                                            QCOW2_DISCARD_ALWAYS);
2326                    }
2327                    ret = -EIO;
2328                    goto fail;
2329                }
2330
2331                ret = qcow2_pre_write_overlap_check(bs, 0, offset,
2332                                                    s->cluster_size, true);
2333                if (ret < 0) {
2334                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2335                        qcow2_free_clusters(bs, offset, s->cluster_size,
2336                                            QCOW2_DISCARD_ALWAYS);
2337                    }
2338                    goto fail;
2339                }
2340
2341                ret = bdrv_pwrite_zeroes(s->data_file, offset,
2342                                         s->cluster_size, 0);
2343                if (ret < 0) {
2344                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2345                        qcow2_free_clusters(bs, offset, s->cluster_size,
2346                                            QCOW2_DISCARD_ALWAYS);
2347                    }
2348                    goto fail;
2349                }
2350
2351                if (l2_refcount == 1) {
2352                    set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED);
2353                } else {
2354                    set_l2_entry(s, l2_slice, j, offset);
2355                }
2356                /*
2357                 * No need to call set_l2_bitmap() after set_l2_entry() because
2358                 * this function doesn't support images with subclusters.
2359                 */
2360                l2_dirty = true;
2361            }
2362
2363            if (is_active_l1) {
2364                if (l2_dirty) {
2365                    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2366                    qcow2_cache_depends_on_flush(s->l2_table_cache);
2367                }
2368                qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2369            } else {
2370                if (l2_dirty) {
2371                    ret = qcow2_pre_write_overlap_check(
2372                        bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2373                        slice_offset, slice_size2, false);
2374                    if (ret < 0) {
2375                        goto fail;
2376                    }
2377
2378                    ret = bdrv_pwrite(bs->file, slice_offset,
2379                                      l2_slice, slice_size2);
2380                    if (ret < 0) {
2381                        goto fail;
2382                    }
2383                }
2384            }
2385        }
2386
2387        (*visited_l1_entries)++;
2388        if (status_cb) {
2389            status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2390        }
2391    }
2392
2393    ret = 0;
2394
2395fail:
2396    if (l2_slice) {
2397        if (!is_active_l1) {
2398            qemu_vfree(l2_slice);
2399        } else {
2400            qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2401        }
2402    }
2403    return ret;
2404}
2405
2406/*
2407 * For backed images, expands all zero clusters on the image. For non-backed
2408 * images, deallocates all non-pre-allocated zero clusters (and claims the
2409 * allocation for pre-allocated ones). This is important for downgrading to a
2410 * qcow2 version which doesn't yet support metadata zero clusters.
2411 */
2412int qcow2_expand_zero_clusters(BlockDriverState *bs,
2413                               BlockDriverAmendStatusCB *status_cb,
2414                               void *cb_opaque)
2415{
2416    BDRVQcow2State *s = bs->opaque;
2417    uint64_t *l1_table = NULL;
2418    int64_t l1_entries = 0, visited_l1_entries = 0;
2419    int ret;
2420    int i, j;
2421
2422    if (status_cb) {
2423        l1_entries = s->l1_size;
2424        for (i = 0; i < s->nb_snapshots; i++) {
2425            l1_entries += s->snapshots[i].l1_size;
2426        }
2427    }
2428
2429    ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2430                                     &visited_l1_entries, l1_entries,
2431                                     status_cb, cb_opaque);
2432    if (ret < 0) {
2433        goto fail;
2434    }
2435
2436    /* Inactive L1 tables may point to active L2 tables - therefore it is
2437     * necessary to flush the L2 table cache before trying to access the L2
2438     * tables pointed to by inactive L1 entries (else we might try to expand
2439     * zero clusters that have already been expanded); furthermore, it is also
2440     * necessary to empty the L2 table cache, since it may contain tables which
2441     * are now going to be modified directly on disk, bypassing the cache.
2442     * qcow2_cache_empty() does both for us. */
2443    ret = qcow2_cache_empty(bs, s->l2_table_cache);
2444    if (ret < 0) {
2445        goto fail;
2446    }
2447
2448    for (i = 0; i < s->nb_snapshots; i++) {
2449        int l1_size2;
2450        uint64_t *new_l1_table;
2451        Error *local_err = NULL;
2452
2453        ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2454                                   s->snapshots[i].l1_size, L1E_SIZE,
2455                                   QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2456                                   &local_err);
2457        if (ret < 0) {
2458            error_report_err(local_err);
2459            goto fail;
2460        }
2461
2462        l1_size2 = s->snapshots[i].l1_size * L1E_SIZE;
2463        new_l1_table = g_try_realloc(l1_table, l1_size2);
2464
2465        if (!new_l1_table) {
2466            ret = -ENOMEM;
2467            goto fail;
2468        }
2469
2470        l1_table = new_l1_table;
2471
2472        ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2473                         l1_table, l1_size2);
2474        if (ret < 0) {
2475            goto fail;
2476        }
2477
2478        for (j = 0; j < s->snapshots[i].l1_size; j++) {
2479            be64_to_cpus(&l1_table[j]);
2480        }
2481
2482        ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2483                                         &visited_l1_entries, l1_entries,
2484                                         status_cb, cb_opaque);
2485        if (ret < 0) {
2486            goto fail;
2487        }
2488    }
2489
2490    ret = 0;
2491
2492fail:
2493    g_free(l1_table);
2494    return ret;
2495}
2496
2497void qcow2_parse_compressed_l2_entry(BlockDriverState *bs, uint64_t l2_entry,
2498                                     uint64_t *coffset, int *csize)
2499{
2500    BDRVQcow2State *s = bs->opaque;
2501    int nb_csectors;
2502
2503    assert(qcow2_get_cluster_type(bs, l2_entry) == QCOW2_CLUSTER_COMPRESSED);
2504
2505    *coffset = l2_entry & s->cluster_offset_mask;
2506
2507    nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1;
2508    *csize = nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE -
2509        (*coffset & (QCOW2_COMPRESSED_SECTOR_SIZE - 1));
2510}
2511