qemu/disas/libvixl/vixl/utils.h
<<
>>
Prefs
   1// Copyright 2015, ARM Limited
   2// All rights reserved.
   3//
   4// Redistribution and use in source and binary forms, with or without
   5// modification, are permitted provided that the following conditions are met:
   6//
   7//   * Redistributions of source code must retain the above copyright notice,
   8//     this list of conditions and the following disclaimer.
   9//   * Redistributions in binary form must reproduce the above copyright notice,
  10//     this list of conditions and the following disclaimer in the documentation
  11//     and/or other materials provided with the distribution.
  12//   * Neither the name of ARM Limited nor the names of its contributors may be
  13//     used to endorse or promote products derived from this software without
  14//     specific prior written permission.
  15//
  16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
  17// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  18// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  19// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
  20// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26
  27#ifndef VIXL_UTILS_H
  28#define VIXL_UTILS_H
  29
  30#include <cmath>
  31#include <cstring>
  32#include "vixl/globals.h"
  33#include "vixl/compiler-intrinsics.h"
  34
  35namespace vixl {
  36
  37// Macros for compile-time format checking.
  38#if GCC_VERSION_OR_NEWER(4, 4, 0)
  39#define PRINTF_CHECK(format_index, varargs_index) \
  40  __attribute__((format(gnu_printf, format_index, varargs_index)))
  41#else
  42#define PRINTF_CHECK(format_index, varargs_index)
  43#endif
  44
  45// Check number width.
  46inline bool is_intn(unsigned n, int64_t x) {
  47  VIXL_ASSERT((0 < n) && (n < 64));
  48  int64_t limit = INT64_C(1) << (n - 1);
  49  return (-limit <= x) && (x < limit);
  50}
  51
  52inline bool is_uintn(unsigned n, int64_t x) {
  53  VIXL_ASSERT((0 < n) && (n < 64));
  54  return !(x >> n);
  55}
  56
  57inline uint32_t truncate_to_intn(unsigned n, int64_t x) {
  58  VIXL_ASSERT((0 < n) && (n < 64));
  59  return static_cast<uint32_t>(x & ((INT64_C(1) << n) - 1));
  60}
  61
  62#define INT_1_TO_63_LIST(V)                                                    \
  63V(1)  V(2)  V(3)  V(4)  V(5)  V(6)  V(7)  V(8)                                 \
  64V(9)  V(10) V(11) V(12) V(13) V(14) V(15) V(16)                                \
  65V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24)                                \
  66V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)                                \
  67V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40)                                \
  68V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48)                                \
  69V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56)                                \
  70V(57) V(58) V(59) V(60) V(61) V(62) V(63)
  71
  72#define DECLARE_IS_INT_N(N)                                                    \
  73inline bool is_int##N(int64_t x) { return is_intn(N, x); }
  74#define DECLARE_IS_UINT_N(N)                                                   \
  75inline bool is_uint##N(int64_t x) { return is_uintn(N, x); }
  76#define DECLARE_TRUNCATE_TO_INT_N(N)                                           \
  77inline uint32_t truncate_to_int##N(int x) { return truncate_to_intn(N, x); }
  78INT_1_TO_63_LIST(DECLARE_IS_INT_N)
  79INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
  80INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
  81#undef DECLARE_IS_INT_N
  82#undef DECLARE_IS_UINT_N
  83#undef DECLARE_TRUNCATE_TO_INT_N
  84
  85// Bit field extraction.
  86inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) {
  87  return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1);
  88}
  89
  90inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) {
  91  return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
  92}
  93
  94inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) {
  95  return (x << (31 - msb)) >> (lsb + 31 - msb);
  96}
  97
  98inline int64_t signed_bitextract_64(int msb, int lsb, int64_t x) {
  99  return (x << (63 - msb)) >> (lsb + 63 - msb);
 100}
 101
 102// Floating point representation.
 103uint32_t float_to_rawbits(float value);
 104uint64_t double_to_rawbits(double value);
 105float rawbits_to_float(uint32_t bits);
 106double rawbits_to_double(uint64_t bits);
 107
 108uint32_t float_sign(float val);
 109uint32_t float_exp(float val);
 110uint32_t float_mantissa(float val);
 111uint32_t double_sign(double val);
 112uint32_t double_exp(double val);
 113uint64_t double_mantissa(double val);
 114
 115float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa);
 116double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa);
 117
 118// An fpclassify() function for 16-bit half-precision floats.
 119int float16classify(float16 value);
 120
 121// NaN tests.
 122inline bool IsSignallingNaN(double num) {
 123  const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
 124  uint64_t raw = double_to_rawbits(num);
 125  if (std::isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
 126    return true;
 127  }
 128  return false;
 129}
 130
 131
 132inline bool IsSignallingNaN(float num) {
 133  const uint32_t kFP32QuietNaNMask = 0x00400000;
 134  uint32_t raw = float_to_rawbits(num);
 135  if (std::isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
 136    return true;
 137  }
 138  return false;
 139}
 140
 141
 142inline bool IsSignallingNaN(float16 num) {
 143  const uint16_t kFP16QuietNaNMask = 0x0200;
 144  return (float16classify(num) == FP_NAN) &&
 145         ((num & kFP16QuietNaNMask) == 0);
 146}
 147
 148
 149template <typename T>
 150inline bool IsQuietNaN(T num) {
 151  return std::isnan(num) && !IsSignallingNaN(num);
 152}
 153
 154
 155// Convert the NaN in 'num' to a quiet NaN.
 156inline double ToQuietNaN(double num) {
 157  const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
 158  VIXL_ASSERT(std::isnan(num));
 159  return rawbits_to_double(double_to_rawbits(num) | kFP64QuietNaNMask);
 160}
 161
 162
 163inline float ToQuietNaN(float num) {
 164  const uint32_t kFP32QuietNaNMask = 0x00400000;
 165  VIXL_ASSERT(std::isnan(num));
 166  return rawbits_to_float(float_to_rawbits(num) | kFP32QuietNaNMask);
 167}
 168
 169
 170// Fused multiply-add.
 171inline double FusedMultiplyAdd(double op1, double op2, double a) {
 172  return fma(op1, op2, a);
 173}
 174
 175
 176inline float FusedMultiplyAdd(float op1, float op2, float a) {
 177  return fmaf(op1, op2, a);
 178}
 179
 180
 181inline uint64_t LowestSetBit(uint64_t value) {
 182  return value & -value;
 183}
 184
 185
 186template<typename T>
 187inline int HighestSetBitPosition(T value) {
 188  VIXL_ASSERT(value != 0);
 189  return (sizeof(value) * 8 - 1) - CountLeadingZeros(value);
 190}
 191
 192
 193template<typename V>
 194inline int WhichPowerOf2(V value) {
 195  VIXL_ASSERT(IsPowerOf2(value));
 196  return CountTrailingZeros(value);
 197}
 198
 199
 200unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
 201
 202
 203template <typename T>
 204T ReverseBits(T value) {
 205  VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
 206              (sizeof(value) == 4) || (sizeof(value) == 8));
 207  T result = 0;
 208  for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
 209    result = (result << 1) | (value & 1);
 210    value >>= 1;
 211  }
 212  return result;
 213}
 214
 215
 216template <typename T>
 217T ReverseBytes(T value, int block_bytes_log2) {
 218  VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8));
 219  VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value));
 220  // Split the 64-bit value into an 8-bit array, where b[0] is the least
 221  // significant byte, and b[7] is the most significant.
 222  uint8_t bytes[8];
 223  uint64_t mask = UINT64_C(0xff00000000000000);
 224  for (int i = 7; i >= 0; i--) {
 225    bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
 226    mask >>= 8;
 227  }
 228
 229  // Permutation tables for REV instructions.
 230  //  permute_table[0] is used by REV16_x, REV16_w
 231  //  permute_table[1] is used by REV32_x, REV_w
 232  //  permute_table[2] is used by REV_x
 233  VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4));
 234  static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1},
 235                                               {4, 5, 6, 7, 0, 1, 2, 3},
 236                                               {0, 1, 2, 3, 4, 5, 6, 7} };
 237  T result = 0;
 238  for (int i = 0; i < 8; i++) {
 239    result <<= 8;
 240    result |= bytes[permute_table[block_bytes_log2 - 1][i]];
 241  }
 242  return result;
 243}
 244
 245
 246// Pointer alignment
 247// TODO: rename/refactor to make it specific to instructions.
 248template<typename T>
 249bool IsWordAligned(T pointer) {
 250  VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t));   // NOLINT(runtime/sizeof)
 251  return ((intptr_t)(pointer) & 3) == 0;
 252}
 253
 254// Increment a pointer (up to 64 bits) until it has the specified alignment.
 255template<class T>
 256T AlignUp(T pointer, size_t alignment) {
 257  // Use C-style casts to get static_cast behaviour for integral types (T), and
 258  // reinterpret_cast behaviour for other types.
 259
 260  uint64_t pointer_raw = (uint64_t)pointer;
 261  VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
 262
 263  size_t align_step = (alignment - pointer_raw) % alignment;
 264  VIXL_ASSERT((pointer_raw + align_step) % alignment == 0);
 265
 266  return (T)(pointer_raw + align_step);
 267}
 268
 269// Decrement a pointer (up to 64 bits) until it has the specified alignment.
 270template<class T>
 271T AlignDown(T pointer, size_t alignment) {
 272  // Use C-style casts to get static_cast behaviour for integral types (T), and
 273  // reinterpret_cast behaviour for other types.
 274
 275  uint64_t pointer_raw = (uint64_t)pointer;
 276  VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
 277
 278  size_t align_step = pointer_raw % alignment;
 279  VIXL_ASSERT((pointer_raw - align_step) % alignment == 0);
 280
 281  return (T)(pointer_raw - align_step);
 282}
 283
 284}  // namespace vixl
 285
 286#endif  // VIXL_UTILS_H
 287