qemu/fpu/softfloat-specialize.c.inc
<<
>>
Prefs
   1/*
   2 * QEMU float support
   3 *
   4 * The code in this source file is derived from release 2a of the SoftFloat
   5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
   6 * some later contributions) are provided under that license, as detailed below.
   7 * It has subsequently been modified by contributors to the QEMU Project,
   8 * so some portions are provided under:
   9 *  the SoftFloat-2a license
  10 *  the BSD license
  11 *  GPL-v2-or-later
  12 *
  13 * Any future contributions to this file after December 1st 2014 will be
  14 * taken to be licensed under the Softfloat-2a license unless specifically
  15 * indicated otherwise.
  16 */
  17
  18/*
  19===============================================================================
  20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
  21Arithmetic Package, Release 2a.
  22
  23Written by John R. Hauser.  This work was made possible in part by the
  24International Computer Science Institute, located at Suite 600, 1947 Center
  25Street, Berkeley, California 94704.  Funding was partially provided by the
  26National Science Foundation under grant MIP-9311980.  The original version
  27of this code was written as part of a project to build a fixed-point vector
  28processor in collaboration with the University of California at Berkeley,
  29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
  30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
  31arithmetic/SoftFloat.html'.
  32
  33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
  34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
  35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
  36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
  37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
  38
  39Derivative works are acceptable, even for commercial purposes, so long as
  40(1) they include prominent notice that the work is derivative, and (2) they
  41include prominent notice akin to these four paragraphs for those parts of
  42this code that are retained.
  43
  44===============================================================================
  45*/
  46
  47/* BSD licensing:
  48 * Copyright (c) 2006, Fabrice Bellard
  49 * All rights reserved.
  50 *
  51 * Redistribution and use in source and binary forms, with or without
  52 * modification, are permitted provided that the following conditions are met:
  53 *
  54 * 1. Redistributions of source code must retain the above copyright notice,
  55 * this list of conditions and the following disclaimer.
  56 *
  57 * 2. Redistributions in binary form must reproduce the above copyright notice,
  58 * this list of conditions and the following disclaimer in the documentation
  59 * and/or other materials provided with the distribution.
  60 *
  61 * 3. Neither the name of the copyright holder nor the names of its contributors
  62 * may be used to endorse or promote products derived from this software without
  63 * specific prior written permission.
  64 *
  65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
  69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  75 * THE POSSIBILITY OF SUCH DAMAGE.
  76 */
  77
  78/* Portions of this work are licensed under the terms of the GNU GPL,
  79 * version 2 or later. See the COPYING file in the top-level directory.
  80 */
  81
  82/*
  83 * Define whether architecture deviates from IEEE in not supporting
  84 * signaling NaNs (so all NaNs are treated as quiet).
  85 */
  86static inline bool no_signaling_nans(float_status *status)
  87{
  88    return status->no_signaling_nans;
  89}
  90
  91/* Define how the architecture discriminates signaling NaNs.
  92 * This done with the most significant bit of the fraction.
  93 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
  94 * the msb must be zero.  MIPS is (so far) unique in supporting both the
  95 * 2008 revision and backward compatibility with their original choice.
  96 */
  97static inline bool snan_bit_is_one(float_status *status)
  98{
  99    return status->snan_bit_is_one;
 100}
 101
 102/*----------------------------------------------------------------------------
 103| For the deconstructed floating-point with fraction FRAC, return true
 104| if the fraction represents a signalling NaN; otherwise false.
 105*----------------------------------------------------------------------------*/
 106
 107static bool parts_is_snan_frac(uint64_t frac, float_status *status)
 108{
 109    if (no_signaling_nans(status)) {
 110        return false;
 111    } else {
 112        bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
 113        return msb == snan_bit_is_one(status);
 114    }
 115}
 116
 117/*----------------------------------------------------------------------------
 118| The pattern for a default generated deconstructed floating-point NaN.
 119*----------------------------------------------------------------------------*/
 120
 121static void parts64_default_nan(FloatParts64 *p, float_status *status)
 122{
 123    bool sign = 0;
 124    uint64_t frac;
 125    uint8_t dnan_pattern = status->default_nan_pattern;
 126
 127    assert(dnan_pattern != 0);
 128
 129    sign = dnan_pattern >> 7;
 130    /*
 131     * Place default_nan_pattern [6:0] into bits [62:56],
 132     * and replecate bit [0] down into [55:0]
 133     */
 134    frac = deposit64(0, DECOMPOSED_BINARY_POINT - 7, 7, dnan_pattern);
 135    frac = deposit64(frac, 0, DECOMPOSED_BINARY_POINT - 7, -(dnan_pattern & 1));
 136
 137    *p = (FloatParts64) {
 138        .cls = float_class_qnan,
 139        .sign = sign,
 140        .exp = INT_MAX,
 141        .frac = frac
 142    };
 143}
 144
 145static void parts128_default_nan(FloatParts128 *p, float_status *status)
 146{
 147    /*
 148     * Extrapolate from the choices made by parts64_default_nan to fill
 149     * in the quad-floating format.  If the low bit is set, assume we
 150     * want to set all non-snan bits.
 151     */
 152    FloatParts64 p64;
 153    parts64_default_nan(&p64, status);
 154
 155    *p = (FloatParts128) {
 156        .cls = float_class_qnan,
 157        .sign = p64.sign,
 158        .exp = INT_MAX,
 159        .frac_hi = p64.frac,
 160        .frac_lo = -(p64.frac & 1)
 161    };
 162}
 163
 164/*----------------------------------------------------------------------------
 165| Returns a quiet NaN from a signalling NaN for the deconstructed
 166| floating-point parts.
 167*----------------------------------------------------------------------------*/
 168
 169static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status)
 170{
 171    g_assert(!no_signaling_nans(status));
 172
 173    /* The only snan_bit_is_one target without default_nan_mode is HPPA. */
 174    if (snan_bit_is_one(status)) {
 175        frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
 176        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
 177    } else {
 178        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
 179    }
 180    return frac;
 181}
 182
 183static void parts64_silence_nan(FloatParts64 *p, float_status *status)
 184{
 185    p->frac = parts_silence_nan_frac(p->frac, status);
 186    p->cls = float_class_qnan;
 187}
 188
 189static void parts128_silence_nan(FloatParts128 *p, float_status *status)
 190{
 191    p->frac_hi = parts_silence_nan_frac(p->frac_hi, status);
 192    p->cls = float_class_qnan;
 193}
 194
 195/*----------------------------------------------------------------------------
 196| The pattern for a default generated extended double-precision NaN.
 197*----------------------------------------------------------------------------*/
 198floatx80 floatx80_default_nan(float_status *status)
 199{
 200    floatx80 r;
 201    /*
 202     * Extrapolate from the choices made by parts64_default_nan to fill
 203     * in the floatx80 format. We assume that floatx80's explicit
 204     * integer bit is always set (this is true for i386 and m68k,
 205     * which are the only real users of this format).
 206     */
 207    FloatParts64 p64;
 208    parts64_default_nan(&p64, status);
 209
 210    r.high = 0x7FFF | (p64.sign << 15);
 211    r.low = (1ULL << DECOMPOSED_BINARY_POINT) | p64.frac;
 212    return r;
 213}
 214
 215/*----------------------------------------------------------------------------
 216| The pattern for a default generated extended double-precision inf.
 217*----------------------------------------------------------------------------*/
 218
 219floatx80 floatx80_default_inf(bool zSign, float_status *status)
 220{
 221    /*
 222     * Whether the Integer bit is set in the default Infinity is
 223     * target dependent.
 224     */
 225    bool z = status->floatx80_behaviour & floatx80_default_inf_int_bit_is_zero;
 226    return packFloatx80(zSign, 0x7fff, z ? 0 : (1ULL << 63));
 227}
 228
 229/*----------------------------------------------------------------------------
 230| Returns 1 if the half-precision floating-point value `a' is a quiet
 231| NaN; otherwise returns 0.
 232*----------------------------------------------------------------------------*/
 233
 234bool float16_is_quiet_nan(float16 a_, float_status *status)
 235{
 236    if (no_signaling_nans(status)) {
 237        return float16_is_any_nan(a_);
 238    } else {
 239        uint16_t a = float16_val(a_);
 240        if (snan_bit_is_one(status)) {
 241            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
 242        } else {
 243
 244            return ((a >> 9) & 0x3F) == 0x3F;
 245        }
 246    }
 247}
 248
 249/*----------------------------------------------------------------------------
 250| Returns 1 if the bfloat16 value `a' is a quiet
 251| NaN; otherwise returns 0.
 252*----------------------------------------------------------------------------*/
 253
 254bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
 255{
 256    if (no_signaling_nans(status)) {
 257        return bfloat16_is_any_nan(a_);
 258    } else {
 259        uint16_t a = a_;
 260        if (snan_bit_is_one(status)) {
 261            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
 262        } else {
 263            return ((a >> 6) & 0x1FF) == 0x1FF;
 264        }
 265    }
 266}
 267
 268/*----------------------------------------------------------------------------
 269| Returns 1 if the half-precision floating-point value `a' is a signaling
 270| NaN; otherwise returns 0.
 271*----------------------------------------------------------------------------*/
 272
 273bool float16_is_signaling_nan(float16 a_, float_status *status)
 274{
 275    if (no_signaling_nans(status)) {
 276        return 0;
 277    } else {
 278        uint16_t a = float16_val(a_);
 279        if (snan_bit_is_one(status)) {
 280            return ((a >> 9) & 0x3F) == 0x3F;
 281        } else {
 282            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
 283        }
 284    }
 285}
 286
 287/*----------------------------------------------------------------------------
 288| Returns 1 if the bfloat16 value `a' is a signaling
 289| NaN; otherwise returns 0.
 290*----------------------------------------------------------------------------*/
 291
 292bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
 293{
 294    if (no_signaling_nans(status)) {
 295        return 0;
 296    } else {
 297        uint16_t a = a_;
 298        if (snan_bit_is_one(status)) {
 299            return ((a >> 6) & 0x1FF) == 0x1FF;
 300        } else {
 301            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
 302        }
 303    }
 304}
 305
 306/*----------------------------------------------------------------------------
 307| Returns 1 if the single-precision floating-point value `a' is a quiet
 308| NaN; otherwise returns 0.
 309*----------------------------------------------------------------------------*/
 310
 311bool float32_is_quiet_nan(float32 a_, float_status *status)
 312{
 313    if (no_signaling_nans(status)) {
 314        return float32_is_any_nan(a_);
 315    } else {
 316        uint32_t a = float32_val(a_);
 317        if (snan_bit_is_one(status)) {
 318            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
 319        } else {
 320            return ((uint32_t)(a << 1) >= 0xFF800000);
 321        }
 322    }
 323}
 324
 325/*----------------------------------------------------------------------------
 326| Returns 1 if the single-precision floating-point value `a' is a signaling
 327| NaN; otherwise returns 0.
 328*----------------------------------------------------------------------------*/
 329
 330bool float32_is_signaling_nan(float32 a_, float_status *status)
 331{
 332    if (no_signaling_nans(status)) {
 333        return 0;
 334    } else {
 335        uint32_t a = float32_val(a_);
 336        if (snan_bit_is_one(status)) {
 337            return ((uint32_t)(a << 1) >= 0xFF800000);
 338        } else {
 339            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
 340        }
 341    }
 342}
 343
 344/*----------------------------------------------------------------------------
 345| Returns 1 if the double-precision floating-point value `a' is a quiet
 346| NaN; otherwise returns 0.
 347*----------------------------------------------------------------------------*/
 348
 349bool float64_is_quiet_nan(float64 a_, float_status *status)
 350{
 351    if (no_signaling_nans(status)) {
 352        return float64_is_any_nan(a_);
 353    } else {
 354        uint64_t a = float64_val(a_);
 355        if (snan_bit_is_one(status)) {
 356            return (((a >> 51) & 0xFFF) == 0xFFE)
 357                && (a & 0x0007FFFFFFFFFFFFULL);
 358        } else {
 359            return ((a << 1) >= 0xFFF0000000000000ULL);
 360        }
 361    }
 362}
 363
 364/*----------------------------------------------------------------------------
 365| Returns 1 if the double-precision floating-point value `a' is a signaling
 366| NaN; otherwise returns 0.
 367*----------------------------------------------------------------------------*/
 368
 369bool float64_is_signaling_nan(float64 a_, float_status *status)
 370{
 371    if (no_signaling_nans(status)) {
 372        return 0;
 373    } else {
 374        uint64_t a = float64_val(a_);
 375        if (snan_bit_is_one(status)) {
 376            return ((a << 1) >= 0xFFF0000000000000ULL);
 377        } else {
 378            return (((a >> 51) & 0xFFF) == 0xFFE)
 379                && (a & UINT64_C(0x0007FFFFFFFFFFFF));
 380        }
 381    }
 382}
 383
 384/*----------------------------------------------------------------------------
 385| Returns 1 if the extended double-precision floating-point value `a' is a
 386| quiet NaN; otherwise returns 0. This slightly differs from the same
 387| function for other types as floatx80 has an explicit bit.
 388*----------------------------------------------------------------------------*/
 389
 390int floatx80_is_quiet_nan(floatx80 a, float_status *status)
 391{
 392    if (no_signaling_nans(status)) {
 393        return floatx80_is_any_nan(a);
 394    } else {
 395        if (snan_bit_is_one(status)) {
 396            uint64_t aLow;
 397
 398            aLow = a.low & ~0x4000000000000000ULL;
 399            return ((a.high & 0x7FFF) == 0x7FFF)
 400                && (aLow << 1)
 401                && (a.low == aLow);
 402        } else {
 403            return ((a.high & 0x7FFF) == 0x7FFF)
 404                && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
 405        }
 406    }
 407}
 408
 409/*----------------------------------------------------------------------------
 410| Returns 1 if the extended double-precision floating-point value `a' is a
 411| signaling NaN; otherwise returns 0. This slightly differs from the same
 412| function for other types as floatx80 has an explicit bit.
 413*----------------------------------------------------------------------------*/
 414
 415int floatx80_is_signaling_nan(floatx80 a, float_status *status)
 416{
 417    if (no_signaling_nans(status)) {
 418        return 0;
 419    } else {
 420        if (snan_bit_is_one(status)) {
 421            return ((a.high & 0x7FFF) == 0x7FFF)
 422                && ((a.low << 1) >= 0x8000000000000000ULL);
 423        } else {
 424            uint64_t aLow;
 425
 426            aLow = a.low & ~UINT64_C(0x4000000000000000);
 427            return ((a.high & 0x7FFF) == 0x7FFF)
 428                && (uint64_t)(aLow << 1)
 429                && (a.low == aLow);
 430        }
 431    }
 432}
 433
 434/*----------------------------------------------------------------------------
 435| Returns a quiet NaN from a signalling NaN for the extended double-precision
 436| floating point value `a'.
 437*----------------------------------------------------------------------------*/
 438
 439floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
 440{
 441    /* None of the targets that have snan_bit_is_one use floatx80.  */
 442    assert(!snan_bit_is_one(status));
 443    a.low |= UINT64_C(0xC000000000000000);
 444    return a;
 445}
 446
 447/*----------------------------------------------------------------------------
 448| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
 449| NaN; otherwise returns 0.
 450*----------------------------------------------------------------------------*/
 451
 452bool float128_is_quiet_nan(float128 a, float_status *status)
 453{
 454    if (no_signaling_nans(status)) {
 455        return float128_is_any_nan(a);
 456    } else {
 457        if (snan_bit_is_one(status)) {
 458            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
 459                && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
 460        } else {
 461            return ((a.high << 1) >= 0xFFFF000000000000ULL)
 462                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
 463        }
 464    }
 465}
 466
 467/*----------------------------------------------------------------------------
 468| Returns 1 if the quadruple-precision floating-point value `a' is a
 469| signaling NaN; otherwise returns 0.
 470*----------------------------------------------------------------------------*/
 471
 472bool float128_is_signaling_nan(float128 a, float_status *status)
 473{
 474    if (no_signaling_nans(status)) {
 475        return 0;
 476    } else {
 477        if (snan_bit_is_one(status)) {
 478            return ((a.high << 1) >= 0xFFFF000000000000ULL)
 479                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
 480        } else {
 481            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
 482                && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
 483        }
 484    }
 485}
 486