qemu/hw/arm/armv7m.c
<<
>>
Prefs
   1/*
   2 * ARMV7M System emulation.
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "hw/arm/armv7m.h"
  12#include "qapi/error.h"
  13#include "hw/sysbus.h"
  14#include "hw/arm/boot.h"
  15#include "hw/loader.h"
  16#include "hw/qdev-properties.h"
  17#include "hw/qdev-clock.h"
  18#include "elf.h"
  19#include "sysemu/reset.h"
  20#include "qemu/error-report.h"
  21#include "qemu/module.h"
  22#include "qemu/log.h"
  23#include "target/arm/idau.h"
  24#include "migration/vmstate.h"
  25
  26/* Bitbanded IO.  Each word corresponds to a single bit.  */
  27
  28/* Get the byte address of the real memory for a bitband access.  */
  29static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset)
  30{
  31    return s->base | (offset & 0x1ffffff) >> 5;
  32}
  33
  34static MemTxResult bitband_read(void *opaque, hwaddr offset,
  35                                uint64_t *data, unsigned size, MemTxAttrs attrs)
  36{
  37    BitBandState *s = opaque;
  38    uint8_t buf[4];
  39    MemTxResult res;
  40    int bitpos, bit;
  41    hwaddr addr;
  42
  43    assert(size <= 4);
  44
  45    /* Find address in underlying memory and round down to multiple of size */
  46    addr = bitband_addr(s, offset) & (-size);
  47    res = address_space_read(&s->source_as, addr, attrs, buf, size);
  48    if (res) {
  49        return res;
  50    }
  51    /* Bit position in the N bytes read... */
  52    bitpos = (offset >> 2) & ((size * 8) - 1);
  53    /* ...converted to byte in buffer and bit in byte */
  54    bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1;
  55    *data = bit;
  56    return MEMTX_OK;
  57}
  58
  59static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value,
  60                                 unsigned size, MemTxAttrs attrs)
  61{
  62    BitBandState *s = opaque;
  63    uint8_t buf[4];
  64    MemTxResult res;
  65    int bitpos, bit;
  66    hwaddr addr;
  67
  68    assert(size <= 4);
  69
  70    /* Find address in underlying memory and round down to multiple of size */
  71    addr = bitband_addr(s, offset) & (-size);
  72    res = address_space_read(&s->source_as, addr, attrs, buf, size);
  73    if (res) {
  74        return res;
  75    }
  76    /* Bit position in the N bytes read... */
  77    bitpos = (offset >> 2) & ((size * 8) - 1);
  78    /* ...converted to byte in buffer and bit in byte */
  79    bit = 1 << (bitpos & 7);
  80    if (value & 1) {
  81        buf[bitpos >> 3] |= bit;
  82    } else {
  83        buf[bitpos >> 3] &= ~bit;
  84    }
  85    return address_space_write(&s->source_as, addr, attrs, buf, size);
  86}
  87
  88static const MemoryRegionOps bitband_ops = {
  89    .read_with_attrs = bitband_read,
  90    .write_with_attrs = bitband_write,
  91    .endianness = DEVICE_NATIVE_ENDIAN,
  92    .impl.min_access_size = 1,
  93    .impl.max_access_size = 4,
  94    .valid.min_access_size = 1,
  95    .valid.max_access_size = 4,
  96};
  97
  98static void bitband_init(Object *obj)
  99{
 100    BitBandState *s = BITBAND(obj);
 101    SysBusDevice *dev = SYS_BUS_DEVICE(obj);
 102
 103    memory_region_init_io(&s->iomem, obj, &bitband_ops, s,
 104                          "bitband", 0x02000000);
 105    sysbus_init_mmio(dev, &s->iomem);
 106}
 107
 108static void bitband_realize(DeviceState *dev, Error **errp)
 109{
 110    BitBandState *s = BITBAND(dev);
 111
 112    if (!s->source_memory) {
 113        error_setg(errp, "source-memory property not set");
 114        return;
 115    }
 116
 117    address_space_init(&s->source_as, s->source_memory, "bitband-source");
 118}
 119
 120/* Board init.  */
 121
 122static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = {
 123    0x20000000, 0x40000000
 124};
 125
 126static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = {
 127    0x22000000, 0x42000000
 128};
 129
 130static MemTxResult v7m_sysreg_ns_write(void *opaque, hwaddr addr,
 131                                       uint64_t value, unsigned size,
 132                                       MemTxAttrs attrs)
 133{
 134    MemoryRegion *mr = opaque;
 135
 136    if (attrs.secure) {
 137        /* S accesses to the alias act like NS accesses to the real region */
 138        attrs.secure = 0;
 139        return memory_region_dispatch_write(mr, addr, value,
 140                                            size_memop(size) | MO_TE, attrs);
 141    } else {
 142        /* NS attrs are RAZ/WI for privileged, and BusFault for user */
 143        if (attrs.user) {
 144            return MEMTX_ERROR;
 145        }
 146        return MEMTX_OK;
 147    }
 148}
 149
 150static MemTxResult v7m_sysreg_ns_read(void *opaque, hwaddr addr,
 151                                      uint64_t *data, unsigned size,
 152                                      MemTxAttrs attrs)
 153{
 154    MemoryRegion *mr = opaque;
 155
 156    if (attrs.secure) {
 157        /* S accesses to the alias act like NS accesses to the real region */
 158        attrs.secure = 0;
 159        return memory_region_dispatch_read(mr, addr, data,
 160                                           size_memop(size) | MO_TE, attrs);
 161    } else {
 162        /* NS attrs are RAZ/WI for privileged, and BusFault for user */
 163        if (attrs.user) {
 164            return MEMTX_ERROR;
 165        }
 166        *data = 0;
 167        return MEMTX_OK;
 168    }
 169}
 170
 171static const MemoryRegionOps v7m_sysreg_ns_ops = {
 172    .read_with_attrs = v7m_sysreg_ns_read,
 173    .write_with_attrs = v7m_sysreg_ns_write,
 174    .endianness = DEVICE_NATIVE_ENDIAN,
 175};
 176
 177static MemTxResult v7m_systick_write(void *opaque, hwaddr addr,
 178                                     uint64_t value, unsigned size,
 179                                     MemTxAttrs attrs)
 180{
 181    ARMv7MState *s = opaque;
 182    MemoryRegion *mr;
 183
 184    /* Direct the access to the correct systick */
 185    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
 186    return memory_region_dispatch_write(mr, addr, value,
 187                                        size_memop(size) | MO_TE, attrs);
 188}
 189
 190static MemTxResult v7m_systick_read(void *opaque, hwaddr addr,
 191                                    uint64_t *data, unsigned size,
 192                                    MemTxAttrs attrs)
 193{
 194    ARMv7MState *s = opaque;
 195    MemoryRegion *mr;
 196
 197    /* Direct the access to the correct systick */
 198    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
 199    return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
 200                                       attrs);
 201}
 202
 203static const MemoryRegionOps v7m_systick_ops = {
 204    .read_with_attrs = v7m_systick_read,
 205    .write_with_attrs = v7m_systick_write,
 206    .endianness = DEVICE_NATIVE_ENDIAN,
 207};
 208
 209/*
 210 * Unassigned portions of the PPB space are RAZ/WI for privileged
 211 * accesses, and fault for non-privileged accesses.
 212 */
 213static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
 214                                    uint64_t *data, unsigned size,
 215                                    MemTxAttrs attrs)
 216{
 217    qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
 218                  (uint32_t)addr);
 219    if (attrs.user) {
 220        return MEMTX_ERROR;
 221    }
 222    *data = 0;
 223    return MEMTX_OK;
 224}
 225
 226static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
 227                                     uint64_t value, unsigned size,
 228                                     MemTxAttrs attrs)
 229{
 230    qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
 231                  (uint32_t)addr);
 232    if (attrs.user) {
 233        return MEMTX_ERROR;
 234    }
 235    return MEMTX_OK;
 236}
 237
 238static const MemoryRegionOps ppb_default_ops = {
 239    .read_with_attrs = ppb_default_read,
 240    .write_with_attrs = ppb_default_write,
 241    .endianness = DEVICE_NATIVE_ENDIAN,
 242    .valid.min_access_size = 1,
 243    .valid.max_access_size = 8,
 244};
 245
 246static void armv7m_instance_init(Object *obj)
 247{
 248    ARMv7MState *s = ARMV7M(obj);
 249    int i;
 250
 251    /* Can't init the cpu here, we don't yet know which model to use */
 252
 253    memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX);
 254
 255    object_initialize_child(obj, "nvic", &s->nvic, TYPE_NVIC);
 256    object_property_add_alias(obj, "num-irq",
 257                              OBJECT(&s->nvic), "num-irq");
 258
 259    object_initialize_child(obj, "systick-reg-ns", &s->systick[M_REG_NS],
 260                            TYPE_SYSTICK);
 261    /*
 262     * We can't initialize the secure systick here, as we don't know
 263     * yet if we need it.
 264     */
 265
 266    for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
 267        object_initialize_child(obj, "bitband[*]", &s->bitband[i],
 268                                TYPE_BITBAND);
 269    }
 270
 271    s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", NULL, NULL, 0);
 272    s->cpuclk = qdev_init_clock_in(DEVICE(obj), "cpuclk", NULL, NULL, 0);
 273}
 274
 275static void armv7m_realize(DeviceState *dev, Error **errp)
 276{
 277    ARMv7MState *s = ARMV7M(dev);
 278    SysBusDevice *sbd;
 279    Error *err = NULL;
 280    int i;
 281
 282    if (!s->board_memory) {
 283        error_setg(errp, "memory property was not set");
 284        return;
 285    }
 286
 287    memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
 288
 289    s->cpu = ARM_CPU(object_new_with_props(s->cpu_type, OBJECT(s), "cpu",
 290                                           &err, NULL));
 291    if (err != NULL) {
 292        error_propagate(errp, err);
 293        return;
 294    }
 295
 296    object_property_set_link(OBJECT(s->cpu), "memory", OBJECT(&s->container),
 297                             &error_abort);
 298    if (object_property_find(OBJECT(s->cpu), "idau")) {
 299        object_property_set_link(OBJECT(s->cpu), "idau", s->idau,
 300                                 &error_abort);
 301    }
 302    if (object_property_find(OBJECT(s->cpu), "init-svtor")) {
 303        if (!object_property_set_uint(OBJECT(s->cpu), "init-svtor",
 304                                      s->init_svtor, errp)) {
 305            return;
 306        }
 307    }
 308    if (object_property_find(OBJECT(s->cpu), "init-nsvtor")) {
 309        if (!object_property_set_uint(OBJECT(s->cpu), "init-nsvtor",
 310                                      s->init_nsvtor, errp)) {
 311            return;
 312        }
 313    }
 314    if (object_property_find(OBJECT(s->cpu), "start-powered-off")) {
 315        if (!object_property_set_bool(OBJECT(s->cpu), "start-powered-off",
 316                                      s->start_powered_off, errp)) {
 317            return;
 318        }
 319    }
 320    if (object_property_find(OBJECT(s->cpu), "vfp")) {
 321        if (!object_property_set_bool(OBJECT(s->cpu), "vfp", s->vfp, errp)) {
 322            return;
 323        }
 324    }
 325    if (object_property_find(OBJECT(s->cpu), "dsp")) {
 326        if (!object_property_set_bool(OBJECT(s->cpu), "dsp", s->dsp, errp)) {
 327            return;
 328        }
 329    }
 330
 331    /*
 332     * Tell the CPU where the NVIC is; it will fail realize if it doesn't
 333     * have one. Similarly, tell the NVIC where its CPU is.
 334     */
 335    s->cpu->env.nvic = &s->nvic;
 336    s->nvic.cpu = s->cpu;
 337
 338    if (!qdev_realize(DEVICE(s->cpu), NULL, errp)) {
 339        return;
 340    }
 341
 342    /* Note that we must realize the NVIC after the CPU */
 343    if (!sysbus_realize(SYS_BUS_DEVICE(&s->nvic), errp)) {
 344        return;
 345    }
 346
 347    /* Alias the NVIC's input and output GPIOs as our own so the board
 348     * code can wire them up. (We do this in realize because the
 349     * NVIC doesn't create the input GPIO array until realize.)
 350     */
 351    qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL);
 352    qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ");
 353    qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI");
 354
 355    /*
 356     * We map various devices into the container MR at their architected
 357     * addresses. In particular, we map everything corresponding to the
 358     * "System PPB" space. This is the range from 0xe0000000 to 0xe00fffff
 359     * and includes the NVIC, the System Control Space (system registers),
 360     * the systick timer, and for CPUs with the Security extension an NS
 361     * banked version of all of these.
 362     *
 363     * The default behaviour for unimplemented registers/ranges
 364     * (for instance the Data Watchpoint and Trace unit at 0xe0001000)
 365     * is to RAZ/WI for privileged access and BusFault for non-privileged
 366     * access.
 367     *
 368     * The NVIC and System Control Space (SCS) starts at 0xe000e000
 369     * and looks like this:
 370     *  0x004 - ICTR
 371     *  0x010 - 0xff - systick
 372     *  0x100..0x7ec - NVIC
 373     *  0x7f0..0xcff - Reserved
 374     *  0xd00..0xd3c - SCS registers
 375     *  0xd40..0xeff - Reserved or Not implemented
 376     *  0xf00 - STIR
 377     *
 378     * Some registers within this space are banked between security states.
 379     * In v8M there is a second range 0xe002e000..0xe002efff which is the
 380     * NonSecure alias SCS; secure accesses to this behave like NS accesses
 381     * to the main SCS range, and non-secure accesses (including when
 382     * the security extension is not implemented) are RAZ/WI.
 383     * Note that both the main SCS range and the alias range are defined
 384     * to be exempt from memory attribution (R_BLJT) and so the memory
 385     * transaction attribute always matches the current CPU security
 386     * state (attrs.secure == env->v7m.secure). In the v7m_sysreg_ns_ops
 387     * wrappers we change attrs.secure to indicate the NS access; so
 388     * generally code determining which banked register to use should
 389     * use attrs.secure; code determining actual behaviour of the system
 390     * should use env->v7m.secure.
 391     *
 392     * Within the PPB space, some MRs overlap, and the priority
 393     * of overlapping regions is:
 394     *  - default region (for RAZ/WI and BusFault) : -1
 395     *  - system register regions (provided by the NVIC) : 0
 396     *  - systick : 1
 397     * This is because the systick device is a small block of registers
 398     * in the middle of the other system control registers.
 399     */
 400
 401    memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
 402                          "nvic-default", 0x100000);
 403    memory_region_add_subregion_overlap(&s->container, 0xe0000000,
 404                                        &s->defaultmem, -1);
 405
 406    /* Wire the NVIC up to the CPU */
 407    sbd = SYS_BUS_DEVICE(&s->nvic);
 408    sysbus_connect_irq(sbd, 0,
 409                       qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
 410
 411    memory_region_add_subregion(&s->container, 0xe000e000,
 412                                sysbus_mmio_get_region(sbd, 0));
 413    if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
 414        /* Create the NS alias region for the NVIC sysregs */
 415        memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
 416                              &v7m_sysreg_ns_ops,
 417                              sysbus_mmio_get_region(sbd, 0),
 418                              "nvic_sysregs_ns", 0x1000);
 419        memory_region_add_subregion(&s->container, 0xe002e000,
 420                                    &s->sysreg_ns_mem);
 421    }
 422
 423    /* Create and map the systick devices */
 424    qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "refclk", s->refclk);
 425    qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "cpuclk", s->cpuclk);
 426    if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
 427        return;
 428    }
 429    sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
 430                       qdev_get_gpio_in_named(DEVICE(&s->nvic),
 431                                              "systick-trigger", M_REG_NS));
 432
 433    if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
 434        /*
 435         * We couldn't init the secure systick device in instance_init
 436         * as we didn't know then if the CPU had the security extensions;
 437         * so we have to do it here.
 438         */
 439        object_initialize_child(OBJECT(dev), "systick-reg-s",
 440                                &s->systick[M_REG_S], TYPE_SYSTICK);
 441        qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "refclk",
 442                              s->refclk);
 443        qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "cpuclk",
 444                              s->cpuclk);
 445
 446        if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
 447            return;
 448        }
 449        sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
 450                           qdev_get_gpio_in_named(DEVICE(&s->nvic),
 451                                                  "systick-trigger", M_REG_S));
 452    }
 453
 454    memory_region_init_io(&s->systickmem, OBJECT(s),
 455                          &v7m_systick_ops, s,
 456                          "v7m_systick", 0xe0);
 457
 458    memory_region_add_subregion_overlap(&s->container, 0xe000e010,
 459                                        &s->systickmem, 1);
 460    if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
 461        memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
 462                              &v7m_sysreg_ns_ops, &s->systickmem,
 463                              "v7m_systick_ns", 0xe0);
 464        memory_region_add_subregion_overlap(&s->container, 0xe002e010,
 465                                            &s->systick_ns_mem, 1);
 466    }
 467
 468    /* If the CPU has RAS support, create the RAS register block */
 469    if (cpu_isar_feature(aa32_ras, s->cpu)) {
 470        object_initialize_child(OBJECT(dev), "armv7m-ras",
 471                                &s->ras, TYPE_ARMV7M_RAS);
 472        sbd = SYS_BUS_DEVICE(&s->ras);
 473        if (!sysbus_realize(sbd, errp)) {
 474            return;
 475        }
 476        memory_region_add_subregion_overlap(&s->container, 0xe0005000,
 477                                            sysbus_mmio_get_region(sbd, 0), 1);
 478    }
 479
 480    for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
 481        if (s->enable_bitband) {
 482            Object *obj = OBJECT(&s->bitband[i]);
 483            SysBusDevice *sbd = SYS_BUS_DEVICE(&s->bitband[i]);
 484
 485            if (!object_property_set_int(obj, "base",
 486                                         bitband_input_addr[i], errp)) {
 487                return;
 488            }
 489            object_property_set_link(obj, "source-memory",
 490                                     OBJECT(s->board_memory), &error_abort);
 491            if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
 492                return;
 493            }
 494
 495            memory_region_add_subregion(&s->container, bitband_output_addr[i],
 496                                        sysbus_mmio_get_region(sbd, 0));
 497        } else {
 498            object_unparent(OBJECT(&s->bitband[i]));
 499        }
 500    }
 501}
 502
 503static Property armv7m_properties[] = {
 504    DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type),
 505    DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION,
 506                     MemoryRegion *),
 507    DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *),
 508    DEFINE_PROP_UINT32("init-svtor", ARMv7MState, init_svtor, 0),
 509    DEFINE_PROP_UINT32("init-nsvtor", ARMv7MState, init_nsvtor, 0),
 510    DEFINE_PROP_BOOL("enable-bitband", ARMv7MState, enable_bitband, false),
 511    DEFINE_PROP_BOOL("start-powered-off", ARMv7MState, start_powered_off,
 512                     false),
 513    DEFINE_PROP_BOOL("vfp", ARMv7MState, vfp, true),
 514    DEFINE_PROP_BOOL("dsp", ARMv7MState, dsp, true),
 515    DEFINE_PROP_END_OF_LIST(),
 516};
 517
 518static const VMStateDescription vmstate_armv7m = {
 519    .name = "armv7m",
 520    .version_id = 1,
 521    .minimum_version_id = 1,
 522    .fields = (VMStateField[]) {
 523        VMSTATE_CLOCK(refclk, SysTickState),
 524        VMSTATE_CLOCK(cpuclk, SysTickState),
 525        VMSTATE_END_OF_LIST()
 526    }
 527};
 528
 529static void armv7m_class_init(ObjectClass *klass, void *data)
 530{
 531    DeviceClass *dc = DEVICE_CLASS(klass);
 532
 533    dc->realize = armv7m_realize;
 534    dc->vmsd = &vmstate_armv7m;
 535    device_class_set_props(dc, armv7m_properties);
 536}
 537
 538static const TypeInfo armv7m_info = {
 539    .name = TYPE_ARMV7M,
 540    .parent = TYPE_SYS_BUS_DEVICE,
 541    .instance_size = sizeof(ARMv7MState),
 542    .instance_init = armv7m_instance_init,
 543    .class_init = armv7m_class_init,
 544};
 545
 546static void armv7m_reset(void *opaque)
 547{
 548    ARMCPU *cpu = opaque;
 549
 550    cpu_reset(CPU(cpu));
 551}
 552
 553void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename, int mem_size)
 554{
 555    int image_size;
 556    uint64_t entry;
 557    int big_endian;
 558    AddressSpace *as;
 559    int asidx;
 560    CPUState *cs = CPU(cpu);
 561
 562#ifdef TARGET_WORDS_BIGENDIAN
 563    big_endian = 1;
 564#else
 565    big_endian = 0;
 566#endif
 567
 568    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
 569        asidx = ARMASIdx_S;
 570    } else {
 571        asidx = ARMASIdx_NS;
 572    }
 573    as = cpu_get_address_space(cs, asidx);
 574
 575    if (kernel_filename) {
 576        image_size = load_elf_as(kernel_filename, NULL, NULL, NULL,
 577                                 &entry, NULL, NULL,
 578                                 NULL, big_endian, EM_ARM, 1, 0, as);
 579        if (image_size < 0) {
 580            image_size = load_image_targphys_as(kernel_filename, 0,
 581                                                mem_size, as);
 582        }
 583        if (image_size < 0) {
 584            error_report("Could not load kernel '%s'", kernel_filename);
 585            exit(1);
 586        }
 587    }
 588
 589    /* CPU objects (unlike devices) are not automatically reset on system
 590     * reset, so we must always register a handler to do so. Unlike
 591     * A-profile CPUs, we don't need to do anything special in the
 592     * handler to arrange that it starts correctly.
 593     * This is arguably the wrong place to do this, but it matches the
 594     * way A-profile does it. Note that this means that every M profile
 595     * board must call this function!
 596     */
 597    qemu_register_reset(armv7m_reset, cpu);
 598}
 599
 600static Property bitband_properties[] = {
 601    DEFINE_PROP_UINT32("base", BitBandState, base, 0),
 602    DEFINE_PROP_LINK("source-memory", BitBandState, source_memory,
 603                     TYPE_MEMORY_REGION, MemoryRegion *),
 604    DEFINE_PROP_END_OF_LIST(),
 605};
 606
 607static void bitband_class_init(ObjectClass *klass, void *data)
 608{
 609    DeviceClass *dc = DEVICE_CLASS(klass);
 610
 611    dc->realize = bitband_realize;
 612    device_class_set_props(dc, bitband_properties);
 613}
 614
 615static const TypeInfo bitband_info = {
 616    .name          = TYPE_BITBAND,
 617    .parent        = TYPE_SYS_BUS_DEVICE,
 618    .instance_size = sizeof(BitBandState),
 619    .instance_init = bitband_init,
 620    .class_init    = bitband_class_init,
 621};
 622
 623static void armv7m_register_types(void)
 624{
 625    type_register_static(&bitband_info);
 626    type_register_static(&armv7m_info);
 627}
 628
 629type_init(armv7m_register_types)
 630