qemu/hw/arm/stellaris.c
<<
>>
Prefs
   1/*
   2 * Luminary Micro Stellaris peripherals
   3 *
   4 * Copyright (c) 2006 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qapi/error.h"
  12#include "hw/sysbus.h"
  13#include "hw/ssi/ssi.h"
  14#include "hw/arm/boot.h"
  15#include "qemu/timer.h"
  16#include "hw/i2c/i2c.h"
  17#include "net/net.h"
  18#include "hw/boards.h"
  19#include "qemu/log.h"
  20#include "exec/address-spaces.h"
  21#include "sysemu/sysemu.h"
  22#include "hw/arm/armv7m.h"
  23#include "hw/char/pl011.h"
  24#include "hw/input/gamepad.h"
  25#include "hw/irq.h"
  26#include "hw/watchdog/cmsdk-apb-watchdog.h"
  27#include "migration/vmstate.h"
  28#include "hw/misc/unimp.h"
  29#include "hw/timer/stellaris-gptm.h"
  30#include "hw/qdev-clock.h"
  31#include "qom/object.h"
  32
  33#define GPIO_A 0
  34#define GPIO_B 1
  35#define GPIO_C 2
  36#define GPIO_D 3
  37#define GPIO_E 4
  38#define GPIO_F 5
  39#define GPIO_G 6
  40
  41#define BP_OLED_I2C  0x01
  42#define BP_OLED_SSI  0x02
  43#define BP_GAMEPAD   0x04
  44
  45#define NUM_IRQ_LINES 64
  46
  47typedef const struct {
  48    const char *name;
  49    uint32_t did0;
  50    uint32_t did1;
  51    uint32_t dc0;
  52    uint32_t dc1;
  53    uint32_t dc2;
  54    uint32_t dc3;
  55    uint32_t dc4;
  56    uint32_t peripherals;
  57} stellaris_board_info;
  58
  59/* System controller.  */
  60
  61#define TYPE_STELLARIS_SYS "stellaris-sys"
  62OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
  63
  64struct ssys_state {
  65    SysBusDevice parent_obj;
  66
  67    MemoryRegion iomem;
  68    uint32_t pborctl;
  69    uint32_t ldopctl;
  70    uint32_t int_status;
  71    uint32_t int_mask;
  72    uint32_t resc;
  73    uint32_t rcc;
  74    uint32_t rcc2;
  75    uint32_t rcgc[3];
  76    uint32_t scgc[3];
  77    uint32_t dcgc[3];
  78    uint32_t clkvclr;
  79    uint32_t ldoarst;
  80    qemu_irq irq;
  81    Clock *sysclk;
  82    /* Properties (all read-only registers) */
  83    uint32_t user0;
  84    uint32_t user1;
  85    uint32_t did0;
  86    uint32_t did1;
  87    uint32_t dc0;
  88    uint32_t dc1;
  89    uint32_t dc2;
  90    uint32_t dc3;
  91    uint32_t dc4;
  92};
  93
  94static void ssys_update(ssys_state *s)
  95{
  96  qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
  97}
  98
  99static uint32_t pllcfg_sandstorm[16] = {
 100    0x31c0, /* 1 Mhz */
 101    0x1ae0, /* 1.8432 Mhz */
 102    0x18c0, /* 2 Mhz */
 103    0xd573, /* 2.4576 Mhz */
 104    0x37a6, /* 3.57954 Mhz */
 105    0x1ae2, /* 3.6864 Mhz */
 106    0x0c40, /* 4 Mhz */
 107    0x98bc, /* 4.906 Mhz */
 108    0x935b, /* 4.9152 Mhz */
 109    0x09c0, /* 5 Mhz */
 110    0x4dee, /* 5.12 Mhz */
 111    0x0c41, /* 6 Mhz */
 112    0x75db, /* 6.144 Mhz */
 113    0x1ae6, /* 7.3728 Mhz */
 114    0x0600, /* 8 Mhz */
 115    0x585b /* 8.192 Mhz */
 116};
 117
 118static uint32_t pllcfg_fury[16] = {
 119    0x3200, /* 1 Mhz */
 120    0x1b20, /* 1.8432 Mhz */
 121    0x1900, /* 2 Mhz */
 122    0xf42b, /* 2.4576 Mhz */
 123    0x37e3, /* 3.57954 Mhz */
 124    0x1b21, /* 3.6864 Mhz */
 125    0x0c80, /* 4 Mhz */
 126    0x98ee, /* 4.906 Mhz */
 127    0xd5b4, /* 4.9152 Mhz */
 128    0x0a00, /* 5 Mhz */
 129    0x4e27, /* 5.12 Mhz */
 130    0x1902, /* 6 Mhz */
 131    0xec1c, /* 6.144 Mhz */
 132    0x1b23, /* 7.3728 Mhz */
 133    0x0640, /* 8 Mhz */
 134    0xb11c /* 8.192 Mhz */
 135};
 136
 137#define DID0_VER_MASK        0x70000000
 138#define DID0_VER_0           0x00000000
 139#define DID0_VER_1           0x10000000
 140
 141#define DID0_CLASS_MASK      0x00FF0000
 142#define DID0_CLASS_SANDSTORM 0x00000000
 143#define DID0_CLASS_FURY      0x00010000
 144
 145static int ssys_board_class(const ssys_state *s)
 146{
 147    uint32_t did0 = s->did0;
 148    switch (did0 & DID0_VER_MASK) {
 149    case DID0_VER_0:
 150        return DID0_CLASS_SANDSTORM;
 151    case DID0_VER_1:
 152        switch (did0 & DID0_CLASS_MASK) {
 153        case DID0_CLASS_SANDSTORM:
 154        case DID0_CLASS_FURY:
 155            return did0 & DID0_CLASS_MASK;
 156        }
 157        /* for unknown classes, fall through */
 158    default:
 159        /* This can only happen if the hardwired constant did0 value
 160         * in this board's stellaris_board_info struct is wrong.
 161         */
 162        g_assert_not_reached();
 163    }
 164}
 165
 166static uint64_t ssys_read(void *opaque, hwaddr offset,
 167                          unsigned size)
 168{
 169    ssys_state *s = (ssys_state *)opaque;
 170
 171    switch (offset) {
 172    case 0x000: /* DID0 */
 173        return s->did0;
 174    case 0x004: /* DID1 */
 175        return s->did1;
 176    case 0x008: /* DC0 */
 177        return s->dc0;
 178    case 0x010: /* DC1 */
 179        return s->dc1;
 180    case 0x014: /* DC2 */
 181        return s->dc2;
 182    case 0x018: /* DC3 */
 183        return s->dc3;
 184    case 0x01c: /* DC4 */
 185        return s->dc4;
 186    case 0x030: /* PBORCTL */
 187        return s->pborctl;
 188    case 0x034: /* LDOPCTL */
 189        return s->ldopctl;
 190    case 0x040: /* SRCR0 */
 191        return 0;
 192    case 0x044: /* SRCR1 */
 193        return 0;
 194    case 0x048: /* SRCR2 */
 195        return 0;
 196    case 0x050: /* RIS */
 197        return s->int_status;
 198    case 0x054: /* IMC */
 199        return s->int_mask;
 200    case 0x058: /* MISC */
 201        return s->int_status & s->int_mask;
 202    case 0x05c: /* RESC */
 203        return s->resc;
 204    case 0x060: /* RCC */
 205        return s->rcc;
 206    case 0x064: /* PLLCFG */
 207        {
 208            int xtal;
 209            xtal = (s->rcc >> 6) & 0xf;
 210            switch (ssys_board_class(s)) {
 211            case DID0_CLASS_FURY:
 212                return pllcfg_fury[xtal];
 213            case DID0_CLASS_SANDSTORM:
 214                return pllcfg_sandstorm[xtal];
 215            default:
 216                g_assert_not_reached();
 217            }
 218        }
 219    case 0x070: /* RCC2 */
 220        return s->rcc2;
 221    case 0x100: /* RCGC0 */
 222        return s->rcgc[0];
 223    case 0x104: /* RCGC1 */
 224        return s->rcgc[1];
 225    case 0x108: /* RCGC2 */
 226        return s->rcgc[2];
 227    case 0x110: /* SCGC0 */
 228        return s->scgc[0];
 229    case 0x114: /* SCGC1 */
 230        return s->scgc[1];
 231    case 0x118: /* SCGC2 */
 232        return s->scgc[2];
 233    case 0x120: /* DCGC0 */
 234        return s->dcgc[0];
 235    case 0x124: /* DCGC1 */
 236        return s->dcgc[1];
 237    case 0x128: /* DCGC2 */
 238        return s->dcgc[2];
 239    case 0x150: /* CLKVCLR */
 240        return s->clkvclr;
 241    case 0x160: /* LDOARST */
 242        return s->ldoarst;
 243    case 0x1e0: /* USER0 */
 244        return s->user0;
 245    case 0x1e4: /* USER1 */
 246        return s->user1;
 247    default:
 248        qemu_log_mask(LOG_GUEST_ERROR,
 249                      "SSYS: read at bad offset 0x%x\n", (int)offset);
 250        return 0;
 251    }
 252}
 253
 254static bool ssys_use_rcc2(ssys_state *s)
 255{
 256    return (s->rcc2 >> 31) & 0x1;
 257}
 258
 259/*
 260 * Calculate the system clock period. We only want to propagate
 261 * this change to the rest of the system if we're not being called
 262 * from migration post-load.
 263 */
 264static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
 265{
 266    int period_ns;
 267    /*
 268     * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
 269     * clock is 200MHz, which is a period of 5 ns. Dividing the clock
 270     * frequency by X is the same as multiplying the period by X.
 271     */
 272    if (ssys_use_rcc2(s)) {
 273        period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
 274    } else {
 275        period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
 276    }
 277    clock_set_ns(s->sysclk, period_ns);
 278    if (propagate_clock) {
 279        clock_propagate(s->sysclk);
 280    }
 281}
 282
 283static void ssys_write(void *opaque, hwaddr offset,
 284                       uint64_t value, unsigned size)
 285{
 286    ssys_state *s = (ssys_state *)opaque;
 287
 288    switch (offset) {
 289    case 0x030: /* PBORCTL */
 290        s->pborctl = value & 0xffff;
 291        break;
 292    case 0x034: /* LDOPCTL */
 293        s->ldopctl = value & 0x1f;
 294        break;
 295    case 0x040: /* SRCR0 */
 296    case 0x044: /* SRCR1 */
 297    case 0x048: /* SRCR2 */
 298        qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
 299        break;
 300    case 0x054: /* IMC */
 301        s->int_mask = value & 0x7f;
 302        break;
 303    case 0x058: /* MISC */
 304        s->int_status &= ~value;
 305        break;
 306    case 0x05c: /* RESC */
 307        s->resc = value & 0x3f;
 308        break;
 309    case 0x060: /* RCC */
 310        if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
 311            /* PLL enable.  */
 312            s->int_status |= (1 << 6);
 313        }
 314        s->rcc = value;
 315        ssys_calculate_system_clock(s, true);
 316        break;
 317    case 0x070: /* RCC2 */
 318        if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
 319            break;
 320        }
 321
 322        if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
 323            /* PLL enable.  */
 324            s->int_status |= (1 << 6);
 325        }
 326        s->rcc2 = value;
 327        ssys_calculate_system_clock(s, true);
 328        break;
 329    case 0x100: /* RCGC0 */
 330        s->rcgc[0] = value;
 331        break;
 332    case 0x104: /* RCGC1 */
 333        s->rcgc[1] = value;
 334        break;
 335    case 0x108: /* RCGC2 */
 336        s->rcgc[2] = value;
 337        break;
 338    case 0x110: /* SCGC0 */
 339        s->scgc[0] = value;
 340        break;
 341    case 0x114: /* SCGC1 */
 342        s->scgc[1] = value;
 343        break;
 344    case 0x118: /* SCGC2 */
 345        s->scgc[2] = value;
 346        break;
 347    case 0x120: /* DCGC0 */
 348        s->dcgc[0] = value;
 349        break;
 350    case 0x124: /* DCGC1 */
 351        s->dcgc[1] = value;
 352        break;
 353    case 0x128: /* DCGC2 */
 354        s->dcgc[2] = value;
 355        break;
 356    case 0x150: /* CLKVCLR */
 357        s->clkvclr = value;
 358        break;
 359    case 0x160: /* LDOARST */
 360        s->ldoarst = value;
 361        break;
 362    default:
 363        qemu_log_mask(LOG_GUEST_ERROR,
 364                      "SSYS: write at bad offset 0x%x\n", (int)offset);
 365    }
 366    ssys_update(s);
 367}
 368
 369static const MemoryRegionOps ssys_ops = {
 370    .read = ssys_read,
 371    .write = ssys_write,
 372    .endianness = DEVICE_NATIVE_ENDIAN,
 373};
 374
 375static void stellaris_sys_reset_enter(Object *obj, ResetType type)
 376{
 377    ssys_state *s = STELLARIS_SYS(obj);
 378
 379    s->pborctl = 0x7ffd;
 380    s->rcc = 0x078e3ac0;
 381
 382    if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
 383        s->rcc2 = 0;
 384    } else {
 385        s->rcc2 = 0x07802810;
 386    }
 387    s->rcgc[0] = 1;
 388    s->scgc[0] = 1;
 389    s->dcgc[0] = 1;
 390}
 391
 392static void stellaris_sys_reset_hold(Object *obj)
 393{
 394    ssys_state *s = STELLARIS_SYS(obj);
 395
 396    /* OK to propagate clocks from the hold phase */
 397    ssys_calculate_system_clock(s, true);
 398}
 399
 400static void stellaris_sys_reset_exit(Object *obj)
 401{
 402}
 403
 404static int stellaris_sys_post_load(void *opaque, int version_id)
 405{
 406    ssys_state *s = opaque;
 407
 408    ssys_calculate_system_clock(s, false);
 409
 410    return 0;
 411}
 412
 413static const VMStateDescription vmstate_stellaris_sys = {
 414    .name = "stellaris_sys",
 415    .version_id = 2,
 416    .minimum_version_id = 1,
 417    .post_load = stellaris_sys_post_load,
 418    .fields = (VMStateField[]) {
 419        VMSTATE_UINT32(pborctl, ssys_state),
 420        VMSTATE_UINT32(ldopctl, ssys_state),
 421        VMSTATE_UINT32(int_mask, ssys_state),
 422        VMSTATE_UINT32(int_status, ssys_state),
 423        VMSTATE_UINT32(resc, ssys_state),
 424        VMSTATE_UINT32(rcc, ssys_state),
 425        VMSTATE_UINT32_V(rcc2, ssys_state, 2),
 426        VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
 427        VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
 428        VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
 429        VMSTATE_UINT32(clkvclr, ssys_state),
 430        VMSTATE_UINT32(ldoarst, ssys_state),
 431        /* No field for sysclk -- handled in post-load instead */
 432        VMSTATE_END_OF_LIST()
 433    }
 434};
 435
 436static Property stellaris_sys_properties[] = {
 437    DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
 438    DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
 439    DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
 440    DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
 441    DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
 442    DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
 443    DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
 444    DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
 445    DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
 446    DEFINE_PROP_END_OF_LIST()
 447};
 448
 449static void stellaris_sys_instance_init(Object *obj)
 450{
 451    ssys_state *s = STELLARIS_SYS(obj);
 452    SysBusDevice *sbd = SYS_BUS_DEVICE(s);
 453
 454    memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
 455    sysbus_init_mmio(sbd, &s->iomem);
 456    sysbus_init_irq(sbd, &s->irq);
 457    s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
 458}
 459
 460/* I2C controller.  */
 461
 462#define TYPE_STELLARIS_I2C "stellaris-i2c"
 463OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
 464
 465struct stellaris_i2c_state {
 466    SysBusDevice parent_obj;
 467
 468    I2CBus *bus;
 469    qemu_irq irq;
 470    MemoryRegion iomem;
 471    uint32_t msa;
 472    uint32_t mcs;
 473    uint32_t mdr;
 474    uint32_t mtpr;
 475    uint32_t mimr;
 476    uint32_t mris;
 477    uint32_t mcr;
 478};
 479
 480#define STELLARIS_I2C_MCS_BUSY    0x01
 481#define STELLARIS_I2C_MCS_ERROR   0x02
 482#define STELLARIS_I2C_MCS_ADRACK  0x04
 483#define STELLARIS_I2C_MCS_DATACK  0x08
 484#define STELLARIS_I2C_MCS_ARBLST  0x10
 485#define STELLARIS_I2C_MCS_IDLE    0x20
 486#define STELLARIS_I2C_MCS_BUSBSY  0x40
 487
 488static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
 489                                   unsigned size)
 490{
 491    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
 492
 493    switch (offset) {
 494    case 0x00: /* MSA */
 495        return s->msa;
 496    case 0x04: /* MCS */
 497        /* We don't emulate timing, so the controller is never busy.  */
 498        return s->mcs | STELLARIS_I2C_MCS_IDLE;
 499    case 0x08: /* MDR */
 500        return s->mdr;
 501    case 0x0c: /* MTPR */
 502        return s->mtpr;
 503    case 0x10: /* MIMR */
 504        return s->mimr;
 505    case 0x14: /* MRIS */
 506        return s->mris;
 507    case 0x18: /* MMIS */
 508        return s->mris & s->mimr;
 509    case 0x20: /* MCR */
 510        return s->mcr;
 511    default:
 512        qemu_log_mask(LOG_GUEST_ERROR,
 513                      "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
 514        return 0;
 515    }
 516}
 517
 518static void stellaris_i2c_update(stellaris_i2c_state *s)
 519{
 520    int level;
 521
 522    level = (s->mris & s->mimr) != 0;
 523    qemu_set_irq(s->irq, level);
 524}
 525
 526static void stellaris_i2c_write(void *opaque, hwaddr offset,
 527                                uint64_t value, unsigned size)
 528{
 529    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
 530
 531    switch (offset) {
 532    case 0x00: /* MSA */
 533        s->msa = value & 0xff;
 534        break;
 535    case 0x04: /* MCS */
 536        if ((s->mcr & 0x10) == 0) {
 537            /* Disabled.  Do nothing.  */
 538            break;
 539        }
 540        /* Grab the bus if this is starting a transfer.  */
 541        if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
 542            if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
 543                s->mcs |= STELLARIS_I2C_MCS_ARBLST;
 544            } else {
 545                s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
 546                s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
 547            }
 548        }
 549        /* If we don't have the bus then indicate an error.  */
 550        if (!i2c_bus_busy(s->bus)
 551                || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
 552            s->mcs |= STELLARIS_I2C_MCS_ERROR;
 553            break;
 554        }
 555        s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
 556        if (value & 1) {
 557            /* Transfer a byte.  */
 558            /* TODO: Handle errors.  */
 559            if (s->msa & 1) {
 560                /* Recv */
 561                s->mdr = i2c_recv(s->bus);
 562            } else {
 563                /* Send */
 564                i2c_send(s->bus, s->mdr);
 565            }
 566            /* Raise an interrupt.  */
 567            s->mris |= 1;
 568        }
 569        if (value & 4) {
 570            /* Finish transfer.  */
 571            i2c_end_transfer(s->bus);
 572            s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
 573        }
 574        break;
 575    case 0x08: /* MDR */
 576        s->mdr = value & 0xff;
 577        break;
 578    case 0x0c: /* MTPR */
 579        s->mtpr = value & 0xff;
 580        break;
 581    case 0x10: /* MIMR */
 582        s->mimr = 1;
 583        break;
 584    case 0x1c: /* MICR */
 585        s->mris &= ~value;
 586        break;
 587    case 0x20: /* MCR */
 588        if (value & 1) {
 589            qemu_log_mask(LOG_UNIMP,
 590                          "stellaris_i2c: Loopback not implemented\n");
 591        }
 592        if (value & 0x20) {
 593            qemu_log_mask(LOG_UNIMP,
 594                          "stellaris_i2c: Slave mode not implemented\n");
 595        }
 596        s->mcr = value & 0x31;
 597        break;
 598    default:
 599        qemu_log_mask(LOG_GUEST_ERROR,
 600                      "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
 601    }
 602    stellaris_i2c_update(s);
 603}
 604
 605static void stellaris_i2c_reset(stellaris_i2c_state *s)
 606{
 607    if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
 608        i2c_end_transfer(s->bus);
 609
 610    s->msa = 0;
 611    s->mcs = 0;
 612    s->mdr = 0;
 613    s->mtpr = 1;
 614    s->mimr = 0;
 615    s->mris = 0;
 616    s->mcr = 0;
 617    stellaris_i2c_update(s);
 618}
 619
 620static const MemoryRegionOps stellaris_i2c_ops = {
 621    .read = stellaris_i2c_read,
 622    .write = stellaris_i2c_write,
 623    .endianness = DEVICE_NATIVE_ENDIAN,
 624};
 625
 626static const VMStateDescription vmstate_stellaris_i2c = {
 627    .name = "stellaris_i2c",
 628    .version_id = 1,
 629    .minimum_version_id = 1,
 630    .fields = (VMStateField[]) {
 631        VMSTATE_UINT32(msa, stellaris_i2c_state),
 632        VMSTATE_UINT32(mcs, stellaris_i2c_state),
 633        VMSTATE_UINT32(mdr, stellaris_i2c_state),
 634        VMSTATE_UINT32(mtpr, stellaris_i2c_state),
 635        VMSTATE_UINT32(mimr, stellaris_i2c_state),
 636        VMSTATE_UINT32(mris, stellaris_i2c_state),
 637        VMSTATE_UINT32(mcr, stellaris_i2c_state),
 638        VMSTATE_END_OF_LIST()
 639    }
 640};
 641
 642static void stellaris_i2c_init(Object *obj)
 643{
 644    DeviceState *dev = DEVICE(obj);
 645    stellaris_i2c_state *s = STELLARIS_I2C(obj);
 646    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 647    I2CBus *bus;
 648
 649    sysbus_init_irq(sbd, &s->irq);
 650    bus = i2c_init_bus(dev, "i2c");
 651    s->bus = bus;
 652
 653    memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
 654                          "i2c", 0x1000);
 655    sysbus_init_mmio(sbd, &s->iomem);
 656    /* ??? For now we only implement the master interface.  */
 657    stellaris_i2c_reset(s);
 658}
 659
 660/* Analogue to Digital Converter.  This is only partially implemented,
 661   enough for applications that use a combined ADC and timer tick.  */
 662
 663#define STELLARIS_ADC_EM_CONTROLLER 0
 664#define STELLARIS_ADC_EM_COMP       1
 665#define STELLARIS_ADC_EM_EXTERNAL   4
 666#define STELLARIS_ADC_EM_TIMER      5
 667#define STELLARIS_ADC_EM_PWM0       6
 668#define STELLARIS_ADC_EM_PWM1       7
 669#define STELLARIS_ADC_EM_PWM2       8
 670
 671#define STELLARIS_ADC_FIFO_EMPTY    0x0100
 672#define STELLARIS_ADC_FIFO_FULL     0x1000
 673
 674#define TYPE_STELLARIS_ADC "stellaris-adc"
 675typedef struct StellarisADCState stellaris_adc_state;
 676DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC,
 677                         TYPE_STELLARIS_ADC)
 678
 679struct StellarisADCState {
 680    SysBusDevice parent_obj;
 681
 682    MemoryRegion iomem;
 683    uint32_t actss;
 684    uint32_t ris;
 685    uint32_t im;
 686    uint32_t emux;
 687    uint32_t ostat;
 688    uint32_t ustat;
 689    uint32_t sspri;
 690    uint32_t sac;
 691    struct {
 692        uint32_t state;
 693        uint32_t data[16];
 694    } fifo[4];
 695    uint32_t ssmux[4];
 696    uint32_t ssctl[4];
 697    uint32_t noise;
 698    qemu_irq irq[4];
 699};
 700
 701static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
 702{
 703    int tail;
 704
 705    tail = s->fifo[n].state & 0xf;
 706    if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
 707        s->ustat |= 1 << n;
 708    } else {
 709        s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
 710        s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
 711        if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
 712            s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
 713    }
 714    return s->fifo[n].data[tail];
 715}
 716
 717static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
 718                                     uint32_t value)
 719{
 720    int head;
 721
 722    /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry 
 723       FIFO fir each sequencer.  */
 724    head = (s->fifo[n].state >> 4) & 0xf;
 725    if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
 726        s->ostat |= 1 << n;
 727        return;
 728    }
 729    s->fifo[n].data[head] = value;
 730    head = (head + 1) & 0xf;
 731    s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
 732    s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
 733    if ((s->fifo[n].state & 0xf) == head)
 734        s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
 735}
 736
 737static void stellaris_adc_update(stellaris_adc_state *s)
 738{
 739    int level;
 740    int n;
 741
 742    for (n = 0; n < 4; n++) {
 743        level = (s->ris & s->im & (1 << n)) != 0;
 744        qemu_set_irq(s->irq[n], level);
 745    }
 746}
 747
 748static void stellaris_adc_trigger(void *opaque, int irq, int level)
 749{
 750    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
 751    int n;
 752
 753    for (n = 0; n < 4; n++) {
 754        if ((s->actss & (1 << n)) == 0) {
 755            continue;
 756        }
 757
 758        if (((s->emux >> (n * 4)) & 0xff) != 5) {
 759            continue;
 760        }
 761
 762        /* Some applications use the ADC as a random number source, so introduce
 763           some variation into the signal.  */
 764        s->noise = s->noise * 314159 + 1;
 765        /* ??? actual inputs not implemented.  Return an arbitrary value.  */
 766        stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
 767        s->ris |= (1 << n);
 768        stellaris_adc_update(s);
 769    }
 770}
 771
 772static void stellaris_adc_reset(stellaris_adc_state *s)
 773{
 774    int n;
 775
 776    for (n = 0; n < 4; n++) {
 777        s->ssmux[n] = 0;
 778        s->ssctl[n] = 0;
 779        s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
 780    }
 781}
 782
 783static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
 784                                   unsigned size)
 785{
 786    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
 787
 788    /* TODO: Implement this.  */
 789    if (offset >= 0x40 && offset < 0xc0) {
 790        int n;
 791        n = (offset - 0x40) >> 5;
 792        switch (offset & 0x1f) {
 793        case 0x00: /* SSMUX */
 794            return s->ssmux[n];
 795        case 0x04: /* SSCTL */
 796            return s->ssctl[n];
 797        case 0x08: /* SSFIFO */
 798            return stellaris_adc_fifo_read(s, n);
 799        case 0x0c: /* SSFSTAT */
 800            return s->fifo[n].state;
 801        default:
 802            break;
 803        }
 804    }
 805    switch (offset) {
 806    case 0x00: /* ACTSS */
 807        return s->actss;
 808    case 0x04: /* RIS */
 809        return s->ris;
 810    case 0x08: /* IM */
 811        return s->im;
 812    case 0x0c: /* ISC */
 813        return s->ris & s->im;
 814    case 0x10: /* OSTAT */
 815        return s->ostat;
 816    case 0x14: /* EMUX */
 817        return s->emux;
 818    case 0x18: /* USTAT */
 819        return s->ustat;
 820    case 0x20: /* SSPRI */
 821        return s->sspri;
 822    case 0x30: /* SAC */
 823        return s->sac;
 824    default:
 825        qemu_log_mask(LOG_GUEST_ERROR,
 826                      "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
 827        return 0;
 828    }
 829}
 830
 831static void stellaris_adc_write(void *opaque, hwaddr offset,
 832                                uint64_t value, unsigned size)
 833{
 834    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
 835
 836    /* TODO: Implement this.  */
 837    if (offset >= 0x40 && offset < 0xc0) {
 838        int n;
 839        n = (offset - 0x40) >> 5;
 840        switch (offset & 0x1f) {
 841        case 0x00: /* SSMUX */
 842            s->ssmux[n] = value & 0x33333333;
 843            return;
 844        case 0x04: /* SSCTL */
 845            if (value != 6) {
 846                qemu_log_mask(LOG_UNIMP,
 847                              "ADC: Unimplemented sequence %" PRIx64 "\n",
 848                              value);
 849            }
 850            s->ssctl[n] = value;
 851            return;
 852        default:
 853            break;
 854        }
 855    }
 856    switch (offset) {
 857    case 0x00: /* ACTSS */
 858        s->actss = value & 0xf;
 859        break;
 860    case 0x08: /* IM */
 861        s->im = value;
 862        break;
 863    case 0x0c: /* ISC */
 864        s->ris &= ~value;
 865        break;
 866    case 0x10: /* OSTAT */
 867        s->ostat &= ~value;
 868        break;
 869    case 0x14: /* EMUX */
 870        s->emux = value;
 871        break;
 872    case 0x18: /* USTAT */
 873        s->ustat &= ~value;
 874        break;
 875    case 0x20: /* SSPRI */
 876        s->sspri = value;
 877        break;
 878    case 0x28: /* PSSI */
 879        qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
 880        break;
 881    case 0x30: /* SAC */
 882        s->sac = value;
 883        break;
 884    default:
 885        qemu_log_mask(LOG_GUEST_ERROR,
 886                      "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
 887    }
 888    stellaris_adc_update(s);
 889}
 890
 891static const MemoryRegionOps stellaris_adc_ops = {
 892    .read = stellaris_adc_read,
 893    .write = stellaris_adc_write,
 894    .endianness = DEVICE_NATIVE_ENDIAN,
 895};
 896
 897static const VMStateDescription vmstate_stellaris_adc = {
 898    .name = "stellaris_adc",
 899    .version_id = 1,
 900    .minimum_version_id = 1,
 901    .fields = (VMStateField[]) {
 902        VMSTATE_UINT32(actss, stellaris_adc_state),
 903        VMSTATE_UINT32(ris, stellaris_adc_state),
 904        VMSTATE_UINT32(im, stellaris_adc_state),
 905        VMSTATE_UINT32(emux, stellaris_adc_state),
 906        VMSTATE_UINT32(ostat, stellaris_adc_state),
 907        VMSTATE_UINT32(ustat, stellaris_adc_state),
 908        VMSTATE_UINT32(sspri, stellaris_adc_state),
 909        VMSTATE_UINT32(sac, stellaris_adc_state),
 910        VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
 911        VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
 912        VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
 913        VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
 914        VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
 915        VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
 916        VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
 917        VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
 918        VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
 919        VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
 920        VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
 921        VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
 922        VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
 923        VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
 924        VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
 925        VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
 926        VMSTATE_UINT32(noise, stellaris_adc_state),
 927        VMSTATE_END_OF_LIST()
 928    }
 929};
 930
 931static void stellaris_adc_init(Object *obj)
 932{
 933    DeviceState *dev = DEVICE(obj);
 934    stellaris_adc_state *s = STELLARIS_ADC(obj);
 935    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 936    int n;
 937
 938    for (n = 0; n < 4; n++) {
 939        sysbus_init_irq(sbd, &s->irq[n]);
 940    }
 941
 942    memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
 943                          "adc", 0x1000);
 944    sysbus_init_mmio(sbd, &s->iomem);
 945    stellaris_adc_reset(s);
 946    qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
 947}
 948
 949/* Board init.  */
 950static stellaris_board_info stellaris_boards[] = {
 951  { "LM3S811EVB",
 952    0,
 953    0x0032000e,
 954    0x001f001f, /* dc0 */
 955    0x001132bf,
 956    0x01071013,
 957    0x3f0f01ff,
 958    0x0000001f,
 959    BP_OLED_I2C
 960  },
 961  { "LM3S6965EVB",
 962    0x10010002,
 963    0x1073402e,
 964    0x00ff007f, /* dc0 */
 965    0x001133ff,
 966    0x030f5317,
 967    0x0f0f87ff,
 968    0x5000007f,
 969    BP_OLED_SSI | BP_GAMEPAD
 970  }
 971};
 972
 973static void stellaris_init(MachineState *ms, stellaris_board_info *board)
 974{
 975    static const int uart_irq[] = {5, 6, 33, 34};
 976    static const int timer_irq[] = {19, 21, 23, 35};
 977    static const uint32_t gpio_addr[7] =
 978      { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
 979        0x40024000, 0x40025000, 0x40026000};
 980    static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
 981
 982    /* Memory map of SoC devices, from
 983     * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
 984     * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
 985     *
 986     * 40000000 wdtimer
 987     * 40002000 i2c (unimplemented)
 988     * 40004000 GPIO
 989     * 40005000 GPIO
 990     * 40006000 GPIO
 991     * 40007000 GPIO
 992     * 40008000 SSI
 993     * 4000c000 UART
 994     * 4000d000 UART
 995     * 4000e000 UART
 996     * 40020000 i2c
 997     * 40021000 i2c (unimplemented)
 998     * 40024000 GPIO
 999     * 40025000 GPIO
1000     * 40026000 GPIO
1001     * 40028000 PWM (unimplemented)
1002     * 4002c000 QEI (unimplemented)
1003     * 4002d000 QEI (unimplemented)
1004     * 40030000 gptimer
1005     * 40031000 gptimer
1006     * 40032000 gptimer
1007     * 40033000 gptimer
1008     * 40038000 ADC
1009     * 4003c000 analogue comparator (unimplemented)
1010     * 40048000 ethernet
1011     * 400fc000 hibernation module (unimplemented)
1012     * 400fd000 flash memory control (unimplemented)
1013     * 400fe000 system control
1014     */
1015
1016    DeviceState *gpio_dev[7], *nvic;
1017    qemu_irq gpio_in[7][8];
1018    qemu_irq gpio_out[7][8];
1019    qemu_irq adc;
1020    int sram_size;
1021    int flash_size;
1022    I2CBus *i2c;
1023    DeviceState *dev;
1024    DeviceState *ssys_dev;
1025    int i;
1026    int j;
1027    const uint8_t *macaddr;
1028
1029    MemoryRegion *sram = g_new(MemoryRegion, 1);
1030    MemoryRegion *flash = g_new(MemoryRegion, 1);
1031    MemoryRegion *system_memory = get_system_memory();
1032
1033    flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1034    sram_size = ((board->dc0 >> 18) + 1) * 1024;
1035
1036    /* Flash programming is done via the SCU, so pretend it is ROM.  */
1037    memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1038                           &error_fatal);
1039    memory_region_add_subregion(system_memory, 0, flash);
1040
1041    memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1042                           &error_fatal);
1043    memory_region_add_subregion(system_memory, 0x20000000, sram);
1044
1045    /*
1046     * Create the system-registers object early, because we will
1047     * need its sysclk output.
1048     */
1049    ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
1050    /* Most devices come preprogrammed with a MAC address in the user data. */
1051    macaddr = nd_table[0].macaddr.a;
1052    qdev_prop_set_uint32(ssys_dev, "user0",
1053                         macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
1054    qdev_prop_set_uint32(ssys_dev, "user1",
1055                         macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
1056    qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
1057    qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
1058    qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
1059    qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
1060    qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
1061    qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
1062    qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
1063    sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
1064
1065    nvic = qdev_new(TYPE_ARMV7M);
1066    qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1067    qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1068    qdev_prop_set_bit(nvic, "enable-bitband", true);
1069    qdev_connect_clock_in(nvic, "cpuclk",
1070                          qdev_get_clock_out(ssys_dev, "SYSCLK"));
1071    /* This SoC does not connect the systick reference clock */
1072    object_property_set_link(OBJECT(nvic), "memory",
1073                             OBJECT(get_system_memory()), &error_abort);
1074    /* This will exit with an error if the user passed us a bad cpu_type */
1075    sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1076
1077    /* Now we can wire up the IRQ and MMIO of the system registers */
1078    sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
1079    sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
1080
1081    if (board->dc1 & (1 << 16)) {
1082        dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1083                                    qdev_get_gpio_in(nvic, 14),
1084                                    qdev_get_gpio_in(nvic, 15),
1085                                    qdev_get_gpio_in(nvic, 16),
1086                                    qdev_get_gpio_in(nvic, 17),
1087                                    NULL);
1088        adc = qdev_get_gpio_in(dev, 0);
1089    } else {
1090        adc = NULL;
1091    }
1092    for (i = 0; i < 4; i++) {
1093        if (board->dc2 & (0x10000 << i)) {
1094            SysBusDevice *sbd;
1095
1096            dev = qdev_new(TYPE_STELLARIS_GPTM);
1097            sbd = SYS_BUS_DEVICE(dev);
1098            qdev_connect_clock_in(dev, "clk",
1099                                  qdev_get_clock_out(ssys_dev, "SYSCLK"));
1100            sysbus_realize_and_unref(sbd, &error_fatal);
1101            sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
1102            sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
1103            /* TODO: This is incorrect, but we get away with it because
1104               the ADC output is only ever pulsed.  */
1105            qdev_connect_gpio_out(dev, 0, adc);
1106        }
1107    }
1108
1109    if (board->dc1 & (1 << 3)) { /* watchdog present */
1110        dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1111
1112        qdev_connect_clock_in(dev, "WDOGCLK",
1113                              qdev_get_clock_out(ssys_dev, "SYSCLK"));
1114
1115        sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1116        sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1117                        0,
1118                        0x40000000u);
1119        sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1120                           0,
1121                           qdev_get_gpio_in(nvic, 18));
1122    }
1123
1124
1125    for (i = 0; i < 7; i++) {
1126        if (board->dc4 & (1 << i)) {
1127            gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1128                                               qdev_get_gpio_in(nvic,
1129                                                                gpio_irq[i]));
1130            for (j = 0; j < 8; j++) {
1131                gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1132                gpio_out[i][j] = NULL;
1133            }
1134        }
1135    }
1136
1137    if (board->dc2 & (1 << 12)) {
1138        dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1139                                   qdev_get_gpio_in(nvic, 8));
1140        i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1141        if (board->peripherals & BP_OLED_I2C) {
1142            i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1143        }
1144    }
1145
1146    for (i = 0; i < 4; i++) {
1147        if (board->dc2 & (1 << i)) {
1148            pl011_luminary_create(0x4000c000 + i * 0x1000,
1149                                  qdev_get_gpio_in(nvic, uart_irq[i]),
1150                                  serial_hd(i));
1151        }
1152    }
1153    if (board->dc2 & (1 << 4)) {
1154        dev = sysbus_create_simple("pl022", 0x40008000,
1155                                   qdev_get_gpio_in(nvic, 7));
1156        if (board->peripherals & BP_OLED_SSI) {
1157            void *bus;
1158            DeviceState *sddev;
1159            DeviceState *ssddev;
1160
1161            /*
1162             * Some boards have both an OLED controller and SD card connected to
1163             * the same SSI port, with the SD card chip select connected to a
1164             * GPIO pin.  Technically the OLED chip select is connected to the
1165             * SSI Fss pin.  We do not bother emulating that as both devices
1166             * should never be selected simultaneously, and our OLED controller
1167             * ignores stray 0xff commands that occur when deselecting the SD
1168             * card.
1169             *
1170             * The h/w wiring is:
1171             *  - GPIO pin D0 is wired to the active-low SD card chip select
1172             *  - GPIO pin A3 is wired to the active-low OLED chip select
1173             *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
1174             *    SSI0Fss ("frame signal"), which is an output from the SoC's
1175             *    SSI controller. The SSI controller takes SSI0Fss low when it
1176             *    transmits a frame, so it can work as a chip-select signal.
1177             *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
1178             *    (the OLED never sends data to the CPU, so no wiring needed)
1179             *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
1180             *    and the OLED display-data-in
1181             *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
1182             *    serial-clock input
1183             * So a guest that wants to use the OLED can configure the PL061
1184             * to make pins A2, A3, A5 aux-function, so they are connected
1185             * directly to the SSI controller. When the SSI controller sends
1186             * data it asserts SSI0Fss which selects the OLED.
1187             * A guest that wants to use the SD card configures A2, A4 and A5
1188             * as aux-function, but leaves A3 as a software-controlled GPIO
1189             * line. It asserts the SD card chip-select by using the PL061
1190             * to control pin D0, and lets the SSI controller handle Clk, Tx
1191             * and Rx. (The SSI controller asserts Fss during tx cycles as
1192             * usual, but because A3 is not set to aux-function this is not
1193             * forwarded to the OLED, and so the OLED stays unselected.)
1194             *
1195             * The QEMU implementation instead is:
1196             *  - GPIO pin D0 is wired to the active-low SD card chip select,
1197             *    and also to the OLED chip-select which is implemented
1198             *    as *active-high*
1199             *  - SSI controller signals go to the devices regardless of
1200             *    whether the guest programs A2, A4, A5 as aux-function or not
1201             *
1202             * The problem with this implementation is if the guest doesn't
1203             * care about the SD card and only uses the OLED. In that case it
1204             * may choose never to do anything with D0 (leaving it in its
1205             * default floating state, which reliably leaves the card disabled
1206             * because an SD card has a pullup on CS within the card itself),
1207             * and only set up A2, A3, A5. This for us would mean the OLED
1208             * never gets the chip-select assert it needs. We work around
1209             * this with a manual raise of D0 here (despite board creation
1210             * code being the wrong place to raise IRQ lines) to put the OLED
1211             * into an initially selected state.
1212             *
1213             * In theory the right way to model this would be:
1214             *  - Implement aux-function support in the PL061, with an
1215             *    extra set of AFIN and AFOUT GPIO lines (set up so that
1216             *    if a GPIO line is in auxfn mode the main GPIO in and out
1217             *    track the AFIN and AFOUT lines)
1218             *  - Wire the AFOUT for D0 up to either a line from the
1219             *    SSI controller that's pulled low around every transmit,
1220             *    or at least to an always-0 line here on the board
1221             *  - Make the ssd0323 OLED controller chipselect active-low
1222             */
1223            bus = qdev_get_child_bus(dev, "ssi");
1224
1225            sddev = ssi_create_peripheral(bus, "ssi-sd");
1226            ssddev = ssi_create_peripheral(bus, "ssd0323");
1227            gpio_out[GPIO_D][0] = qemu_irq_split(
1228                    qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1229                    qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1230            gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1231
1232            /* Make sure the select pin is high.  */
1233            qemu_irq_raise(gpio_out[GPIO_D][0]);
1234        }
1235    }
1236    if (board->dc4 & (1 << 28)) {
1237        DeviceState *enet;
1238
1239        qemu_check_nic_model(&nd_table[0], "stellaris");
1240
1241        enet = qdev_new("stellaris_enet");
1242        qdev_set_nic_properties(enet, &nd_table[0]);
1243        sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1244        sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1245        sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1246    }
1247    if (board->peripherals & BP_GAMEPAD) {
1248        qemu_irq gpad_irq[5];
1249        static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1250
1251        gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1252        gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1253        gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1254        gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1255        gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1256
1257        stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1258    }
1259    for (i = 0; i < 7; i++) {
1260        if (board->dc4 & (1 << i)) {
1261            for (j = 0; j < 8; j++) {
1262                if (gpio_out[i][j]) {
1263                    qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1264                }
1265            }
1266        }
1267    }
1268
1269    /* Add dummy regions for the devices we don't implement yet,
1270     * so guest accesses don't cause unlogged crashes.
1271     */
1272    create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1273    create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1274    create_unimplemented_device("PWM", 0x40028000, 0x1000);
1275    create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1276    create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1277    create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1278    create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1279    create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1280
1281    armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1282}
1283
1284/* FIXME: Figure out how to generate these from stellaris_boards.  */
1285static void lm3s811evb_init(MachineState *machine)
1286{
1287    stellaris_init(machine, &stellaris_boards[0]);
1288}
1289
1290static void lm3s6965evb_init(MachineState *machine)
1291{
1292    stellaris_init(machine, &stellaris_boards[1]);
1293}
1294
1295static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1296{
1297    MachineClass *mc = MACHINE_CLASS(oc);
1298
1299    mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
1300    mc->init = lm3s811evb_init;
1301    mc->ignore_memory_transaction_failures = true;
1302    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1303}
1304
1305static const TypeInfo lm3s811evb_type = {
1306    .name = MACHINE_TYPE_NAME("lm3s811evb"),
1307    .parent = TYPE_MACHINE,
1308    .class_init = lm3s811evb_class_init,
1309};
1310
1311static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1312{
1313    MachineClass *mc = MACHINE_CLASS(oc);
1314
1315    mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
1316    mc->init = lm3s6965evb_init;
1317    mc->ignore_memory_transaction_failures = true;
1318    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1319}
1320
1321static const TypeInfo lm3s6965evb_type = {
1322    .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1323    .parent = TYPE_MACHINE,
1324    .class_init = lm3s6965evb_class_init,
1325};
1326
1327static void stellaris_machine_init(void)
1328{
1329    type_register_static(&lm3s811evb_type);
1330    type_register_static(&lm3s6965evb_type);
1331}
1332
1333type_init(stellaris_machine_init)
1334
1335static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1336{
1337    DeviceClass *dc = DEVICE_CLASS(klass);
1338
1339    dc->vmsd = &vmstate_stellaris_i2c;
1340}
1341
1342static const TypeInfo stellaris_i2c_info = {
1343    .name          = TYPE_STELLARIS_I2C,
1344    .parent        = TYPE_SYS_BUS_DEVICE,
1345    .instance_size = sizeof(stellaris_i2c_state),
1346    .instance_init = stellaris_i2c_init,
1347    .class_init    = stellaris_i2c_class_init,
1348};
1349
1350static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1351{
1352    DeviceClass *dc = DEVICE_CLASS(klass);
1353
1354    dc->vmsd = &vmstate_stellaris_adc;
1355}
1356
1357static const TypeInfo stellaris_adc_info = {
1358    .name          = TYPE_STELLARIS_ADC,
1359    .parent        = TYPE_SYS_BUS_DEVICE,
1360    .instance_size = sizeof(stellaris_adc_state),
1361    .instance_init = stellaris_adc_init,
1362    .class_init    = stellaris_adc_class_init,
1363};
1364
1365static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1366{
1367    DeviceClass *dc = DEVICE_CLASS(klass);
1368    ResettableClass *rc = RESETTABLE_CLASS(klass);
1369
1370    dc->vmsd = &vmstate_stellaris_sys;
1371    rc->phases.enter = stellaris_sys_reset_enter;
1372    rc->phases.hold = stellaris_sys_reset_hold;
1373    rc->phases.exit = stellaris_sys_reset_exit;
1374    device_class_set_props(dc, stellaris_sys_properties);
1375}
1376
1377static const TypeInfo stellaris_sys_info = {
1378    .name = TYPE_STELLARIS_SYS,
1379    .parent = TYPE_SYS_BUS_DEVICE,
1380    .instance_size = sizeof(ssys_state),
1381    .instance_init = stellaris_sys_instance_init,
1382    .class_init = stellaris_sys_class_init,
1383};
1384
1385static void stellaris_register_types(void)
1386{
1387    type_register_static(&stellaris_i2c_info);
1388    type_register_static(&stellaris_adc_info);
1389    type_register_static(&stellaris_sys_info);
1390}
1391
1392type_init(stellaris_register_types)
1393