qemu/hw/dma/sparc32_dma.c
<<
>>
Prefs
   1/*
   2 * QEMU Sparc32 DMA controller emulation
   3 *
   4 * Copyright (c) 2006 Fabrice Bellard
   5 *
   6 * Modifications:
   7 *  2010-Feb-14 Artyom Tarasenko : reworked irq generation
   8 *
   9 * Permission is hereby granted, free of charge, to any person obtaining a copy
  10 * of this software and associated documentation files (the "Software"), to deal
  11 * in the Software without restriction, including without limitation the rights
  12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13 * copies of the Software, and to permit persons to whom the Software is
  14 * furnished to do so, subject to the following conditions:
  15 *
  16 * The above copyright notice and this permission notice shall be included in
  17 * all copies or substantial portions of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25 * THE SOFTWARE.
  26 */
  27
  28#include "qemu/osdep.h"
  29#include "hw/irq.h"
  30#include "hw/qdev-properties.h"
  31#include "hw/sparc/sparc32_dma.h"
  32#include "hw/sparc/sun4m_iommu.h"
  33#include "hw/sysbus.h"
  34#include "migration/vmstate.h"
  35#include "sysemu/dma.h"
  36#include "qapi/error.h"
  37#include "qemu/module.h"
  38#include "trace.h"
  39
  40/*
  41 * This is the DMA controller part of chip STP2000 (Master I/O), also
  42 * produced as NCR89C100. See
  43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
  44 * and
  45 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
  46 */
  47
  48#define DMA_SIZE (4 * sizeof(uint32_t))
  49/* We need the mask, because one instance of the device is not page
  50   aligned (ledma, start address 0x0010) */
  51#define DMA_MASK (DMA_SIZE - 1)
  52/* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */
  53#define DMA_ETH_SIZE (8 * sizeof(uint32_t))
  54#define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1)
  55
  56#define DMA_VER 0xa0000000
  57#define DMA_INTR 1
  58#define DMA_INTREN 0x10
  59#define DMA_WRITE_MEM 0x100
  60#define DMA_EN 0x200
  61#define DMA_LOADED 0x04000000
  62#define DMA_DRAIN_FIFO 0x40
  63#define DMA_RESET 0x80
  64
  65/* XXX SCSI and ethernet should have different read-only bit masks */
  66#define DMA_CSR_RO_MASK 0xfe000007
  67
  68enum {
  69    GPIO_RESET = 0,
  70    GPIO_DMA,
  71};
  72
  73/* Note: on sparc, the lance 16 bit bus is swapped */
  74void ledma_memory_read(void *opaque, hwaddr addr,
  75                       uint8_t *buf, int len, int do_bswap)
  76{
  77    DMADeviceState *s = opaque;
  78    IOMMUState *is = (IOMMUState *)s->iommu;
  79    int i;
  80
  81    addr |= s->dmaregs[3];
  82    trace_ledma_memory_read(addr, len);
  83    if (do_bswap) {
  84        dma_memory_read(&is->iommu_as, addr, buf, len);
  85    } else {
  86        addr &= ~1;
  87        len &= ~1;
  88        dma_memory_read(&is->iommu_as, addr, buf, len);
  89        for(i = 0; i < len; i += 2) {
  90            bswap16s((uint16_t *)(buf + i));
  91        }
  92    }
  93}
  94
  95void ledma_memory_write(void *opaque, hwaddr addr,
  96                        uint8_t *buf, int len, int do_bswap)
  97{
  98    DMADeviceState *s = opaque;
  99    IOMMUState *is = (IOMMUState *)s->iommu;
 100    int l, i;
 101    uint16_t tmp_buf[32];
 102
 103    addr |= s->dmaregs[3];
 104    trace_ledma_memory_write(addr, len);
 105    if (do_bswap) {
 106        dma_memory_write(&is->iommu_as, addr, buf, len);
 107    } else {
 108        addr &= ~1;
 109        len &= ~1;
 110        while (len > 0) {
 111            l = len;
 112            if (l > sizeof(tmp_buf))
 113                l = sizeof(tmp_buf);
 114            for(i = 0; i < l; i += 2) {
 115                tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
 116            }
 117            dma_memory_write(&is->iommu_as, addr, tmp_buf, l);
 118            len -= l;
 119            buf += l;
 120            addr += l;
 121        }
 122    }
 123}
 124
 125static void dma_set_irq(void *opaque, int irq, int level)
 126{
 127    DMADeviceState *s = opaque;
 128    if (level) {
 129        s->dmaregs[0] |= DMA_INTR;
 130        if (s->dmaregs[0] & DMA_INTREN) {
 131            trace_sparc32_dma_set_irq_raise();
 132            qemu_irq_raise(s->irq);
 133        }
 134    } else {
 135        if (s->dmaregs[0] & DMA_INTR) {
 136            s->dmaregs[0] &= ~DMA_INTR;
 137            if (s->dmaregs[0] & DMA_INTREN) {
 138                trace_sparc32_dma_set_irq_lower();
 139                qemu_irq_lower(s->irq);
 140            }
 141        }
 142    }
 143}
 144
 145void espdma_memory_read(void *opaque, uint8_t *buf, int len)
 146{
 147    DMADeviceState *s = opaque;
 148    IOMMUState *is = (IOMMUState *)s->iommu;
 149
 150    trace_espdma_memory_read(s->dmaregs[1], len);
 151    dma_memory_read(&is->iommu_as, s->dmaregs[1], buf, len);
 152    s->dmaregs[1] += len;
 153}
 154
 155void espdma_memory_write(void *opaque, uint8_t *buf, int len)
 156{
 157    DMADeviceState *s = opaque;
 158    IOMMUState *is = (IOMMUState *)s->iommu;
 159
 160    trace_espdma_memory_write(s->dmaregs[1], len);
 161    dma_memory_write(&is->iommu_as, s->dmaregs[1], buf, len);
 162    s->dmaregs[1] += len;
 163}
 164
 165static uint64_t dma_mem_read(void *opaque, hwaddr addr,
 166                             unsigned size)
 167{
 168    DMADeviceState *s = opaque;
 169    uint32_t saddr;
 170
 171    saddr = (addr & DMA_MASK) >> 2;
 172    trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]);
 173    return s->dmaregs[saddr];
 174}
 175
 176static void dma_mem_write(void *opaque, hwaddr addr,
 177                          uint64_t val, unsigned size)
 178{
 179    DMADeviceState *s = opaque;
 180    uint32_t saddr;
 181
 182    saddr = (addr & DMA_MASK) >> 2;
 183    trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val);
 184    switch (saddr) {
 185    case 0:
 186        if (val & DMA_INTREN) {
 187            if (s->dmaregs[0] & DMA_INTR) {
 188                trace_sparc32_dma_set_irq_raise();
 189                qemu_irq_raise(s->irq);
 190            }
 191        } else {
 192            if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) {
 193                trace_sparc32_dma_set_irq_lower();
 194                qemu_irq_lower(s->irq);
 195            }
 196        }
 197        if (val & DMA_RESET) {
 198            qemu_irq_raise(s->gpio[GPIO_RESET]);
 199            qemu_irq_lower(s->gpio[GPIO_RESET]);
 200        } else if (val & DMA_DRAIN_FIFO) {
 201            val &= ~DMA_DRAIN_FIFO;
 202        } else if (val == 0)
 203            val = DMA_DRAIN_FIFO;
 204
 205        if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) {
 206            trace_sparc32_dma_enable_raise();
 207            qemu_irq_raise(s->gpio[GPIO_DMA]);
 208        } else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) {
 209            trace_sparc32_dma_enable_lower();
 210            qemu_irq_lower(s->gpio[GPIO_DMA]);
 211        }
 212
 213        val &= ~DMA_CSR_RO_MASK;
 214        val |= DMA_VER;
 215        s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val;
 216        break;
 217    case 1:
 218        s->dmaregs[0] |= DMA_LOADED;
 219        /* fall through */
 220    default:
 221        s->dmaregs[saddr] = val;
 222        break;
 223    }
 224}
 225
 226static const MemoryRegionOps dma_mem_ops = {
 227    .read = dma_mem_read,
 228    .write = dma_mem_write,
 229    .endianness = DEVICE_NATIVE_ENDIAN,
 230    .valid = {
 231        .min_access_size = 4,
 232        .max_access_size = 4,
 233    },
 234};
 235
 236static void sparc32_dma_device_reset(DeviceState *d)
 237{
 238    DMADeviceState *s = SPARC32_DMA_DEVICE(d);
 239
 240    memset(s->dmaregs, 0, DMA_SIZE);
 241    s->dmaregs[0] = DMA_VER;
 242}
 243
 244static const VMStateDescription vmstate_sparc32_dma_device = {
 245    .name ="sparc32_dma",
 246    .version_id = 2,
 247    .minimum_version_id = 2,
 248    .fields = (VMStateField[]) {
 249        VMSTATE_UINT32_ARRAY(dmaregs, DMADeviceState, DMA_REGS),
 250        VMSTATE_END_OF_LIST()
 251    }
 252};
 253
 254static void sparc32_dma_device_init(Object *obj)
 255{
 256    DeviceState *dev = DEVICE(obj);
 257    DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
 258    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 259
 260    sysbus_init_irq(sbd, &s->irq);
 261
 262    sysbus_init_mmio(sbd, &s->iomem);
 263
 264    object_property_add_link(OBJECT(dev), "iommu", TYPE_SUN4M_IOMMU,
 265                             (Object **) &s->iommu,
 266                             qdev_prop_allow_set_link_before_realize,
 267                             0);
 268
 269    qdev_init_gpio_in(dev, dma_set_irq, 1);
 270    qdev_init_gpio_out(dev, s->gpio, 2);
 271}
 272
 273static void sparc32_dma_device_class_init(ObjectClass *klass, void *data)
 274{
 275    DeviceClass *dc = DEVICE_CLASS(klass);
 276
 277    dc->reset = sparc32_dma_device_reset;
 278    dc->vmsd = &vmstate_sparc32_dma_device;
 279}
 280
 281static const TypeInfo sparc32_dma_device_info = {
 282    .name          = TYPE_SPARC32_DMA_DEVICE,
 283    .parent        = TYPE_SYS_BUS_DEVICE,
 284    .abstract      = true,
 285    .instance_size = sizeof(DMADeviceState),
 286    .instance_init = sparc32_dma_device_init,
 287    .class_init    = sparc32_dma_device_class_init,
 288};
 289
 290static void sparc32_espdma_device_init(Object *obj)
 291{
 292    DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
 293    ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(obj);
 294
 295    memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
 296                          "espdma-mmio", DMA_SIZE);
 297
 298    object_initialize_child(obj, "esp", &es->esp, TYPE_SYSBUS_ESP);
 299}
 300
 301static void sparc32_espdma_device_realize(DeviceState *dev, Error **errp)
 302{
 303    ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(dev);
 304    SysBusESPState *sysbus = SYSBUS_ESP(&es->esp);
 305    ESPState *esp = &sysbus->esp;
 306
 307    esp->dma_memory_read = espdma_memory_read;
 308    esp->dma_memory_write = espdma_memory_write;
 309    esp->dma_opaque = SPARC32_DMA_DEVICE(dev);
 310    sysbus->it_shift = 2;
 311    esp->dma_enabled = 1;
 312    sysbus_realize(SYS_BUS_DEVICE(sysbus), &error_fatal);
 313}
 314
 315static void sparc32_espdma_device_class_init(ObjectClass *klass, void *data)
 316{
 317    DeviceClass *dc = DEVICE_CLASS(klass);
 318
 319    dc->realize = sparc32_espdma_device_realize;
 320}
 321
 322static const TypeInfo sparc32_espdma_device_info = {
 323    .name          = TYPE_SPARC32_ESPDMA_DEVICE,
 324    .parent        = TYPE_SPARC32_DMA_DEVICE,
 325    .instance_size = sizeof(ESPDMADeviceState),
 326    .instance_init = sparc32_espdma_device_init,
 327    .class_init    = sparc32_espdma_device_class_init,
 328};
 329
 330static void sparc32_ledma_device_init(Object *obj)
 331{
 332    DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
 333    LEDMADeviceState *ls = SPARC32_LEDMA_DEVICE(obj);
 334
 335    memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
 336                          "ledma-mmio", DMA_SIZE);
 337
 338    object_initialize_child(obj, "lance", &ls->lance, TYPE_LANCE);
 339}
 340
 341static void sparc32_ledma_device_realize(DeviceState *dev, Error **errp)
 342{
 343    LEDMADeviceState *s = SPARC32_LEDMA_DEVICE(dev);
 344    SysBusPCNetState *lance = SYSBUS_PCNET(&s->lance);
 345
 346    object_property_set_link(OBJECT(lance), "dma", OBJECT(dev), &error_abort);
 347    sysbus_realize(SYS_BUS_DEVICE(lance), &error_fatal);
 348}
 349
 350static void sparc32_ledma_device_class_init(ObjectClass *klass, void *data)
 351{
 352    DeviceClass *dc = DEVICE_CLASS(klass);
 353
 354    dc->realize = sparc32_ledma_device_realize;
 355}
 356
 357static const TypeInfo sparc32_ledma_device_info = {
 358    .name          = TYPE_SPARC32_LEDMA_DEVICE,
 359    .parent        = TYPE_SPARC32_DMA_DEVICE,
 360    .instance_size = sizeof(LEDMADeviceState),
 361    .instance_init = sparc32_ledma_device_init,
 362    .class_init    = sparc32_ledma_device_class_init,
 363};
 364
 365static void sparc32_dma_realize(DeviceState *dev, Error **errp)
 366{
 367    SPARC32DMAState *s = SPARC32_DMA(dev);
 368    DeviceState *espdma, *esp, *ledma, *lance;
 369    SysBusDevice *sbd;
 370    Object *iommu;
 371
 372    iommu = object_resolve_path_type("", TYPE_SUN4M_IOMMU, NULL);
 373    if (!iommu) {
 374        error_setg(errp, "unable to locate sun4m IOMMU device");
 375        return;
 376    }
 377
 378    espdma = DEVICE(&s->espdma);
 379    object_property_set_link(OBJECT(espdma), "iommu", iommu, &error_abort);
 380    sysbus_realize(SYS_BUS_DEVICE(espdma), &error_fatal);
 381
 382    esp = DEVICE(object_resolve_path_component(OBJECT(espdma), "esp"));
 383    sbd = SYS_BUS_DEVICE(esp);
 384    sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(espdma, 0));
 385    qdev_connect_gpio_out(espdma, 0, qdev_get_gpio_in(esp, 0));
 386    qdev_connect_gpio_out(espdma, 1, qdev_get_gpio_in(esp, 1));
 387
 388    sbd = SYS_BUS_DEVICE(espdma);
 389    memory_region_add_subregion(&s->dmamem, 0x0,
 390                                sysbus_mmio_get_region(sbd, 0));
 391
 392    ledma = DEVICE(&s->ledma);
 393    object_property_set_link(OBJECT(ledma), "iommu", iommu, &error_abort);
 394    sysbus_realize(SYS_BUS_DEVICE(ledma), &error_fatal);
 395
 396    lance = DEVICE(object_resolve_path_component(OBJECT(ledma), "lance"));
 397    sbd = SYS_BUS_DEVICE(lance);
 398    sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(ledma, 0));
 399    qdev_connect_gpio_out(ledma, 0, qdev_get_gpio_in(lance, 0));
 400
 401    sbd = SYS_BUS_DEVICE(ledma);
 402    memory_region_add_subregion(&s->dmamem, 0x10,
 403                                sysbus_mmio_get_region(sbd, 0));
 404
 405    /* Add ledma alias to handle SunOS 5.7 - Solaris 9 invalid access bug */
 406    memory_region_init_alias(&s->ledma_alias, OBJECT(dev), "ledma-alias",
 407                             sysbus_mmio_get_region(sbd, 0), 0x4, 0x4);
 408    memory_region_add_subregion(&s->dmamem, 0x20, &s->ledma_alias);
 409}
 410
 411static void sparc32_dma_init(Object *obj)
 412{
 413    SPARC32DMAState *s = SPARC32_DMA(obj);
 414    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 415
 416    memory_region_init(&s->dmamem, OBJECT(s), "dma", DMA_SIZE + DMA_ETH_SIZE);
 417    sysbus_init_mmio(sbd, &s->dmamem);
 418
 419    object_initialize_child(obj, "espdma", &s->espdma,
 420                            TYPE_SPARC32_ESPDMA_DEVICE);
 421    object_initialize_child(obj, "ledma", &s->ledma,
 422                            TYPE_SPARC32_LEDMA_DEVICE);
 423}
 424
 425static void sparc32_dma_class_init(ObjectClass *klass, void *data)
 426{
 427    DeviceClass *dc = DEVICE_CLASS(klass);
 428
 429    dc->realize = sparc32_dma_realize;
 430}
 431
 432static const TypeInfo sparc32_dma_info = {
 433    .name          = TYPE_SPARC32_DMA,
 434    .parent        = TYPE_SYS_BUS_DEVICE,
 435    .instance_size = sizeof(SPARC32DMAState),
 436    .instance_init = sparc32_dma_init,
 437    .class_init    = sparc32_dma_class_init,
 438};
 439
 440
 441static void sparc32_dma_register_types(void)
 442{
 443    type_register_static(&sparc32_dma_device_info);
 444    type_register_static(&sparc32_espdma_device_info);
 445    type_register_static(&sparc32_ledma_device_info);
 446    type_register_static(&sparc32_dma_info);
 447}
 448
 449type_init(sparc32_dma_register_types)
 450