qemu/hw/i386/intel_iommu.c
<<
>>
Prefs
   1/*
   2 * QEMU emulation of an Intel IOMMU (VT-d)
   3 *   (DMA Remapping device)
   4 *
   5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
   6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "qemu/error-report.h"
  24#include "qemu/main-loop.h"
  25#include "qapi/error.h"
  26#include "hw/sysbus.h"
  27#include "intel_iommu_internal.h"
  28#include "hw/pci/pci.h"
  29#include "hw/pci/pci_bus.h"
  30#include "hw/qdev-properties.h"
  31#include "hw/i386/pc.h"
  32#include "hw/i386/apic-msidef.h"
  33#include "hw/i386/x86-iommu.h"
  34#include "hw/pci-host/q35.h"
  35#include "sysemu/kvm.h"
  36#include "sysemu/dma.h"
  37#include "sysemu/sysemu.h"
  38#include "hw/i386/apic_internal.h"
  39#include "kvm/kvm_i386.h"
  40#include "migration/vmstate.h"
  41#include "trace.h"
  42
  43/* context entry operations */
  44#define VTD_CE_GET_RID2PASID(ce) \
  45    ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
  46#define VTD_CE_GET_PASID_DIR_TABLE(ce) \
  47    ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
  48
  49/* pe operations */
  50#define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
  51#define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
  52#define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
  53    if (ret_fr) {                                                             \
  54        ret_fr = -ret_fr;                                                     \
  55        if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {                   \
  56            trace_vtd_fault_disabled();                                       \
  57        } else {                                                              \
  58            vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);      \
  59        }                                                                     \
  60        goto error;                                                           \
  61    }                                                                         \
  62}
  63
  64static void vtd_address_space_refresh_all(IntelIOMMUState *s);
  65static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
  66
  67static void vtd_panic_require_caching_mode(void)
  68{
  69    error_report("We need to set caching-mode=on for intel-iommu to enable "
  70                 "device assignment with IOMMU protection.");
  71    exit(1);
  72}
  73
  74static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  75                            uint64_t wmask, uint64_t w1cmask)
  76{
  77    stq_le_p(&s->csr[addr], val);
  78    stq_le_p(&s->wmask[addr], wmask);
  79    stq_le_p(&s->w1cmask[addr], w1cmask);
  80}
  81
  82static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  83{
  84    stq_le_p(&s->womask[addr], mask);
  85}
  86
  87static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  88                            uint32_t wmask, uint32_t w1cmask)
  89{
  90    stl_le_p(&s->csr[addr], val);
  91    stl_le_p(&s->wmask[addr], wmask);
  92    stl_le_p(&s->w1cmask[addr], w1cmask);
  93}
  94
  95static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
  96{
  97    stl_le_p(&s->womask[addr], mask);
  98}
  99
 100/* "External" get/set operations */
 101static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 102{
 103    uint64_t oldval = ldq_le_p(&s->csr[addr]);
 104    uint64_t wmask = ldq_le_p(&s->wmask[addr]);
 105    uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
 106    stq_le_p(&s->csr[addr],
 107             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
 108}
 109
 110static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
 111{
 112    uint32_t oldval = ldl_le_p(&s->csr[addr]);
 113    uint32_t wmask = ldl_le_p(&s->wmask[addr]);
 114    uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
 115    stl_le_p(&s->csr[addr],
 116             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
 117}
 118
 119static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
 120{
 121    uint64_t val = ldq_le_p(&s->csr[addr]);
 122    uint64_t womask = ldq_le_p(&s->womask[addr]);
 123    return val & ~womask;
 124}
 125
 126static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
 127{
 128    uint32_t val = ldl_le_p(&s->csr[addr]);
 129    uint32_t womask = ldl_le_p(&s->womask[addr]);
 130    return val & ~womask;
 131}
 132
 133/* "Internal" get/set operations */
 134static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
 135{
 136    return ldq_le_p(&s->csr[addr]);
 137}
 138
 139static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
 140{
 141    return ldl_le_p(&s->csr[addr]);
 142}
 143
 144static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 145{
 146    stq_le_p(&s->csr[addr], val);
 147}
 148
 149static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
 150                                        uint32_t clear, uint32_t mask)
 151{
 152    uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
 153    stl_le_p(&s->csr[addr], new_val);
 154    return new_val;
 155}
 156
 157static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
 158                                        uint64_t clear, uint64_t mask)
 159{
 160    uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
 161    stq_le_p(&s->csr[addr], new_val);
 162    return new_val;
 163}
 164
 165static inline void vtd_iommu_lock(IntelIOMMUState *s)
 166{
 167    qemu_mutex_lock(&s->iommu_lock);
 168}
 169
 170static inline void vtd_iommu_unlock(IntelIOMMUState *s)
 171{
 172    qemu_mutex_unlock(&s->iommu_lock);
 173}
 174
 175static void vtd_update_scalable_state(IntelIOMMUState *s)
 176{
 177    uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
 178
 179    if (s->scalable_mode) {
 180        s->root_scalable = val & VTD_RTADDR_SMT;
 181    }
 182}
 183
 184/* Whether the address space needs to notify new mappings */
 185static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
 186{
 187    return as->notifier_flags & IOMMU_NOTIFIER_MAP;
 188}
 189
 190/* GHashTable functions */
 191static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
 192{
 193    return *((const uint64_t *)v1) == *((const uint64_t *)v2);
 194}
 195
 196static guint vtd_uint64_hash(gconstpointer v)
 197{
 198    return (guint)*(const uint64_t *)v;
 199}
 200
 201static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
 202                                          gpointer user_data)
 203{
 204    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 205    uint16_t domain_id = *(uint16_t *)user_data;
 206    return entry->domain_id == domain_id;
 207}
 208
 209/* The shift of an addr for a certain level of paging structure */
 210static inline uint32_t vtd_slpt_level_shift(uint32_t level)
 211{
 212    assert(level != 0);
 213    return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
 214}
 215
 216static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
 217{
 218    return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
 219}
 220
 221static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
 222                                        gpointer user_data)
 223{
 224    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 225    VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
 226    uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
 227    uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
 228    return (entry->domain_id == info->domain_id) &&
 229            (((entry->gfn & info->mask) == gfn) ||
 230             (entry->gfn == gfn_tlb));
 231}
 232
 233/* Reset all the gen of VTDAddressSpace to zero and set the gen of
 234 * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
 235 */
 236static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
 237{
 238    VTDAddressSpace *vtd_as;
 239    VTDBus *vtd_bus;
 240    GHashTableIter bus_it;
 241    uint32_t devfn_it;
 242
 243    trace_vtd_context_cache_reset();
 244
 245    g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
 246
 247    while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
 248        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
 249            vtd_as = vtd_bus->dev_as[devfn_it];
 250            if (!vtd_as) {
 251                continue;
 252            }
 253            vtd_as->context_cache_entry.context_cache_gen = 0;
 254        }
 255    }
 256    s->context_cache_gen = 1;
 257}
 258
 259/* Must be called with IOMMU lock held. */
 260static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
 261{
 262    assert(s->iotlb);
 263    g_hash_table_remove_all(s->iotlb);
 264}
 265
 266static void vtd_reset_iotlb(IntelIOMMUState *s)
 267{
 268    vtd_iommu_lock(s);
 269    vtd_reset_iotlb_locked(s);
 270    vtd_iommu_unlock(s);
 271}
 272
 273static void vtd_reset_caches(IntelIOMMUState *s)
 274{
 275    vtd_iommu_lock(s);
 276    vtd_reset_iotlb_locked(s);
 277    vtd_reset_context_cache_locked(s);
 278    vtd_iommu_unlock(s);
 279}
 280
 281static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
 282                                  uint32_t level)
 283{
 284    return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
 285           ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
 286}
 287
 288static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
 289{
 290    return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
 291}
 292
 293/* Must be called with IOMMU lock held */
 294static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
 295                                       hwaddr addr)
 296{
 297    VTDIOTLBEntry *entry;
 298    uint64_t key;
 299    int level;
 300
 301    for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
 302        key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
 303                                source_id, level);
 304        entry = g_hash_table_lookup(s->iotlb, &key);
 305        if (entry) {
 306            goto out;
 307        }
 308    }
 309
 310out:
 311    return entry;
 312}
 313
 314/* Must be with IOMMU lock held */
 315static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
 316                             uint16_t domain_id, hwaddr addr, uint64_t slpte,
 317                             uint8_t access_flags, uint32_t level)
 318{
 319    VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
 320    uint64_t *key = g_malloc(sizeof(*key));
 321    uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
 322
 323    trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
 324    if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
 325        trace_vtd_iotlb_reset("iotlb exceeds size limit");
 326        vtd_reset_iotlb_locked(s);
 327    }
 328
 329    entry->gfn = gfn;
 330    entry->domain_id = domain_id;
 331    entry->slpte = slpte;
 332    entry->access_flags = access_flags;
 333    entry->mask = vtd_slpt_level_page_mask(level);
 334    *key = vtd_get_iotlb_key(gfn, source_id, level);
 335    g_hash_table_replace(s->iotlb, key, entry);
 336}
 337
 338/* Given the reg addr of both the message data and address, generate an
 339 * interrupt via MSI.
 340 */
 341static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
 342                                   hwaddr mesg_data_reg)
 343{
 344    MSIMessage msi;
 345
 346    assert(mesg_data_reg < DMAR_REG_SIZE);
 347    assert(mesg_addr_reg < DMAR_REG_SIZE);
 348
 349    msi.address = vtd_get_long_raw(s, mesg_addr_reg);
 350    msi.data = vtd_get_long_raw(s, mesg_data_reg);
 351
 352    trace_vtd_irq_generate(msi.address, msi.data);
 353
 354    apic_get_class()->send_msi(&msi);
 355}
 356
 357/* Generate a fault event to software via MSI if conditions are met.
 358 * Notice that the value of FSTS_REG being passed to it should be the one
 359 * before any update.
 360 */
 361static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
 362{
 363    if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
 364        pre_fsts & VTD_FSTS_IQE) {
 365        error_report_once("There are previous interrupt conditions "
 366                          "to be serviced by software, fault event "
 367                          "is not generated");
 368        return;
 369    }
 370    vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
 371    if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
 372        error_report_once("Interrupt Mask set, irq is not generated");
 373    } else {
 374        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
 375        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
 376    }
 377}
 378
 379/* Check if the Fault (F) field of the Fault Recording Register referenced by
 380 * @index is Set.
 381 */
 382static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
 383{
 384    /* Each reg is 128-bit */
 385    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 386    addr += 8; /* Access the high 64-bit half */
 387
 388    assert(index < DMAR_FRCD_REG_NR);
 389
 390    return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
 391}
 392
 393/* Update the PPF field of Fault Status Register.
 394 * Should be called whenever change the F field of any fault recording
 395 * registers.
 396 */
 397static void vtd_update_fsts_ppf(IntelIOMMUState *s)
 398{
 399    uint32_t i;
 400    uint32_t ppf_mask = 0;
 401
 402    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 403        if (vtd_is_frcd_set(s, i)) {
 404            ppf_mask = VTD_FSTS_PPF;
 405            break;
 406        }
 407    }
 408    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
 409    trace_vtd_fsts_ppf(!!ppf_mask);
 410}
 411
 412static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
 413{
 414    /* Each reg is 128-bit */
 415    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 416    addr += 8; /* Access the high 64-bit half */
 417
 418    assert(index < DMAR_FRCD_REG_NR);
 419
 420    vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
 421    vtd_update_fsts_ppf(s);
 422}
 423
 424/* Must not update F field now, should be done later */
 425static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
 426                            uint16_t source_id, hwaddr addr,
 427                            VTDFaultReason fault, bool is_write)
 428{
 429    uint64_t hi = 0, lo;
 430    hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 431
 432    assert(index < DMAR_FRCD_REG_NR);
 433
 434    lo = VTD_FRCD_FI(addr);
 435    hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
 436    if (!is_write) {
 437        hi |= VTD_FRCD_T;
 438    }
 439    vtd_set_quad_raw(s, frcd_reg_addr, lo);
 440    vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
 441
 442    trace_vtd_frr_new(index, hi, lo);
 443}
 444
 445/* Try to collapse multiple pending faults from the same requester */
 446static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
 447{
 448    uint32_t i;
 449    uint64_t frcd_reg;
 450    hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
 451
 452    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 453        frcd_reg = vtd_get_quad_raw(s, addr);
 454        if ((frcd_reg & VTD_FRCD_F) &&
 455            ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
 456            return true;
 457        }
 458        addr += 16; /* 128-bit for each */
 459    }
 460    return false;
 461}
 462
 463/* Log and report an DMAR (address translation) fault to software */
 464static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
 465                                  hwaddr addr, VTDFaultReason fault,
 466                                  bool is_write)
 467{
 468    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 469
 470    assert(fault < VTD_FR_MAX);
 471
 472    if (fault == VTD_FR_RESERVED_ERR) {
 473        /* This is not a normal fault reason case. Drop it. */
 474        return;
 475    }
 476
 477    trace_vtd_dmar_fault(source_id, fault, addr, is_write);
 478
 479    if (fsts_reg & VTD_FSTS_PFO) {
 480        error_report_once("New fault is not recorded due to "
 481                          "Primary Fault Overflow");
 482        return;
 483    }
 484
 485    if (vtd_try_collapse_fault(s, source_id)) {
 486        error_report_once("New fault is not recorded due to "
 487                          "compression of faults");
 488        return;
 489    }
 490
 491    if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
 492        error_report_once("Next Fault Recording Reg is used, "
 493                          "new fault is not recorded, set PFO field");
 494        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
 495        return;
 496    }
 497
 498    vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
 499
 500    if (fsts_reg & VTD_FSTS_PPF) {
 501        error_report_once("There are pending faults already, "
 502                          "fault event is not generated");
 503        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
 504        s->next_frcd_reg++;
 505        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 506            s->next_frcd_reg = 0;
 507        }
 508    } else {
 509        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
 510                                VTD_FSTS_FRI(s->next_frcd_reg));
 511        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
 512        s->next_frcd_reg++;
 513        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 514            s->next_frcd_reg = 0;
 515        }
 516        /* This case actually cause the PPF to be Set.
 517         * So generate fault event (interrupt).
 518         */
 519         vtd_generate_fault_event(s, fsts_reg);
 520    }
 521}
 522
 523/* Handle Invalidation Queue Errors of queued invalidation interface error
 524 * conditions.
 525 */
 526static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
 527{
 528    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 529
 530    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
 531    vtd_generate_fault_event(s, fsts_reg);
 532}
 533
 534/* Set the IWC field and try to generate an invalidation completion interrupt */
 535static void vtd_generate_completion_event(IntelIOMMUState *s)
 536{
 537    if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
 538        trace_vtd_inv_desc_wait_irq("One pending, skip current");
 539        return;
 540    }
 541    vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
 542    vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
 543    if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
 544        trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
 545                                    "new event not generated");
 546        return;
 547    } else {
 548        /* Generate the interrupt event */
 549        trace_vtd_inv_desc_wait_irq("Generating complete event");
 550        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
 551        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
 552    }
 553}
 554
 555static inline bool vtd_root_entry_present(IntelIOMMUState *s,
 556                                          VTDRootEntry *re,
 557                                          uint8_t devfn)
 558{
 559    if (s->root_scalable && devfn > UINT8_MAX / 2) {
 560        return re->hi & VTD_ROOT_ENTRY_P;
 561    }
 562
 563    return re->lo & VTD_ROOT_ENTRY_P;
 564}
 565
 566static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
 567                              VTDRootEntry *re)
 568{
 569    dma_addr_t addr;
 570
 571    addr = s->root + index * sizeof(*re);
 572    if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
 573        re->lo = 0;
 574        return -VTD_FR_ROOT_TABLE_INV;
 575    }
 576    re->lo = le64_to_cpu(re->lo);
 577    re->hi = le64_to_cpu(re->hi);
 578    return 0;
 579}
 580
 581static inline bool vtd_ce_present(VTDContextEntry *context)
 582{
 583    return context->lo & VTD_CONTEXT_ENTRY_P;
 584}
 585
 586static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
 587                                           VTDRootEntry *re,
 588                                           uint8_t index,
 589                                           VTDContextEntry *ce)
 590{
 591    dma_addr_t addr, ce_size;
 592
 593    /* we have checked that root entry is present */
 594    ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
 595              VTD_CTX_ENTRY_LEGACY_SIZE;
 596
 597    if (s->root_scalable && index > UINT8_MAX / 2) {
 598        index = index & (~VTD_DEVFN_CHECK_MASK);
 599        addr = re->hi & VTD_ROOT_ENTRY_CTP;
 600    } else {
 601        addr = re->lo & VTD_ROOT_ENTRY_CTP;
 602    }
 603
 604    addr = addr + index * ce_size;
 605    if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
 606        return -VTD_FR_CONTEXT_TABLE_INV;
 607    }
 608
 609    ce->lo = le64_to_cpu(ce->lo);
 610    ce->hi = le64_to_cpu(ce->hi);
 611    if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
 612        ce->val[2] = le64_to_cpu(ce->val[2]);
 613        ce->val[3] = le64_to_cpu(ce->val[3]);
 614    }
 615    return 0;
 616}
 617
 618static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
 619{
 620    return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
 621}
 622
 623static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
 624{
 625    return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
 626}
 627
 628/* Whether the pte indicates the address of the page frame */
 629static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
 630{
 631    return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
 632}
 633
 634/* Get the content of a spte located in @base_addr[@index] */
 635static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
 636{
 637    uint64_t slpte;
 638
 639    assert(index < VTD_SL_PT_ENTRY_NR);
 640
 641    if (dma_memory_read(&address_space_memory,
 642                        base_addr + index * sizeof(slpte), &slpte,
 643                        sizeof(slpte))) {
 644        slpte = (uint64_t)-1;
 645        return slpte;
 646    }
 647    slpte = le64_to_cpu(slpte);
 648    return slpte;
 649}
 650
 651/* Given an iova and the level of paging structure, return the offset
 652 * of current level.
 653 */
 654static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
 655{
 656    return (iova >> vtd_slpt_level_shift(level)) &
 657            ((1ULL << VTD_SL_LEVEL_BITS) - 1);
 658}
 659
 660/* Check Capability Register to see if the @level of page-table is supported */
 661static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
 662{
 663    return VTD_CAP_SAGAW_MASK & s->cap &
 664           (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
 665}
 666
 667/* Return true if check passed, otherwise false */
 668static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
 669                                     VTDPASIDEntry *pe)
 670{
 671    switch (VTD_PE_GET_TYPE(pe)) {
 672    case VTD_SM_PASID_ENTRY_FLT:
 673    case VTD_SM_PASID_ENTRY_SLT:
 674    case VTD_SM_PASID_ENTRY_NESTED:
 675        break;
 676    case VTD_SM_PASID_ENTRY_PT:
 677        if (!x86_iommu->pt_supported) {
 678            return false;
 679        }
 680        break;
 681    default:
 682        /* Unknown type */
 683        return false;
 684    }
 685    return true;
 686}
 687
 688static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
 689{
 690    return pdire->val & 1;
 691}
 692
 693/**
 694 * Caller of this function should check present bit if wants
 695 * to use pdir entry for further usage except for fpd bit check.
 696 */
 697static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
 698                                         uint32_t pasid,
 699                                         VTDPASIDDirEntry *pdire)
 700{
 701    uint32_t index;
 702    dma_addr_t addr, entry_size;
 703
 704    index = VTD_PASID_DIR_INDEX(pasid);
 705    entry_size = VTD_PASID_DIR_ENTRY_SIZE;
 706    addr = pasid_dir_base + index * entry_size;
 707    if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
 708        return -VTD_FR_PASID_TABLE_INV;
 709    }
 710
 711    return 0;
 712}
 713
 714static inline bool vtd_pe_present(VTDPASIDEntry *pe)
 715{
 716    return pe->val[0] & VTD_PASID_ENTRY_P;
 717}
 718
 719static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
 720                                          uint32_t pasid,
 721                                          dma_addr_t addr,
 722                                          VTDPASIDEntry *pe)
 723{
 724    uint32_t index;
 725    dma_addr_t entry_size;
 726    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
 727
 728    index = VTD_PASID_TABLE_INDEX(pasid);
 729    entry_size = VTD_PASID_ENTRY_SIZE;
 730    addr = addr + index * entry_size;
 731    if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
 732        return -VTD_FR_PASID_TABLE_INV;
 733    }
 734
 735    /* Do translation type check */
 736    if (!vtd_pe_type_check(x86_iommu, pe)) {
 737        return -VTD_FR_PASID_TABLE_INV;
 738    }
 739
 740    if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
 741        return -VTD_FR_PASID_TABLE_INV;
 742    }
 743
 744    return 0;
 745}
 746
 747/**
 748 * Caller of this function should check present bit if wants
 749 * to use pasid entry for further usage except for fpd bit check.
 750 */
 751static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
 752                                 uint32_t pasid,
 753                                 VTDPASIDDirEntry *pdire,
 754                                 VTDPASIDEntry *pe)
 755{
 756    dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
 757
 758    return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
 759}
 760
 761/**
 762 * This function gets a pasid entry from a specified pasid
 763 * table (includes dir and leaf table) with a specified pasid.
 764 * Sanity check should be done to ensure return a present
 765 * pasid entry to caller.
 766 */
 767static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
 768                                       dma_addr_t pasid_dir_base,
 769                                       uint32_t pasid,
 770                                       VTDPASIDEntry *pe)
 771{
 772    int ret;
 773    VTDPASIDDirEntry pdire;
 774
 775    ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
 776                                        pasid, &pdire);
 777    if (ret) {
 778        return ret;
 779    }
 780
 781    if (!vtd_pdire_present(&pdire)) {
 782        return -VTD_FR_PASID_TABLE_INV;
 783    }
 784
 785    ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
 786    if (ret) {
 787        return ret;
 788    }
 789
 790    if (!vtd_pe_present(pe)) {
 791        return -VTD_FR_PASID_TABLE_INV;
 792    }
 793
 794    return 0;
 795}
 796
 797static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
 798                                      VTDContextEntry *ce,
 799                                      VTDPASIDEntry *pe)
 800{
 801    uint32_t pasid;
 802    dma_addr_t pasid_dir_base;
 803    int ret = 0;
 804
 805    pasid = VTD_CE_GET_RID2PASID(ce);
 806    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 807    ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
 808
 809    return ret;
 810}
 811
 812static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
 813                                VTDContextEntry *ce,
 814                                bool *pe_fpd_set)
 815{
 816    int ret;
 817    uint32_t pasid;
 818    dma_addr_t pasid_dir_base;
 819    VTDPASIDDirEntry pdire;
 820    VTDPASIDEntry pe;
 821
 822    pasid = VTD_CE_GET_RID2PASID(ce);
 823    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 824
 825    /*
 826     * No present bit check since fpd is meaningful even
 827     * if the present bit is clear.
 828     */
 829    ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
 830    if (ret) {
 831        return ret;
 832    }
 833
 834    if (pdire.val & VTD_PASID_DIR_FPD) {
 835        *pe_fpd_set = true;
 836        return 0;
 837    }
 838
 839    if (!vtd_pdire_present(&pdire)) {
 840        return -VTD_FR_PASID_TABLE_INV;
 841    }
 842
 843    /*
 844     * No present bit check since fpd is meaningful even
 845     * if the present bit is clear.
 846     */
 847    ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
 848    if (ret) {
 849        return ret;
 850    }
 851
 852    if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
 853        *pe_fpd_set = true;
 854    }
 855
 856    return 0;
 857}
 858
 859/* Get the page-table level that hardware should use for the second-level
 860 * page-table walk from the Address Width field of context-entry.
 861 */
 862static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
 863{
 864    return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
 865}
 866
 867static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
 868                                   VTDContextEntry *ce)
 869{
 870    VTDPASIDEntry pe;
 871
 872    if (s->root_scalable) {
 873        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 874        return VTD_PE_GET_LEVEL(&pe);
 875    }
 876
 877    return vtd_ce_get_level(ce);
 878}
 879
 880static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
 881{
 882    return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
 883}
 884
 885static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
 886                                  VTDContextEntry *ce)
 887{
 888    VTDPASIDEntry pe;
 889
 890    if (s->root_scalable) {
 891        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 892        return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
 893    }
 894
 895    return vtd_ce_get_agaw(ce);
 896}
 897
 898static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
 899{
 900    return ce->lo & VTD_CONTEXT_ENTRY_TT;
 901}
 902
 903/* Only for Legacy Mode. Return true if check passed, otherwise false */
 904static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
 905                                     VTDContextEntry *ce)
 906{
 907    switch (vtd_ce_get_type(ce)) {
 908    case VTD_CONTEXT_TT_MULTI_LEVEL:
 909        /* Always supported */
 910        break;
 911    case VTD_CONTEXT_TT_DEV_IOTLB:
 912        if (!x86_iommu->dt_supported) {
 913            error_report_once("%s: DT specified but not supported", __func__);
 914            return false;
 915        }
 916        break;
 917    case VTD_CONTEXT_TT_PASS_THROUGH:
 918        if (!x86_iommu->pt_supported) {
 919            error_report_once("%s: PT specified but not supported", __func__);
 920            return false;
 921        }
 922        break;
 923    default:
 924        /* Unknown type */
 925        error_report_once("%s: unknown ce type: %"PRIu32, __func__,
 926                          vtd_ce_get_type(ce));
 927        return false;
 928    }
 929    return true;
 930}
 931
 932static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
 933                                      VTDContextEntry *ce, uint8_t aw)
 934{
 935    uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
 936    return 1ULL << MIN(ce_agaw, aw);
 937}
 938
 939/* Return true if IOVA passes range check, otherwise false. */
 940static inline bool vtd_iova_range_check(IntelIOMMUState *s,
 941                                        uint64_t iova, VTDContextEntry *ce,
 942                                        uint8_t aw)
 943{
 944    /*
 945     * Check if @iova is above 2^X-1, where X is the minimum of MGAW
 946     * in CAP_REG and AW in context-entry.
 947     */
 948    return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
 949}
 950
 951static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
 952                                          VTDContextEntry *ce)
 953{
 954    VTDPASIDEntry pe;
 955
 956    if (s->root_scalable) {
 957        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 958        return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
 959    }
 960
 961    return vtd_ce_get_slpt_base(ce);
 962}
 963
 964/*
 965 * Rsvd field masks for spte:
 966 *     vtd_spte_rsvd 4k pages
 967 *     vtd_spte_rsvd_large large pages
 968 */
 969static uint64_t vtd_spte_rsvd[5];
 970static uint64_t vtd_spte_rsvd_large[5];
 971
 972static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
 973{
 974    uint64_t rsvd_mask = vtd_spte_rsvd[level];
 975
 976    if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
 977        (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
 978        /* large page */
 979        rsvd_mask = vtd_spte_rsvd_large[level];
 980    }
 981
 982    return slpte & rsvd_mask;
 983}
 984
 985/* Find the VTD address space associated with a given bus number */
 986static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
 987{
 988    VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
 989    GHashTableIter iter;
 990
 991    if (vtd_bus) {
 992        return vtd_bus;
 993    }
 994
 995    /*
 996     * Iterate over the registered buses to find the one which
 997     * currently holds this bus number and update the bus_num
 998     * lookup table.
 999     */
1000    g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1001    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1002        if (pci_bus_num(vtd_bus->bus) == bus_num) {
1003            s->vtd_as_by_bus_num[bus_num] = vtd_bus;
1004            return vtd_bus;
1005        }
1006    }
1007
1008    return NULL;
1009}
1010
1011/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1012 * of the translation, can be used for deciding the size of large page.
1013 */
1014static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1015                             uint64_t iova, bool is_write,
1016                             uint64_t *slptep, uint32_t *slpte_level,
1017                             bool *reads, bool *writes, uint8_t aw_bits)
1018{
1019    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1020    uint32_t level = vtd_get_iova_level(s, ce);
1021    uint32_t offset;
1022    uint64_t slpte;
1023    uint64_t access_right_check;
1024
1025    if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
1026        error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
1027                          __func__, iova);
1028        return -VTD_FR_ADDR_BEYOND_MGAW;
1029    }
1030
1031    /* FIXME: what is the Atomics request here? */
1032    access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1033
1034    while (true) {
1035        offset = vtd_iova_level_offset(iova, level);
1036        slpte = vtd_get_slpte(addr, offset);
1037
1038        if (slpte == (uint64_t)-1) {
1039            error_report_once("%s: detected read error on DMAR slpte "
1040                              "(iova=0x%" PRIx64 ")", __func__, iova);
1041            if (level == vtd_get_iova_level(s, ce)) {
1042                /* Invalid programming of context-entry */
1043                return -VTD_FR_CONTEXT_ENTRY_INV;
1044            } else {
1045                return -VTD_FR_PAGING_ENTRY_INV;
1046            }
1047        }
1048        *reads = (*reads) && (slpte & VTD_SL_R);
1049        *writes = (*writes) && (slpte & VTD_SL_W);
1050        if (!(slpte & access_right_check)) {
1051            error_report_once("%s: detected slpte permission error "
1052                              "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1053                              "slpte=0x%" PRIx64 ", write=%d)", __func__,
1054                              iova, level, slpte, is_write);
1055            return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1056        }
1057        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1058            error_report_once("%s: detected splte reserve non-zero "
1059                              "iova=0x%" PRIx64 ", level=0x%" PRIx32
1060                              "slpte=0x%" PRIx64 ")", __func__, iova,
1061                              level, slpte);
1062            return -VTD_FR_PAGING_ENTRY_RSVD;
1063        }
1064
1065        if (vtd_is_last_slpte(slpte, level)) {
1066            *slptep = slpte;
1067            *slpte_level = level;
1068            return 0;
1069        }
1070        addr = vtd_get_slpte_addr(slpte, aw_bits);
1071        level--;
1072    }
1073}
1074
1075typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1076
1077/**
1078 * Constant information used during page walking
1079 *
1080 * @hook_fn: hook func to be called when detected page
1081 * @private: private data to be passed into hook func
1082 * @notify_unmap: whether we should notify invalid entries
1083 * @as: VT-d address space of the device
1084 * @aw: maximum address width
1085 * @domain: domain ID of the page walk
1086 */
1087typedef struct {
1088    VTDAddressSpace *as;
1089    vtd_page_walk_hook hook_fn;
1090    void *private;
1091    bool notify_unmap;
1092    uint8_t aw;
1093    uint16_t domain_id;
1094} vtd_page_walk_info;
1095
1096static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1097{
1098    VTDAddressSpace *as = info->as;
1099    vtd_page_walk_hook hook_fn = info->hook_fn;
1100    void *private = info->private;
1101    IOMMUTLBEntry *entry = &event->entry;
1102    DMAMap target = {
1103        .iova = entry->iova,
1104        .size = entry->addr_mask,
1105        .translated_addr = entry->translated_addr,
1106        .perm = entry->perm,
1107    };
1108    const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1109
1110    if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1111        trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1112        return 0;
1113    }
1114
1115    assert(hook_fn);
1116
1117    /* Update local IOVA mapped ranges */
1118    if (event->type == IOMMU_NOTIFIER_MAP) {
1119        if (mapped) {
1120            /* If it's exactly the same translation, skip */
1121            if (!memcmp(mapped, &target, sizeof(target))) {
1122                trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1123                                                 entry->translated_addr);
1124                return 0;
1125            } else {
1126                /*
1127                 * Translation changed.  Normally this should not
1128                 * happen, but it can happen when with buggy guest
1129                 * OSes.  Note that there will be a small window that
1130                 * we don't have map at all.  But that's the best
1131                 * effort we can do.  The ideal way to emulate this is
1132                 * atomically modify the PTE to follow what has
1133                 * changed, but we can't.  One example is that vfio
1134                 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1135                 * interface to modify a mapping (meanwhile it seems
1136                 * meaningless to even provide one).  Anyway, let's
1137                 * mark this as a TODO in case one day we'll have
1138                 * a better solution.
1139                 */
1140                IOMMUAccessFlags cache_perm = entry->perm;
1141                int ret;
1142
1143                /* Emulate an UNMAP */
1144                event->type = IOMMU_NOTIFIER_UNMAP;
1145                entry->perm = IOMMU_NONE;
1146                trace_vtd_page_walk_one(info->domain_id,
1147                                        entry->iova,
1148                                        entry->translated_addr,
1149                                        entry->addr_mask,
1150                                        entry->perm);
1151                ret = hook_fn(event, private);
1152                if (ret) {
1153                    return ret;
1154                }
1155                /* Drop any existing mapping */
1156                iova_tree_remove(as->iova_tree, &target);
1157                /* Recover the correct type */
1158                event->type = IOMMU_NOTIFIER_MAP;
1159                entry->perm = cache_perm;
1160            }
1161        }
1162        iova_tree_insert(as->iova_tree, &target);
1163    } else {
1164        if (!mapped) {
1165            /* Skip since we didn't map this range at all */
1166            trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1167            return 0;
1168        }
1169        iova_tree_remove(as->iova_tree, &target);
1170    }
1171
1172    trace_vtd_page_walk_one(info->domain_id, entry->iova,
1173                            entry->translated_addr, entry->addr_mask,
1174                            entry->perm);
1175    return hook_fn(event, private);
1176}
1177
1178/**
1179 * vtd_page_walk_level - walk over specific level for IOVA range
1180 *
1181 * @addr: base GPA addr to start the walk
1182 * @start: IOVA range start address
1183 * @end: IOVA range end address (start <= addr < end)
1184 * @read: whether parent level has read permission
1185 * @write: whether parent level has write permission
1186 * @info: constant information for the page walk
1187 */
1188static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1189                               uint64_t end, uint32_t level, bool read,
1190                               bool write, vtd_page_walk_info *info)
1191{
1192    bool read_cur, write_cur, entry_valid;
1193    uint32_t offset;
1194    uint64_t slpte;
1195    uint64_t subpage_size, subpage_mask;
1196    IOMMUTLBEvent event;
1197    uint64_t iova = start;
1198    uint64_t iova_next;
1199    int ret = 0;
1200
1201    trace_vtd_page_walk_level(addr, level, start, end);
1202
1203    subpage_size = 1ULL << vtd_slpt_level_shift(level);
1204    subpage_mask = vtd_slpt_level_page_mask(level);
1205
1206    while (iova < end) {
1207        iova_next = (iova & subpage_mask) + subpage_size;
1208
1209        offset = vtd_iova_level_offset(iova, level);
1210        slpte = vtd_get_slpte(addr, offset);
1211
1212        if (slpte == (uint64_t)-1) {
1213            trace_vtd_page_walk_skip_read(iova, iova_next);
1214            goto next;
1215        }
1216
1217        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1218            trace_vtd_page_walk_skip_reserve(iova, iova_next);
1219            goto next;
1220        }
1221
1222        /* Permissions are stacked with parents' */
1223        read_cur = read && (slpte & VTD_SL_R);
1224        write_cur = write && (slpte & VTD_SL_W);
1225
1226        /*
1227         * As long as we have either read/write permission, this is a
1228         * valid entry. The rule works for both page entries and page
1229         * table entries.
1230         */
1231        entry_valid = read_cur | write_cur;
1232
1233        if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1234            /*
1235             * This is a valid PDE (or even bigger than PDE).  We need
1236             * to walk one further level.
1237             */
1238            ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1239                                      iova, MIN(iova_next, end), level - 1,
1240                                      read_cur, write_cur, info);
1241        } else {
1242            /*
1243             * This means we are either:
1244             *
1245             * (1) the real page entry (either 4K page, or huge page)
1246             * (2) the whole range is invalid
1247             *
1248             * In either case, we send an IOTLB notification down.
1249             */
1250            event.entry.target_as = &address_space_memory;
1251            event.entry.iova = iova & subpage_mask;
1252            event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1253            event.entry.addr_mask = ~subpage_mask;
1254            /* NOTE: this is only meaningful if entry_valid == true */
1255            event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1256            event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1257                                            IOMMU_NOTIFIER_UNMAP;
1258            ret = vtd_page_walk_one(&event, info);
1259        }
1260
1261        if (ret < 0) {
1262            return ret;
1263        }
1264
1265next:
1266        iova = iova_next;
1267    }
1268
1269    return 0;
1270}
1271
1272/**
1273 * vtd_page_walk - walk specific IOVA range, and call the hook
1274 *
1275 * @s: intel iommu state
1276 * @ce: context entry to walk upon
1277 * @start: IOVA address to start the walk
1278 * @end: IOVA range end address (start <= addr < end)
1279 * @info: page walking information struct
1280 */
1281static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1282                         uint64_t start, uint64_t end,
1283                         vtd_page_walk_info *info)
1284{
1285    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1286    uint32_t level = vtd_get_iova_level(s, ce);
1287
1288    if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1289        return -VTD_FR_ADDR_BEYOND_MGAW;
1290    }
1291
1292    if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1293        /* Fix end so that it reaches the maximum */
1294        end = vtd_iova_limit(s, ce, info->aw);
1295    }
1296
1297    return vtd_page_walk_level(addr, start, end, level, true, true, info);
1298}
1299
1300static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1301                                          VTDRootEntry *re)
1302{
1303    /* Legacy Mode reserved bits check */
1304    if (!s->root_scalable &&
1305        (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1306        goto rsvd_err;
1307
1308    /* Scalable Mode reserved bits check */
1309    if (s->root_scalable &&
1310        ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1311         (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1312        goto rsvd_err;
1313
1314    return 0;
1315
1316rsvd_err:
1317    error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1318                      ", lo=0x%"PRIx64,
1319                      __func__, re->hi, re->lo);
1320    return -VTD_FR_ROOT_ENTRY_RSVD;
1321}
1322
1323static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1324                                                    VTDContextEntry *ce)
1325{
1326    if (!s->root_scalable &&
1327        (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1328         ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1329        error_report_once("%s: invalid context entry: hi=%"PRIx64
1330                          ", lo=%"PRIx64" (reserved nonzero)",
1331                          __func__, ce->hi, ce->lo);
1332        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1333    }
1334
1335    if (s->root_scalable &&
1336        (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1337         ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1338         ce->val[2] ||
1339         ce->val[3])) {
1340        error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1341                          ", val[2]=%"PRIx64
1342                          ", val[1]=%"PRIx64
1343                          ", val[0]=%"PRIx64" (reserved nonzero)",
1344                          __func__, ce->val[3], ce->val[2],
1345                          ce->val[1], ce->val[0]);
1346        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1347    }
1348
1349    return 0;
1350}
1351
1352static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1353                                  VTDContextEntry *ce)
1354{
1355    VTDPASIDEntry pe;
1356
1357    /*
1358     * Make sure in Scalable Mode, a present context entry
1359     * has valid rid2pasid setting, which includes valid
1360     * rid2pasid field and corresponding pasid entry setting
1361     */
1362    return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1363}
1364
1365/* Map a device to its corresponding domain (context-entry) */
1366static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1367                                    uint8_t devfn, VTDContextEntry *ce)
1368{
1369    VTDRootEntry re;
1370    int ret_fr;
1371    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1372
1373    ret_fr = vtd_get_root_entry(s, bus_num, &re);
1374    if (ret_fr) {
1375        return ret_fr;
1376    }
1377
1378    if (!vtd_root_entry_present(s, &re, devfn)) {
1379        /* Not error - it's okay we don't have root entry. */
1380        trace_vtd_re_not_present(bus_num);
1381        return -VTD_FR_ROOT_ENTRY_P;
1382    }
1383
1384    ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1385    if (ret_fr) {
1386        return ret_fr;
1387    }
1388
1389    ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1390    if (ret_fr) {
1391        return ret_fr;
1392    }
1393
1394    if (!vtd_ce_present(ce)) {
1395        /* Not error - it's okay we don't have context entry. */
1396        trace_vtd_ce_not_present(bus_num, devfn);
1397        return -VTD_FR_CONTEXT_ENTRY_P;
1398    }
1399
1400    ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1401    if (ret_fr) {
1402        return ret_fr;
1403    }
1404
1405    /* Check if the programming of context-entry is valid */
1406    if (!s->root_scalable &&
1407        !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1408        error_report_once("%s: invalid context entry: hi=%"PRIx64
1409                          ", lo=%"PRIx64" (level %d not supported)",
1410                          __func__, ce->hi, ce->lo,
1411                          vtd_ce_get_level(ce));
1412        return -VTD_FR_CONTEXT_ENTRY_INV;
1413    }
1414
1415    if (!s->root_scalable) {
1416        /* Do translation type check */
1417        if (!vtd_ce_type_check(x86_iommu, ce)) {
1418            /* Errors dumped in vtd_ce_type_check() */
1419            return -VTD_FR_CONTEXT_ENTRY_INV;
1420        }
1421    } else {
1422        /*
1423         * Check if the programming of context-entry.rid2pasid
1424         * and corresponding pasid setting is valid, and thus
1425         * avoids to check pasid entry fetching result in future
1426         * helper function calling.
1427         */
1428        ret_fr = vtd_ce_rid2pasid_check(s, ce);
1429        if (ret_fr) {
1430            return ret_fr;
1431        }
1432    }
1433
1434    return 0;
1435}
1436
1437static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1438                                     void *private)
1439{
1440    memory_region_notify_iommu(private, 0, *event);
1441    return 0;
1442}
1443
1444static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1445                                  VTDContextEntry *ce)
1446{
1447    VTDPASIDEntry pe;
1448
1449    if (s->root_scalable) {
1450        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1451        return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1452    }
1453
1454    return VTD_CONTEXT_ENTRY_DID(ce->hi);
1455}
1456
1457static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1458                                            VTDContextEntry *ce,
1459                                            hwaddr addr, hwaddr size)
1460{
1461    IntelIOMMUState *s = vtd_as->iommu_state;
1462    vtd_page_walk_info info = {
1463        .hook_fn = vtd_sync_shadow_page_hook,
1464        .private = (void *)&vtd_as->iommu,
1465        .notify_unmap = true,
1466        .aw = s->aw_bits,
1467        .as = vtd_as,
1468        .domain_id = vtd_get_domain_id(s, ce),
1469    };
1470
1471    return vtd_page_walk(s, ce, addr, addr + size, &info);
1472}
1473
1474static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1475{
1476    int ret;
1477    VTDContextEntry ce;
1478    IOMMUNotifier *n;
1479
1480    if (!(vtd_as->iommu.iommu_notify_flags & IOMMU_NOTIFIER_IOTLB_EVENTS)) {
1481        return 0;
1482    }
1483
1484    ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1485                                   pci_bus_num(vtd_as->bus),
1486                                   vtd_as->devfn, &ce);
1487    if (ret) {
1488        if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1489            /*
1490             * It's a valid scenario to have a context entry that is
1491             * not present.  For example, when a device is removed
1492             * from an existing domain then the context entry will be
1493             * zeroed by the guest before it was put into another
1494             * domain.  When this happens, instead of synchronizing
1495             * the shadow pages we should invalidate all existing
1496             * mappings and notify the backends.
1497             */
1498            IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1499                vtd_address_space_unmap(vtd_as, n);
1500            }
1501            ret = 0;
1502        }
1503        return ret;
1504    }
1505
1506    return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1507}
1508
1509/*
1510 * Check if specific device is configured to bypass address
1511 * translation for DMA requests. In Scalable Mode, bypass
1512 * 1st-level translation or 2nd-level translation, it depends
1513 * on PGTT setting.
1514 */
1515static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1516{
1517    IntelIOMMUState *s;
1518    VTDContextEntry ce;
1519    VTDPASIDEntry pe;
1520    int ret;
1521
1522    assert(as);
1523
1524    s = as->iommu_state;
1525    ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1526                                   as->devfn, &ce);
1527    if (ret) {
1528        /*
1529         * Possibly failed to parse the context entry for some reason
1530         * (e.g., during init, or any guest configuration errors on
1531         * context entries). We should assume PT not enabled for
1532         * safety.
1533         */
1534        return false;
1535    }
1536
1537    if (s->root_scalable) {
1538        ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1539        if (ret) {
1540            error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1541                              __func__, ret);
1542            return false;
1543        }
1544        return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1545    }
1546
1547    return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1548}
1549
1550/* Return whether the device is using IOMMU translation. */
1551static bool vtd_switch_address_space(VTDAddressSpace *as)
1552{
1553    bool use_iommu;
1554    /* Whether we need to take the BQL on our own */
1555    bool take_bql = !qemu_mutex_iothread_locked();
1556
1557    assert(as);
1558
1559    use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1560
1561    trace_vtd_switch_address_space(pci_bus_num(as->bus),
1562                                   VTD_PCI_SLOT(as->devfn),
1563                                   VTD_PCI_FUNC(as->devfn),
1564                                   use_iommu);
1565
1566    /*
1567     * It's possible that we reach here without BQL, e.g., when called
1568     * from vtd_pt_enable_fast_path(). However the memory APIs need
1569     * it. We'd better make sure we have had it already, or, take it.
1570     */
1571    if (take_bql) {
1572        qemu_mutex_lock_iothread();
1573    }
1574
1575    /* Turn off first then on the other */
1576    if (use_iommu) {
1577        memory_region_set_enabled(&as->nodmar, false);
1578        memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1579    } else {
1580        memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1581        memory_region_set_enabled(&as->nodmar, true);
1582    }
1583
1584    if (take_bql) {
1585        qemu_mutex_unlock_iothread();
1586    }
1587
1588    return use_iommu;
1589}
1590
1591static void vtd_switch_address_space_all(IntelIOMMUState *s)
1592{
1593    GHashTableIter iter;
1594    VTDBus *vtd_bus;
1595    int i;
1596
1597    g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1598    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1599        for (i = 0; i < PCI_DEVFN_MAX; i++) {
1600            if (!vtd_bus->dev_as[i]) {
1601                continue;
1602            }
1603            vtd_switch_address_space(vtd_bus->dev_as[i]);
1604        }
1605    }
1606}
1607
1608static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1609{
1610    return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1611}
1612
1613static const bool vtd_qualified_faults[] = {
1614    [VTD_FR_RESERVED] = false,
1615    [VTD_FR_ROOT_ENTRY_P] = false,
1616    [VTD_FR_CONTEXT_ENTRY_P] = true,
1617    [VTD_FR_CONTEXT_ENTRY_INV] = true,
1618    [VTD_FR_ADDR_BEYOND_MGAW] = true,
1619    [VTD_FR_WRITE] = true,
1620    [VTD_FR_READ] = true,
1621    [VTD_FR_PAGING_ENTRY_INV] = true,
1622    [VTD_FR_ROOT_TABLE_INV] = false,
1623    [VTD_FR_CONTEXT_TABLE_INV] = false,
1624    [VTD_FR_ROOT_ENTRY_RSVD] = false,
1625    [VTD_FR_PAGING_ENTRY_RSVD] = true,
1626    [VTD_FR_CONTEXT_ENTRY_TT] = true,
1627    [VTD_FR_PASID_TABLE_INV] = false,
1628    [VTD_FR_RESERVED_ERR] = false,
1629    [VTD_FR_MAX] = false,
1630};
1631
1632/* To see if a fault condition is "qualified", which is reported to software
1633 * only if the FPD field in the context-entry used to process the faulting
1634 * request is 0.
1635 */
1636static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1637{
1638    return vtd_qualified_faults[fault];
1639}
1640
1641static inline bool vtd_is_interrupt_addr(hwaddr addr)
1642{
1643    return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1644}
1645
1646static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1647{
1648    VTDBus *vtd_bus;
1649    VTDAddressSpace *vtd_as;
1650    bool success = false;
1651
1652    vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1653    if (!vtd_bus) {
1654        goto out;
1655    }
1656
1657    vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1658    if (!vtd_as) {
1659        goto out;
1660    }
1661
1662    if (vtd_switch_address_space(vtd_as) == false) {
1663        /* We switched off IOMMU region successfully. */
1664        success = true;
1665    }
1666
1667out:
1668    trace_vtd_pt_enable_fast_path(source_id, success);
1669}
1670
1671/* Map dev to context-entry then do a paging-structures walk to do a iommu
1672 * translation.
1673 *
1674 * Called from RCU critical section.
1675 *
1676 * @bus_num: The bus number
1677 * @devfn: The devfn, which is the  combined of device and function number
1678 * @is_write: The access is a write operation
1679 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1680 *
1681 * Returns true if translation is successful, otherwise false.
1682 */
1683static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1684                                   uint8_t devfn, hwaddr addr, bool is_write,
1685                                   IOMMUTLBEntry *entry)
1686{
1687    IntelIOMMUState *s = vtd_as->iommu_state;
1688    VTDContextEntry ce;
1689    uint8_t bus_num = pci_bus_num(bus);
1690    VTDContextCacheEntry *cc_entry;
1691    uint64_t slpte, page_mask;
1692    uint32_t level;
1693    uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1694    int ret_fr;
1695    bool is_fpd_set = false;
1696    bool reads = true;
1697    bool writes = true;
1698    uint8_t access_flags;
1699    VTDIOTLBEntry *iotlb_entry;
1700
1701    /*
1702     * We have standalone memory region for interrupt addresses, we
1703     * should never receive translation requests in this region.
1704     */
1705    assert(!vtd_is_interrupt_addr(addr));
1706
1707    vtd_iommu_lock(s);
1708
1709    cc_entry = &vtd_as->context_cache_entry;
1710
1711    /* Try to fetch slpte form IOTLB */
1712    iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1713    if (iotlb_entry) {
1714        trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1715                                 iotlb_entry->domain_id);
1716        slpte = iotlb_entry->slpte;
1717        access_flags = iotlb_entry->access_flags;
1718        page_mask = iotlb_entry->mask;
1719        goto out;
1720    }
1721
1722    /* Try to fetch context-entry from cache first */
1723    if (cc_entry->context_cache_gen == s->context_cache_gen) {
1724        trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1725                               cc_entry->context_entry.lo,
1726                               cc_entry->context_cache_gen);
1727        ce = cc_entry->context_entry;
1728        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1729        if (!is_fpd_set && s->root_scalable) {
1730            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1731            VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1732        }
1733    } else {
1734        ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1735        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1736        if (!ret_fr && !is_fpd_set && s->root_scalable) {
1737            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1738        }
1739        VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1740        /* Update context-cache */
1741        trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1742                                  cc_entry->context_cache_gen,
1743                                  s->context_cache_gen);
1744        cc_entry->context_entry = ce;
1745        cc_entry->context_cache_gen = s->context_cache_gen;
1746    }
1747
1748    /*
1749     * We don't need to translate for pass-through context entries.
1750     * Also, let's ignore IOTLB caching as well for PT devices.
1751     */
1752    if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1753        entry->iova = addr & VTD_PAGE_MASK_4K;
1754        entry->translated_addr = entry->iova;
1755        entry->addr_mask = ~VTD_PAGE_MASK_4K;
1756        entry->perm = IOMMU_RW;
1757        trace_vtd_translate_pt(source_id, entry->iova);
1758
1759        /*
1760         * When this happens, it means firstly caching-mode is not
1761         * enabled, and this is the first passthrough translation for
1762         * the device. Let's enable the fast path for passthrough.
1763         *
1764         * When passthrough is disabled again for the device, we can
1765         * capture it via the context entry invalidation, then the
1766         * IOMMU region can be swapped back.
1767         */
1768        vtd_pt_enable_fast_path(s, source_id);
1769        vtd_iommu_unlock(s);
1770        return true;
1771    }
1772
1773    ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1774                               &reads, &writes, s->aw_bits);
1775    VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1776
1777    page_mask = vtd_slpt_level_page_mask(level);
1778    access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1779    vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1780                     access_flags, level);
1781out:
1782    vtd_iommu_unlock(s);
1783    entry->iova = addr & page_mask;
1784    entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1785    entry->addr_mask = ~page_mask;
1786    entry->perm = access_flags;
1787    return true;
1788
1789error:
1790    vtd_iommu_unlock(s);
1791    entry->iova = 0;
1792    entry->translated_addr = 0;
1793    entry->addr_mask = 0;
1794    entry->perm = IOMMU_NONE;
1795    return false;
1796}
1797
1798static void vtd_root_table_setup(IntelIOMMUState *s)
1799{
1800    s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1801    s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1802
1803    vtd_update_scalable_state(s);
1804
1805    trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1806}
1807
1808static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1809                               uint32_t index, uint32_t mask)
1810{
1811    x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1812}
1813
1814static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1815{
1816    uint64_t value = 0;
1817    value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1818    s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1819    s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1820    s->intr_eime = value & VTD_IRTA_EIME;
1821
1822    /* Notify global invalidation */
1823    vtd_iec_notify_all(s, true, 0, 0);
1824
1825    trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1826}
1827
1828static void vtd_iommu_replay_all(IntelIOMMUState *s)
1829{
1830    VTDAddressSpace *vtd_as;
1831
1832    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1833        vtd_sync_shadow_page_table(vtd_as);
1834    }
1835}
1836
1837static void vtd_context_global_invalidate(IntelIOMMUState *s)
1838{
1839    trace_vtd_inv_desc_cc_global();
1840    /* Protects context cache */
1841    vtd_iommu_lock(s);
1842    s->context_cache_gen++;
1843    if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1844        vtd_reset_context_cache_locked(s);
1845    }
1846    vtd_iommu_unlock(s);
1847    vtd_address_space_refresh_all(s);
1848    /*
1849     * From VT-d spec 6.5.2.1, a global context entry invalidation
1850     * should be followed by a IOTLB global invalidation, so we should
1851     * be safe even without this. Hoewever, let's replay the region as
1852     * well to be safer, and go back here when we need finer tunes for
1853     * VT-d emulation codes.
1854     */
1855    vtd_iommu_replay_all(s);
1856}
1857
1858/* Do a context-cache device-selective invalidation.
1859 * @func_mask: FM field after shifting
1860 */
1861static void vtd_context_device_invalidate(IntelIOMMUState *s,
1862                                          uint16_t source_id,
1863                                          uint16_t func_mask)
1864{
1865    uint16_t mask;
1866    VTDBus *vtd_bus;
1867    VTDAddressSpace *vtd_as;
1868    uint8_t bus_n, devfn;
1869    uint16_t devfn_it;
1870
1871    trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1872
1873    switch (func_mask & 3) {
1874    case 0:
1875        mask = 0;   /* No bits in the SID field masked */
1876        break;
1877    case 1:
1878        mask = 4;   /* Mask bit 2 in the SID field */
1879        break;
1880    case 2:
1881        mask = 6;   /* Mask bit 2:1 in the SID field */
1882        break;
1883    case 3:
1884        mask = 7;   /* Mask bit 2:0 in the SID field */
1885        break;
1886    default:
1887        g_assert_not_reached();
1888    }
1889    mask = ~mask;
1890
1891    bus_n = VTD_SID_TO_BUS(source_id);
1892    vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1893    if (vtd_bus) {
1894        devfn = VTD_SID_TO_DEVFN(source_id);
1895        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1896            vtd_as = vtd_bus->dev_as[devfn_it];
1897            if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1898                trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1899                                             VTD_PCI_FUNC(devfn_it));
1900                vtd_iommu_lock(s);
1901                vtd_as->context_cache_entry.context_cache_gen = 0;
1902                vtd_iommu_unlock(s);
1903                /*
1904                 * Do switch address space when needed, in case if the
1905                 * device passthrough bit is switched.
1906                 */
1907                vtd_switch_address_space(vtd_as);
1908                /*
1909                 * So a device is moving out of (or moving into) a
1910                 * domain, resync the shadow page table.
1911                 * This won't bring bad even if we have no such
1912                 * notifier registered - the IOMMU notification
1913                 * framework will skip MAP notifications if that
1914                 * happened.
1915                 */
1916                vtd_sync_shadow_page_table(vtd_as);
1917            }
1918        }
1919    }
1920}
1921
1922/* Context-cache invalidation
1923 * Returns the Context Actual Invalidation Granularity.
1924 * @val: the content of the CCMD_REG
1925 */
1926static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1927{
1928    uint64_t caig;
1929    uint64_t type = val & VTD_CCMD_CIRG_MASK;
1930
1931    switch (type) {
1932    case VTD_CCMD_DOMAIN_INVL:
1933        /* Fall through */
1934    case VTD_CCMD_GLOBAL_INVL:
1935        caig = VTD_CCMD_GLOBAL_INVL_A;
1936        vtd_context_global_invalidate(s);
1937        break;
1938
1939    case VTD_CCMD_DEVICE_INVL:
1940        caig = VTD_CCMD_DEVICE_INVL_A;
1941        vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1942        break;
1943
1944    default:
1945        error_report_once("%s: invalid context: 0x%" PRIx64,
1946                          __func__, val);
1947        caig = 0;
1948    }
1949    return caig;
1950}
1951
1952static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1953{
1954    trace_vtd_inv_desc_iotlb_global();
1955    vtd_reset_iotlb(s);
1956    vtd_iommu_replay_all(s);
1957}
1958
1959static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1960{
1961    VTDContextEntry ce;
1962    VTDAddressSpace *vtd_as;
1963
1964    trace_vtd_inv_desc_iotlb_domain(domain_id);
1965
1966    vtd_iommu_lock(s);
1967    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1968                                &domain_id);
1969    vtd_iommu_unlock(s);
1970
1971    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1972        if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1973                                      vtd_as->devfn, &ce) &&
1974            domain_id == vtd_get_domain_id(s, &ce)) {
1975            vtd_sync_shadow_page_table(vtd_as);
1976        }
1977    }
1978}
1979
1980static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1981                                           uint16_t domain_id, hwaddr addr,
1982                                           uint8_t am)
1983{
1984    VTDAddressSpace *vtd_as;
1985    VTDContextEntry ce;
1986    int ret;
1987    hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1988
1989    QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1990        ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1991                                       vtd_as->devfn, &ce);
1992        if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1993            if (vtd_as_has_map_notifier(vtd_as)) {
1994                /*
1995                 * As long as we have MAP notifications registered in
1996                 * any of our IOMMU notifiers, we need to sync the
1997                 * shadow page table.
1998                 */
1999                vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2000            } else {
2001                /*
2002                 * For UNMAP-only notifiers, we don't need to walk the
2003                 * page tables.  We just deliver the PSI down to
2004                 * invalidate caches.
2005                 */
2006                IOMMUTLBEvent event = {
2007                    .type = IOMMU_NOTIFIER_UNMAP,
2008                    .entry = {
2009                        .target_as = &address_space_memory,
2010                        .iova = addr,
2011                        .translated_addr = 0,
2012                        .addr_mask = size - 1,
2013                        .perm = IOMMU_NONE,
2014                    },
2015                };
2016                memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2017            }
2018        }
2019    }
2020}
2021
2022static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2023                                      hwaddr addr, uint8_t am)
2024{
2025    VTDIOTLBPageInvInfo info;
2026
2027    trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2028
2029    assert(am <= VTD_MAMV);
2030    info.domain_id = domain_id;
2031    info.addr = addr;
2032    info.mask = ~((1 << am) - 1);
2033    vtd_iommu_lock(s);
2034    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2035    vtd_iommu_unlock(s);
2036    vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
2037}
2038
2039/* Flush IOTLB
2040 * Returns the IOTLB Actual Invalidation Granularity.
2041 * @val: the content of the IOTLB_REG
2042 */
2043static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2044{
2045    uint64_t iaig;
2046    uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2047    uint16_t domain_id;
2048    hwaddr addr;
2049    uint8_t am;
2050
2051    switch (type) {
2052    case VTD_TLB_GLOBAL_FLUSH:
2053        iaig = VTD_TLB_GLOBAL_FLUSH_A;
2054        vtd_iotlb_global_invalidate(s);
2055        break;
2056
2057    case VTD_TLB_DSI_FLUSH:
2058        domain_id = VTD_TLB_DID(val);
2059        iaig = VTD_TLB_DSI_FLUSH_A;
2060        vtd_iotlb_domain_invalidate(s, domain_id);
2061        break;
2062
2063    case VTD_TLB_PSI_FLUSH:
2064        domain_id = VTD_TLB_DID(val);
2065        addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2066        am = VTD_IVA_AM(addr);
2067        addr = VTD_IVA_ADDR(addr);
2068        if (am > VTD_MAMV) {
2069            error_report_once("%s: address mask overflow: 0x%" PRIx64,
2070                              __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2071            iaig = 0;
2072            break;
2073        }
2074        iaig = VTD_TLB_PSI_FLUSH_A;
2075        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2076        break;
2077
2078    default:
2079        error_report_once("%s: invalid granularity: 0x%" PRIx64,
2080                          __func__, val);
2081        iaig = 0;
2082    }
2083    return iaig;
2084}
2085
2086static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2087
2088static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2089{
2090    return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2091           (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2092}
2093
2094static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2095{
2096    uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2097
2098    trace_vtd_inv_qi_enable(en);
2099
2100    if (en) {
2101        s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2102        /* 2^(x+8) entries */
2103        s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2104        s->qi_enabled = true;
2105        trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2106        /* Ok - report back to driver */
2107        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2108
2109        if (s->iq_tail != 0) {
2110            /*
2111             * This is a spec violation but Windows guests are known to set up
2112             * Queued Invalidation this way so we allow the write and process
2113             * Invalidation Descriptors right away.
2114             */
2115            trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2116            if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2117                vtd_fetch_inv_desc(s);
2118            }
2119        }
2120    } else {
2121        if (vtd_queued_inv_disable_check(s)) {
2122            /* disable Queued Invalidation */
2123            vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2124            s->iq_head = 0;
2125            s->qi_enabled = false;
2126            /* Ok - report back to driver */
2127            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2128        } else {
2129            error_report_once("%s: detected improper state when disable QI "
2130                              "(head=0x%x, tail=0x%x, last_type=%d)",
2131                              __func__,
2132                              s->iq_head, s->iq_tail, s->iq_last_desc_type);
2133        }
2134    }
2135}
2136
2137/* Set Root Table Pointer */
2138static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2139{
2140    vtd_root_table_setup(s);
2141    /* Ok - report back to driver */
2142    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2143    vtd_reset_caches(s);
2144    vtd_address_space_refresh_all(s);
2145}
2146
2147/* Set Interrupt Remap Table Pointer */
2148static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2149{
2150    vtd_interrupt_remap_table_setup(s);
2151    /* Ok - report back to driver */
2152    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2153}
2154
2155/* Handle Translation Enable/Disable */
2156static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2157{
2158    if (s->dmar_enabled == en) {
2159        return;
2160    }
2161
2162    trace_vtd_dmar_enable(en);
2163
2164    if (en) {
2165        s->dmar_enabled = true;
2166        /* Ok - report back to driver */
2167        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2168    } else {
2169        s->dmar_enabled = false;
2170
2171        /* Clear the index of Fault Recording Register */
2172        s->next_frcd_reg = 0;
2173        /* Ok - report back to driver */
2174        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2175    }
2176
2177    vtd_reset_caches(s);
2178    vtd_address_space_refresh_all(s);
2179}
2180
2181/* Handle Interrupt Remap Enable/Disable */
2182static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2183{
2184    trace_vtd_ir_enable(en);
2185
2186    if (en) {
2187        s->intr_enabled = true;
2188        /* Ok - report back to driver */
2189        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2190    } else {
2191        s->intr_enabled = false;
2192        /* Ok - report back to driver */
2193        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2194    }
2195}
2196
2197/* Handle write to Global Command Register */
2198static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2199{
2200    uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2201    uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2202    uint32_t changed = status ^ val;
2203
2204    trace_vtd_reg_write_gcmd(status, val);
2205    if (changed & VTD_GCMD_TE) {
2206        /* Translation enable/disable */
2207        vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2208    }
2209    if (val & VTD_GCMD_SRTP) {
2210        /* Set/update the root-table pointer */
2211        vtd_handle_gcmd_srtp(s);
2212    }
2213    if (changed & VTD_GCMD_QIE) {
2214        /* Queued Invalidation Enable */
2215        vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2216    }
2217    if (val & VTD_GCMD_SIRTP) {
2218        /* Set/update the interrupt remapping root-table pointer */
2219        vtd_handle_gcmd_sirtp(s);
2220    }
2221    if (changed & VTD_GCMD_IRE) {
2222        /* Interrupt remap enable/disable */
2223        vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2224    }
2225}
2226
2227/* Handle write to Context Command Register */
2228static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2229{
2230    uint64_t ret;
2231    uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2232
2233    /* Context-cache invalidation request */
2234    if (val & VTD_CCMD_ICC) {
2235        if (s->qi_enabled) {
2236            error_report_once("Queued Invalidation enabled, "
2237                              "should not use register-based invalidation");
2238            return;
2239        }
2240        ret = vtd_context_cache_invalidate(s, val);
2241        /* Invalidation completed. Change something to show */
2242        vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2243        ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2244                                      ret);
2245    }
2246}
2247
2248/* Handle write to IOTLB Invalidation Register */
2249static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2250{
2251    uint64_t ret;
2252    uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2253
2254    /* IOTLB invalidation request */
2255    if (val & VTD_TLB_IVT) {
2256        if (s->qi_enabled) {
2257            error_report_once("Queued Invalidation enabled, "
2258                              "should not use register-based invalidation");
2259            return;
2260        }
2261        ret = vtd_iotlb_flush(s, val);
2262        /* Invalidation completed. Change something to show */
2263        vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2264        ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2265                                      VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2266    }
2267}
2268
2269/* Fetch an Invalidation Descriptor from the Invalidation Queue */
2270static bool vtd_get_inv_desc(IntelIOMMUState *s,
2271                             VTDInvDesc *inv_desc)
2272{
2273    dma_addr_t base_addr = s->iq;
2274    uint32_t offset = s->iq_head;
2275    uint32_t dw = s->iq_dw ? 32 : 16;
2276    dma_addr_t addr = base_addr + offset * dw;
2277
2278    if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2279        error_report_once("Read INV DESC failed.");
2280        return false;
2281    }
2282    inv_desc->lo = le64_to_cpu(inv_desc->lo);
2283    inv_desc->hi = le64_to_cpu(inv_desc->hi);
2284    if (dw == 32) {
2285        inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2286        inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2287    }
2288    return true;
2289}
2290
2291static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2292{
2293    if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2294        (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2295        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2296                          " (reserved nonzero)", __func__, inv_desc->hi,
2297                          inv_desc->lo);
2298        return false;
2299    }
2300    if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2301        /* Status Write */
2302        uint32_t status_data = (uint32_t)(inv_desc->lo >>
2303                               VTD_INV_DESC_WAIT_DATA_SHIFT);
2304
2305        assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2306
2307        /* FIXME: need to be masked with HAW? */
2308        dma_addr_t status_addr = inv_desc->hi;
2309        trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2310        status_data = cpu_to_le32(status_data);
2311        if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2312                             sizeof(status_data))) {
2313            trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2314            return false;
2315        }
2316    } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2317        /* Interrupt flag */
2318        vtd_generate_completion_event(s);
2319    } else {
2320        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2321                          " (unknown type)", __func__, inv_desc->hi,
2322                          inv_desc->lo);
2323        return false;
2324    }
2325    return true;
2326}
2327
2328static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2329                                           VTDInvDesc *inv_desc)
2330{
2331    uint16_t sid, fmask;
2332
2333    if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2334        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2335                          " (reserved nonzero)", __func__, inv_desc->hi,
2336                          inv_desc->lo);
2337        return false;
2338    }
2339    switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2340    case VTD_INV_DESC_CC_DOMAIN:
2341        trace_vtd_inv_desc_cc_domain(
2342            (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2343        /* Fall through */
2344    case VTD_INV_DESC_CC_GLOBAL:
2345        vtd_context_global_invalidate(s);
2346        break;
2347
2348    case VTD_INV_DESC_CC_DEVICE:
2349        sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2350        fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2351        vtd_context_device_invalidate(s, sid, fmask);
2352        break;
2353
2354    default:
2355        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2356                          " (invalid type)", __func__, inv_desc->hi,
2357                          inv_desc->lo);
2358        return false;
2359    }
2360    return true;
2361}
2362
2363static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2364{
2365    uint16_t domain_id;
2366    uint8_t am;
2367    hwaddr addr;
2368
2369    if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2370        (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2371        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2372                          ", lo=0x%"PRIx64" (reserved bits unzero)",
2373                          __func__, inv_desc->hi, inv_desc->lo);
2374        return false;
2375    }
2376
2377    switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2378    case VTD_INV_DESC_IOTLB_GLOBAL:
2379        vtd_iotlb_global_invalidate(s);
2380        break;
2381
2382    case VTD_INV_DESC_IOTLB_DOMAIN:
2383        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2384        vtd_iotlb_domain_invalidate(s, domain_id);
2385        break;
2386
2387    case VTD_INV_DESC_IOTLB_PAGE:
2388        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2389        addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2390        am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2391        if (am > VTD_MAMV) {
2392            error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2393                              ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2394                              __func__, inv_desc->hi, inv_desc->lo,
2395                              am, (unsigned)VTD_MAMV);
2396            return false;
2397        }
2398        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2399        break;
2400
2401    default:
2402        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2403                          ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2404                          __func__, inv_desc->hi, inv_desc->lo,
2405                          inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2406        return false;
2407    }
2408    return true;
2409}
2410
2411static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2412                                     VTDInvDesc *inv_desc)
2413{
2414    trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2415                           inv_desc->iec.index,
2416                           inv_desc->iec.index_mask);
2417
2418    vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2419                       inv_desc->iec.index,
2420                       inv_desc->iec.index_mask);
2421    return true;
2422}
2423
2424static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2425                                          VTDInvDesc *inv_desc)
2426{
2427    VTDAddressSpace *vtd_dev_as;
2428    IOMMUTLBEvent event;
2429    struct VTDBus *vtd_bus;
2430    hwaddr addr;
2431    uint64_t sz;
2432    uint16_t sid;
2433    uint8_t devfn;
2434    bool size;
2435    uint8_t bus_num;
2436
2437    addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2438    sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2439    devfn = sid & 0xff;
2440    bus_num = sid >> 8;
2441    size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2442
2443    if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2444        (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2445        error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2446                          ", lo=%"PRIx64" (reserved nonzero)", __func__,
2447                          inv_desc->hi, inv_desc->lo);
2448        return false;
2449    }
2450
2451    vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2452    if (!vtd_bus) {
2453        goto done;
2454    }
2455
2456    vtd_dev_as = vtd_bus->dev_as[devfn];
2457    if (!vtd_dev_as) {
2458        goto done;
2459    }
2460
2461    /* According to ATS spec table 2.4:
2462     * S = 0, bits 15:12 = xxxx     range size: 4K
2463     * S = 1, bits 15:12 = xxx0     range size: 8K
2464     * S = 1, bits 15:12 = xx01     range size: 16K
2465     * S = 1, bits 15:12 = x011     range size: 32K
2466     * S = 1, bits 15:12 = 0111     range size: 64K
2467     * ...
2468     */
2469    if (size) {
2470        sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2471        addr &= ~(sz - 1);
2472    } else {
2473        sz = VTD_PAGE_SIZE;
2474    }
2475
2476    event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2477    event.entry.target_as = &vtd_dev_as->as;
2478    event.entry.addr_mask = sz - 1;
2479    event.entry.iova = addr;
2480    event.entry.perm = IOMMU_NONE;
2481    event.entry.translated_addr = 0;
2482    memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2483
2484done:
2485    return true;
2486}
2487
2488static bool vtd_process_inv_desc(IntelIOMMUState *s)
2489{
2490    VTDInvDesc inv_desc;
2491    uint8_t desc_type;
2492
2493    trace_vtd_inv_qi_head(s->iq_head);
2494    if (!vtd_get_inv_desc(s, &inv_desc)) {
2495        s->iq_last_desc_type = VTD_INV_DESC_NONE;
2496        return false;
2497    }
2498
2499    desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2500    /* FIXME: should update at first or at last? */
2501    s->iq_last_desc_type = desc_type;
2502
2503    switch (desc_type) {
2504    case VTD_INV_DESC_CC:
2505        trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2506        if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2507            return false;
2508        }
2509        break;
2510
2511    case VTD_INV_DESC_IOTLB:
2512        trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2513        if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2514            return false;
2515        }
2516        break;
2517
2518    /*
2519     * TODO: the entity of below two cases will be implemented in future series.
2520     * To make guest (which integrates scalable mode support patch set in
2521     * iommu driver) work, just return true is enough so far.
2522     */
2523    case VTD_INV_DESC_PC:
2524        break;
2525
2526    case VTD_INV_DESC_PIOTLB:
2527        break;
2528
2529    case VTD_INV_DESC_WAIT:
2530        trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2531        if (!vtd_process_wait_desc(s, &inv_desc)) {
2532            return false;
2533        }
2534        break;
2535
2536    case VTD_INV_DESC_IEC:
2537        trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2538        if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2539            return false;
2540        }
2541        break;
2542
2543    case VTD_INV_DESC_DEVICE:
2544        trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2545        if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2546            return false;
2547        }
2548        break;
2549
2550    default:
2551        error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2552                          " (unknown type)", __func__, inv_desc.hi,
2553                          inv_desc.lo);
2554        return false;
2555    }
2556    s->iq_head++;
2557    if (s->iq_head == s->iq_size) {
2558        s->iq_head = 0;
2559    }
2560    return true;
2561}
2562
2563/* Try to fetch and process more Invalidation Descriptors */
2564static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2565{
2566    int qi_shift;
2567
2568    /* Refer to 10.4.23 of VT-d spec 3.0 */
2569    qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2570
2571    trace_vtd_inv_qi_fetch();
2572
2573    if (s->iq_tail >= s->iq_size) {
2574        /* Detects an invalid Tail pointer */
2575        error_report_once("%s: detected invalid QI tail "
2576                          "(tail=0x%x, size=0x%x)",
2577                          __func__, s->iq_tail, s->iq_size);
2578        vtd_handle_inv_queue_error(s);
2579        return;
2580    }
2581    while (s->iq_head != s->iq_tail) {
2582        if (!vtd_process_inv_desc(s)) {
2583            /* Invalidation Queue Errors */
2584            vtd_handle_inv_queue_error(s);
2585            break;
2586        }
2587        /* Must update the IQH_REG in time */
2588        vtd_set_quad_raw(s, DMAR_IQH_REG,
2589                         (((uint64_t)(s->iq_head)) << qi_shift) &
2590                         VTD_IQH_QH_MASK);
2591    }
2592}
2593
2594/* Handle write to Invalidation Queue Tail Register */
2595static void vtd_handle_iqt_write(IntelIOMMUState *s)
2596{
2597    uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2598
2599    if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2600        error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2601                          __func__, val);
2602        return;
2603    }
2604    s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2605    trace_vtd_inv_qi_tail(s->iq_tail);
2606
2607    if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2608        /* Process Invalidation Queue here */
2609        vtd_fetch_inv_desc(s);
2610    }
2611}
2612
2613static void vtd_handle_fsts_write(IntelIOMMUState *s)
2614{
2615    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2616    uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2617    uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2618
2619    if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2620        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2621        trace_vtd_fsts_clear_ip();
2622    }
2623    /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2624     * Descriptors if there are any when Queued Invalidation is enabled?
2625     */
2626}
2627
2628static void vtd_handle_fectl_write(IntelIOMMUState *s)
2629{
2630    uint32_t fectl_reg;
2631    /* FIXME: when software clears the IM field, check the IP field. But do we
2632     * need to compare the old value and the new value to conclude that
2633     * software clears the IM field? Or just check if the IM field is zero?
2634     */
2635    fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2636
2637    trace_vtd_reg_write_fectl(fectl_reg);
2638
2639    if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2640        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2641        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2642    }
2643}
2644
2645static void vtd_handle_ics_write(IntelIOMMUState *s)
2646{
2647    uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2648    uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2649
2650    if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2651        trace_vtd_reg_ics_clear_ip();
2652        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2653    }
2654}
2655
2656static void vtd_handle_iectl_write(IntelIOMMUState *s)
2657{
2658    uint32_t iectl_reg;
2659    /* FIXME: when software clears the IM field, check the IP field. But do we
2660     * need to compare the old value and the new value to conclude that
2661     * software clears the IM field? Or just check if the IM field is zero?
2662     */
2663    iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2664
2665    trace_vtd_reg_write_iectl(iectl_reg);
2666
2667    if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2668        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2669        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2670    }
2671}
2672
2673static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2674{
2675    IntelIOMMUState *s = opaque;
2676    uint64_t val;
2677
2678    trace_vtd_reg_read(addr, size);
2679
2680    if (addr + size > DMAR_REG_SIZE) {
2681        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2682                          " size=0x%x", __func__, addr, size);
2683        return (uint64_t)-1;
2684    }
2685
2686    switch (addr) {
2687    /* Root Table Address Register, 64-bit */
2688    case DMAR_RTADDR_REG:
2689        val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2690        if (size == 4) {
2691            val = val & ((1ULL << 32) - 1);
2692        }
2693        break;
2694
2695    case DMAR_RTADDR_REG_HI:
2696        assert(size == 4);
2697        val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2698        break;
2699
2700    /* Invalidation Queue Address Register, 64-bit */
2701    case DMAR_IQA_REG:
2702        val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2703        if (size == 4) {
2704            val = val & ((1ULL << 32) - 1);
2705        }
2706        break;
2707
2708    case DMAR_IQA_REG_HI:
2709        assert(size == 4);
2710        val = s->iq >> 32;
2711        break;
2712
2713    default:
2714        if (size == 4) {
2715            val = vtd_get_long(s, addr);
2716        } else {
2717            val = vtd_get_quad(s, addr);
2718        }
2719    }
2720
2721    return val;
2722}
2723
2724static void vtd_mem_write(void *opaque, hwaddr addr,
2725                          uint64_t val, unsigned size)
2726{
2727    IntelIOMMUState *s = opaque;
2728
2729    trace_vtd_reg_write(addr, size, val);
2730
2731    if (addr + size > DMAR_REG_SIZE) {
2732        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2733                          " size=0x%x", __func__, addr, size);
2734        return;
2735    }
2736
2737    switch (addr) {
2738    /* Global Command Register, 32-bit */
2739    case DMAR_GCMD_REG:
2740        vtd_set_long(s, addr, val);
2741        vtd_handle_gcmd_write(s);
2742        break;
2743
2744    /* Context Command Register, 64-bit */
2745    case DMAR_CCMD_REG:
2746        if (size == 4) {
2747            vtd_set_long(s, addr, val);
2748        } else {
2749            vtd_set_quad(s, addr, val);
2750            vtd_handle_ccmd_write(s);
2751        }
2752        break;
2753
2754    case DMAR_CCMD_REG_HI:
2755        assert(size == 4);
2756        vtd_set_long(s, addr, val);
2757        vtd_handle_ccmd_write(s);
2758        break;
2759
2760    /* IOTLB Invalidation Register, 64-bit */
2761    case DMAR_IOTLB_REG:
2762        if (size == 4) {
2763            vtd_set_long(s, addr, val);
2764        } else {
2765            vtd_set_quad(s, addr, val);
2766            vtd_handle_iotlb_write(s);
2767        }
2768        break;
2769
2770    case DMAR_IOTLB_REG_HI:
2771        assert(size == 4);
2772        vtd_set_long(s, addr, val);
2773        vtd_handle_iotlb_write(s);
2774        break;
2775
2776    /* Invalidate Address Register, 64-bit */
2777    case DMAR_IVA_REG:
2778        if (size == 4) {
2779            vtd_set_long(s, addr, val);
2780        } else {
2781            vtd_set_quad(s, addr, val);
2782        }
2783        break;
2784
2785    case DMAR_IVA_REG_HI:
2786        assert(size == 4);
2787        vtd_set_long(s, addr, val);
2788        break;
2789
2790    /* Fault Status Register, 32-bit */
2791    case DMAR_FSTS_REG:
2792        assert(size == 4);
2793        vtd_set_long(s, addr, val);
2794        vtd_handle_fsts_write(s);
2795        break;
2796
2797    /* Fault Event Control Register, 32-bit */
2798    case DMAR_FECTL_REG:
2799        assert(size == 4);
2800        vtd_set_long(s, addr, val);
2801        vtd_handle_fectl_write(s);
2802        break;
2803
2804    /* Fault Event Data Register, 32-bit */
2805    case DMAR_FEDATA_REG:
2806        assert(size == 4);
2807        vtd_set_long(s, addr, val);
2808        break;
2809
2810    /* Fault Event Address Register, 32-bit */
2811    case DMAR_FEADDR_REG:
2812        if (size == 4) {
2813            vtd_set_long(s, addr, val);
2814        } else {
2815            /*
2816             * While the register is 32-bit only, some guests (Xen...) write to
2817             * it with 64-bit.
2818             */
2819            vtd_set_quad(s, addr, val);
2820        }
2821        break;
2822
2823    /* Fault Event Upper Address Register, 32-bit */
2824    case DMAR_FEUADDR_REG:
2825        assert(size == 4);
2826        vtd_set_long(s, addr, val);
2827        break;
2828
2829    /* Protected Memory Enable Register, 32-bit */
2830    case DMAR_PMEN_REG:
2831        assert(size == 4);
2832        vtd_set_long(s, addr, val);
2833        break;
2834
2835    /* Root Table Address Register, 64-bit */
2836    case DMAR_RTADDR_REG:
2837        if (size == 4) {
2838            vtd_set_long(s, addr, val);
2839        } else {
2840            vtd_set_quad(s, addr, val);
2841        }
2842        break;
2843
2844    case DMAR_RTADDR_REG_HI:
2845        assert(size == 4);
2846        vtd_set_long(s, addr, val);
2847        break;
2848
2849    /* Invalidation Queue Tail Register, 64-bit */
2850    case DMAR_IQT_REG:
2851        if (size == 4) {
2852            vtd_set_long(s, addr, val);
2853        } else {
2854            vtd_set_quad(s, addr, val);
2855        }
2856        vtd_handle_iqt_write(s);
2857        break;
2858
2859    case DMAR_IQT_REG_HI:
2860        assert(size == 4);
2861        vtd_set_long(s, addr, val);
2862        /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2863        break;
2864
2865    /* Invalidation Queue Address Register, 64-bit */
2866    case DMAR_IQA_REG:
2867        if (size == 4) {
2868            vtd_set_long(s, addr, val);
2869        } else {
2870            vtd_set_quad(s, addr, val);
2871        }
2872        if (s->ecap & VTD_ECAP_SMTS &&
2873            val & VTD_IQA_DW_MASK) {
2874            s->iq_dw = true;
2875        } else {
2876            s->iq_dw = false;
2877        }
2878        break;
2879
2880    case DMAR_IQA_REG_HI:
2881        assert(size == 4);
2882        vtd_set_long(s, addr, val);
2883        break;
2884
2885    /* Invalidation Completion Status Register, 32-bit */
2886    case DMAR_ICS_REG:
2887        assert(size == 4);
2888        vtd_set_long(s, addr, val);
2889        vtd_handle_ics_write(s);
2890        break;
2891
2892    /* Invalidation Event Control Register, 32-bit */
2893    case DMAR_IECTL_REG:
2894        assert(size == 4);
2895        vtd_set_long(s, addr, val);
2896        vtd_handle_iectl_write(s);
2897        break;
2898
2899    /* Invalidation Event Data Register, 32-bit */
2900    case DMAR_IEDATA_REG:
2901        assert(size == 4);
2902        vtd_set_long(s, addr, val);
2903        break;
2904
2905    /* Invalidation Event Address Register, 32-bit */
2906    case DMAR_IEADDR_REG:
2907        assert(size == 4);
2908        vtd_set_long(s, addr, val);
2909        break;
2910
2911    /* Invalidation Event Upper Address Register, 32-bit */
2912    case DMAR_IEUADDR_REG:
2913        assert(size == 4);
2914        vtd_set_long(s, addr, val);
2915        break;
2916
2917    /* Fault Recording Registers, 128-bit */
2918    case DMAR_FRCD_REG_0_0:
2919        if (size == 4) {
2920            vtd_set_long(s, addr, val);
2921        } else {
2922            vtd_set_quad(s, addr, val);
2923        }
2924        break;
2925
2926    case DMAR_FRCD_REG_0_1:
2927        assert(size == 4);
2928        vtd_set_long(s, addr, val);
2929        break;
2930
2931    case DMAR_FRCD_REG_0_2:
2932        if (size == 4) {
2933            vtd_set_long(s, addr, val);
2934        } else {
2935            vtd_set_quad(s, addr, val);
2936            /* May clear bit 127 (Fault), update PPF */
2937            vtd_update_fsts_ppf(s);
2938        }
2939        break;
2940
2941    case DMAR_FRCD_REG_0_3:
2942        assert(size == 4);
2943        vtd_set_long(s, addr, val);
2944        /* May clear bit 127 (Fault), update PPF */
2945        vtd_update_fsts_ppf(s);
2946        break;
2947
2948    case DMAR_IRTA_REG:
2949        if (size == 4) {
2950            vtd_set_long(s, addr, val);
2951        } else {
2952            vtd_set_quad(s, addr, val);
2953        }
2954        break;
2955
2956    case DMAR_IRTA_REG_HI:
2957        assert(size == 4);
2958        vtd_set_long(s, addr, val);
2959        break;
2960
2961    default:
2962        if (size == 4) {
2963            vtd_set_long(s, addr, val);
2964        } else {
2965            vtd_set_quad(s, addr, val);
2966        }
2967    }
2968}
2969
2970static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2971                                         IOMMUAccessFlags flag, int iommu_idx)
2972{
2973    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2974    IntelIOMMUState *s = vtd_as->iommu_state;
2975    IOMMUTLBEntry iotlb = {
2976        /* We'll fill in the rest later. */
2977        .target_as = &address_space_memory,
2978    };
2979    bool success;
2980
2981    if (likely(s->dmar_enabled)) {
2982        success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2983                                         addr, flag & IOMMU_WO, &iotlb);
2984    } else {
2985        /* DMAR disabled, passthrough, use 4k-page*/
2986        iotlb.iova = addr & VTD_PAGE_MASK_4K;
2987        iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2988        iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2989        iotlb.perm = IOMMU_RW;
2990        success = true;
2991    }
2992
2993    if (likely(success)) {
2994        trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2995                                 VTD_PCI_SLOT(vtd_as->devfn),
2996                                 VTD_PCI_FUNC(vtd_as->devfn),
2997                                 iotlb.iova, iotlb.translated_addr,
2998                                 iotlb.addr_mask);
2999    } else {
3000        error_report_once("%s: detected translation failure "
3001                          "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3002                          __func__, pci_bus_num(vtd_as->bus),
3003                          VTD_PCI_SLOT(vtd_as->devfn),
3004                          VTD_PCI_FUNC(vtd_as->devfn),
3005                          addr);
3006    }
3007
3008    return iotlb;
3009}
3010
3011static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3012                                         IOMMUNotifierFlag old,
3013                                         IOMMUNotifierFlag new,
3014                                         Error **errp)
3015{
3016    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3017    IntelIOMMUState *s = vtd_as->iommu_state;
3018
3019    /* Update per-address-space notifier flags */
3020    vtd_as->notifier_flags = new;
3021
3022    if (old == IOMMU_NOTIFIER_NONE) {
3023        QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3024    } else if (new == IOMMU_NOTIFIER_NONE) {
3025        QLIST_REMOVE(vtd_as, next);
3026    }
3027    return 0;
3028}
3029
3030static int vtd_post_load(void *opaque, int version_id)
3031{
3032    IntelIOMMUState *iommu = opaque;
3033
3034    /*
3035     * Memory regions are dynamically turned on/off depending on
3036     * context entry configurations from the guest. After migration,
3037     * we need to make sure the memory regions are still correct.
3038     */
3039    vtd_switch_address_space_all(iommu);
3040
3041    /*
3042     * We don't need to migrate the root_scalable because we can
3043     * simply do the calculation after the loading is complete.  We
3044     * can actually do similar things with root, dmar_enabled, etc.
3045     * however since we've had them already so we'd better keep them
3046     * for compatibility of migration.
3047     */
3048    vtd_update_scalable_state(iommu);
3049
3050    return 0;
3051}
3052
3053static const VMStateDescription vtd_vmstate = {
3054    .name = "iommu-intel",
3055    .version_id = 1,
3056    .minimum_version_id = 1,
3057    .priority = MIG_PRI_IOMMU,
3058    .post_load = vtd_post_load,
3059    .fields = (VMStateField[]) {
3060        VMSTATE_UINT64(root, IntelIOMMUState),
3061        VMSTATE_UINT64(intr_root, IntelIOMMUState),
3062        VMSTATE_UINT64(iq, IntelIOMMUState),
3063        VMSTATE_UINT32(intr_size, IntelIOMMUState),
3064        VMSTATE_UINT16(iq_head, IntelIOMMUState),
3065        VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3066        VMSTATE_UINT16(iq_size, IntelIOMMUState),
3067        VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3068        VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3069        VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3070        VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
3071        VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3072        VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3073        VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3074        VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3075        VMSTATE_END_OF_LIST()
3076    }
3077};
3078
3079static const MemoryRegionOps vtd_mem_ops = {
3080    .read = vtd_mem_read,
3081    .write = vtd_mem_write,
3082    .endianness = DEVICE_LITTLE_ENDIAN,
3083    .impl = {
3084        .min_access_size = 4,
3085        .max_access_size = 8,
3086    },
3087    .valid = {
3088        .min_access_size = 4,
3089        .max_access_size = 8,
3090    },
3091};
3092
3093static Property vtd_properties[] = {
3094    DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3095    DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3096                            ON_OFF_AUTO_AUTO),
3097    DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3098    DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3099                      VTD_HOST_ADDRESS_WIDTH),
3100    DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3101    DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3102    DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3103    DEFINE_PROP_END_OF_LIST(),
3104};
3105
3106/* Read IRTE entry with specific index */
3107static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3108                        VTD_IR_TableEntry *entry, uint16_t sid)
3109{
3110    static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3111        {0xffff, 0xfffb, 0xfff9, 0xfff8};
3112    dma_addr_t addr = 0x00;
3113    uint16_t mask, source_id;
3114    uint8_t bus, bus_max, bus_min;
3115
3116    if (index >= iommu->intr_size) {
3117        error_report_once("%s: index too large: ind=0x%x",
3118                          __func__, index);
3119        return -VTD_FR_IR_INDEX_OVER;
3120    }
3121
3122    addr = iommu->intr_root + index * sizeof(*entry);
3123    if (dma_memory_read(&address_space_memory, addr, entry,
3124                        sizeof(*entry))) {
3125        error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3126                          __func__, index, addr);
3127        return -VTD_FR_IR_ROOT_INVAL;
3128    }
3129
3130    trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3131                          le64_to_cpu(entry->data[0]));
3132
3133    if (!entry->irte.present) {
3134        error_report_once("%s: detected non-present IRTE "
3135                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3136                          __func__, index, le64_to_cpu(entry->data[1]),
3137                          le64_to_cpu(entry->data[0]));
3138        return -VTD_FR_IR_ENTRY_P;
3139    }
3140
3141    if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3142        entry->irte.__reserved_2) {
3143        error_report_once("%s: detected non-zero reserved IRTE "
3144                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3145                          __func__, index, le64_to_cpu(entry->data[1]),
3146                          le64_to_cpu(entry->data[0]));
3147        return -VTD_FR_IR_IRTE_RSVD;
3148    }
3149
3150    if (sid != X86_IOMMU_SID_INVALID) {
3151        /* Validate IRTE SID */
3152        source_id = le32_to_cpu(entry->irte.source_id);
3153        switch (entry->irte.sid_vtype) {
3154        case VTD_SVT_NONE:
3155            break;
3156
3157        case VTD_SVT_ALL:
3158            mask = vtd_svt_mask[entry->irte.sid_q];
3159            if ((source_id & mask) != (sid & mask)) {
3160                error_report_once("%s: invalid IRTE SID "
3161                                  "(index=%u, sid=%u, source_id=%u)",
3162                                  __func__, index, sid, source_id);
3163                return -VTD_FR_IR_SID_ERR;
3164            }
3165            break;
3166
3167        case VTD_SVT_BUS:
3168            bus_max = source_id >> 8;
3169            bus_min = source_id & 0xff;
3170            bus = sid >> 8;
3171            if (bus > bus_max || bus < bus_min) {
3172                error_report_once("%s: invalid SVT_BUS "
3173                                  "(index=%u, bus=%u, min=%u, max=%u)",
3174                                  __func__, index, bus, bus_min, bus_max);
3175                return -VTD_FR_IR_SID_ERR;
3176            }
3177            break;
3178
3179        default:
3180            error_report_once("%s: detected invalid IRTE SVT "
3181                              "(index=%u, type=%d)", __func__,
3182                              index, entry->irte.sid_vtype);
3183            /* Take this as verification failure. */
3184            return -VTD_FR_IR_SID_ERR;
3185        }
3186    }
3187
3188    return 0;
3189}
3190
3191/* Fetch IRQ information of specific IR index */
3192static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3193                             X86IOMMUIrq *irq, uint16_t sid)
3194{
3195    VTD_IR_TableEntry irte = {};
3196    int ret = 0;
3197
3198    ret = vtd_irte_get(iommu, index, &irte, sid);
3199    if (ret) {
3200        return ret;
3201    }
3202
3203    irq->trigger_mode = irte.irte.trigger_mode;
3204    irq->vector = irte.irte.vector;
3205    irq->delivery_mode = irte.irte.delivery_mode;
3206    irq->dest = le32_to_cpu(irte.irte.dest_id);
3207    if (!iommu->intr_eime) {
3208#define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
3209#define  VTD_IR_APIC_DEST_SHIFT        (8)
3210        irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3211            VTD_IR_APIC_DEST_SHIFT;
3212    }
3213    irq->dest_mode = irte.irte.dest_mode;
3214    irq->redir_hint = irte.irte.redir_hint;
3215
3216    trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3217                       irq->delivery_mode, irq->dest, irq->dest_mode);
3218
3219    return 0;
3220}
3221
3222/* Interrupt remapping for MSI/MSI-X entry */
3223static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3224                                   MSIMessage *origin,
3225                                   MSIMessage *translated,
3226                                   uint16_t sid)
3227{
3228    int ret = 0;
3229    VTD_IR_MSIAddress addr;
3230    uint16_t index;
3231    X86IOMMUIrq irq = {};
3232
3233    assert(origin && translated);
3234
3235    trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3236
3237    if (!iommu || !iommu->intr_enabled) {
3238        memcpy(translated, origin, sizeof(*origin));
3239        goto out;
3240    }
3241
3242    if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3243        error_report_once("%s: MSI address high 32 bits non-zero detected: "
3244                          "address=0x%" PRIx64, __func__, origin->address);
3245        return -VTD_FR_IR_REQ_RSVD;
3246    }
3247
3248    addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3249    if (addr.addr.__head != 0xfee) {
3250        error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3251                          __func__, addr.data);
3252        return -VTD_FR_IR_REQ_RSVD;
3253    }
3254
3255    /* This is compatible mode. */
3256    if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3257        memcpy(translated, origin, sizeof(*origin));
3258        goto out;
3259    }
3260
3261    index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3262
3263#define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
3264#define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
3265
3266    if (addr.addr.sub_valid) {
3267        /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3268        index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3269    }
3270
3271    ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3272    if (ret) {
3273        return ret;
3274    }
3275
3276    if (addr.addr.sub_valid) {
3277        trace_vtd_ir_remap_type("MSI");
3278        if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3279            error_report_once("%s: invalid IR MSI "
3280                              "(sid=%u, address=0x%" PRIx64
3281                              ", data=0x%" PRIx32 ")",
3282                              __func__, sid, origin->address, origin->data);
3283            return -VTD_FR_IR_REQ_RSVD;
3284        }
3285    } else {
3286        uint8_t vector = origin->data & 0xff;
3287        uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3288
3289        trace_vtd_ir_remap_type("IOAPIC");
3290        /* IOAPIC entry vector should be aligned with IRTE vector
3291         * (see vt-d spec 5.1.5.1). */
3292        if (vector != irq.vector) {
3293            trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3294        }
3295
3296        /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3297         * (see vt-d spec 5.1.5.1). */
3298        if (trigger_mode != irq.trigger_mode) {
3299            trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3300                                      irq.trigger_mode);
3301        }
3302    }
3303
3304    /*
3305     * We'd better keep the last two bits, assuming that guest OS
3306     * might modify it. Keep it does not hurt after all.
3307     */
3308    irq.msi_addr_last_bits = addr.addr.__not_care;
3309
3310    /* Translate X86IOMMUIrq to MSI message */
3311    x86_iommu_irq_to_msi_message(&irq, translated);
3312
3313out:
3314    trace_vtd_ir_remap_msi(origin->address, origin->data,
3315                           translated->address, translated->data);
3316    return 0;
3317}
3318
3319static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3320                         MSIMessage *dst, uint16_t sid)
3321{
3322    return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3323                                   src, dst, sid);
3324}
3325
3326static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3327                                   uint64_t *data, unsigned size,
3328                                   MemTxAttrs attrs)
3329{
3330    return MEMTX_OK;
3331}
3332
3333static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3334                                    uint64_t value, unsigned size,
3335                                    MemTxAttrs attrs)
3336{
3337    int ret = 0;
3338    MSIMessage from = {}, to = {};
3339    uint16_t sid = X86_IOMMU_SID_INVALID;
3340
3341    from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3342    from.data = (uint32_t) value;
3343
3344    if (!attrs.unspecified) {
3345        /* We have explicit Source ID */
3346        sid = attrs.requester_id;
3347    }
3348
3349    ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3350    if (ret) {
3351        /* TODO: report error */
3352        /* Drop this interrupt */
3353        return MEMTX_ERROR;
3354    }
3355
3356    apic_get_class()->send_msi(&to);
3357
3358    return MEMTX_OK;
3359}
3360
3361static const MemoryRegionOps vtd_mem_ir_ops = {
3362    .read_with_attrs = vtd_mem_ir_read,
3363    .write_with_attrs = vtd_mem_ir_write,
3364    .endianness = DEVICE_LITTLE_ENDIAN,
3365    .impl = {
3366        .min_access_size = 4,
3367        .max_access_size = 4,
3368    },
3369    .valid = {
3370        .min_access_size = 4,
3371        .max_access_size = 4,
3372    },
3373};
3374
3375VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3376{
3377    uintptr_t key = (uintptr_t)bus;
3378    VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3379    VTDAddressSpace *vtd_dev_as;
3380    char name[128];
3381
3382    if (!vtd_bus) {
3383        uintptr_t *new_key = g_malloc(sizeof(*new_key));
3384        *new_key = (uintptr_t)bus;
3385        /* No corresponding free() */
3386        vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3387                            PCI_DEVFN_MAX);
3388        vtd_bus->bus = bus;
3389        g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3390    }
3391
3392    vtd_dev_as = vtd_bus->dev_as[devfn];
3393
3394    if (!vtd_dev_as) {
3395        snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3396                 PCI_FUNC(devfn));
3397        vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3398
3399        vtd_dev_as->bus = bus;
3400        vtd_dev_as->devfn = (uint8_t)devfn;
3401        vtd_dev_as->iommu_state = s;
3402        vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3403        vtd_dev_as->iova_tree = iova_tree_new();
3404
3405        memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3406        address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3407
3408        /*
3409         * Build the DMAR-disabled container with aliases to the
3410         * shared MRs.  Note that aliasing to a shared memory region
3411         * could help the memory API to detect same FlatViews so we
3412         * can have devices to share the same FlatView when DMAR is
3413         * disabled (either by not providing "intel_iommu=on" or with
3414         * "iommu=pt").  It will greatly reduce the total number of
3415         * FlatViews of the system hence VM runs faster.
3416         */
3417        memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3418                                 "vtd-nodmar", &s->mr_nodmar, 0,
3419                                 memory_region_size(&s->mr_nodmar));
3420
3421        /*
3422         * Build the per-device DMAR-enabled container.
3423         *
3424         * TODO: currently we have per-device IOMMU memory region only
3425         * because we have per-device IOMMU notifiers for devices.  If
3426         * one day we can abstract the IOMMU notifiers out of the
3427         * memory regions then we can also share the same memory
3428         * region here just like what we've done above with the nodmar
3429         * region.
3430         */
3431        strcat(name, "-dmar");
3432        memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3433                                 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3434                                 name, UINT64_MAX);
3435        memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3436                                 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3437        memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3438                                            VTD_INTERRUPT_ADDR_FIRST,
3439                                            &vtd_dev_as->iommu_ir, 1);
3440
3441        /*
3442         * Hook both the containers under the root container, we
3443         * switch between DMAR & noDMAR by enable/disable
3444         * corresponding sub-containers
3445         */
3446        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3447                                            MEMORY_REGION(&vtd_dev_as->iommu),
3448                                            0);
3449        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3450                                            &vtd_dev_as->nodmar, 0);
3451
3452        vtd_switch_address_space(vtd_dev_as);
3453    }
3454    return vtd_dev_as;
3455}
3456
3457/* Unmap the whole range in the notifier's scope. */
3458static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3459{
3460    hwaddr size, remain;
3461    hwaddr start = n->start;
3462    hwaddr end = n->end;
3463    IntelIOMMUState *s = as->iommu_state;
3464    DMAMap map;
3465
3466    /*
3467     * Note: all the codes in this function has a assumption that IOVA
3468     * bits are no more than VTD_MGAW bits (which is restricted by
3469     * VT-d spec), otherwise we need to consider overflow of 64 bits.
3470     */
3471
3472    if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3473        /*
3474         * Don't need to unmap regions that is bigger than the whole
3475         * VT-d supported address space size
3476         */
3477        end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3478    }
3479
3480    assert(start <= end);
3481    size = remain = end - start + 1;
3482
3483    while (remain >= VTD_PAGE_SIZE) {
3484        IOMMUTLBEvent event;
3485        uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3486        uint64_t size = mask + 1;
3487
3488        assert(size);
3489
3490        event.type = IOMMU_NOTIFIER_UNMAP;
3491        event.entry.iova = start;
3492        event.entry.addr_mask = mask;
3493        event.entry.target_as = &address_space_memory;
3494        event.entry.perm = IOMMU_NONE;
3495        /* This field is meaningless for unmap */
3496        event.entry.translated_addr = 0;
3497
3498        memory_region_notify_iommu_one(n, &event);
3499
3500        start += size;
3501        remain -= size;
3502    }
3503
3504    assert(!remain);
3505
3506    trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3507                             VTD_PCI_SLOT(as->devfn),
3508                             VTD_PCI_FUNC(as->devfn),
3509                             n->start, size);
3510
3511    map.iova = n->start;
3512    map.size = size;
3513    iova_tree_remove(as->iova_tree, &map);
3514}
3515
3516static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3517{
3518    VTDAddressSpace *vtd_as;
3519    IOMMUNotifier *n;
3520
3521    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3522        IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3523            vtd_address_space_unmap(vtd_as, n);
3524        }
3525    }
3526}
3527
3528static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3529{
3530    vtd_address_space_unmap_all(s);
3531    vtd_switch_address_space_all(s);
3532}
3533
3534static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3535{
3536    memory_region_notify_iommu_one(private, event);
3537    return 0;
3538}
3539
3540static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3541{
3542    VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3543    IntelIOMMUState *s = vtd_as->iommu_state;
3544    uint8_t bus_n = pci_bus_num(vtd_as->bus);
3545    VTDContextEntry ce;
3546
3547    /*
3548     * The replay can be triggered by either a invalidation or a newly
3549     * created entry. No matter what, we release existing mappings
3550     * (it means flushing caches for UNMAP-only registers).
3551     */
3552    vtd_address_space_unmap(vtd_as, n);
3553
3554    if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3555        trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3556                                  "legacy mode",
3557                                  bus_n, PCI_SLOT(vtd_as->devfn),
3558                                  PCI_FUNC(vtd_as->devfn),
3559                                  vtd_get_domain_id(s, &ce),
3560                                  ce.hi, ce.lo);
3561        if (vtd_as_has_map_notifier(vtd_as)) {
3562            /* This is required only for MAP typed notifiers */
3563            vtd_page_walk_info info = {
3564                .hook_fn = vtd_replay_hook,
3565                .private = (void *)n,
3566                .notify_unmap = false,
3567                .aw = s->aw_bits,
3568                .as = vtd_as,
3569                .domain_id = vtd_get_domain_id(s, &ce),
3570            };
3571
3572            vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3573        }
3574    } else {
3575        trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3576                                    PCI_FUNC(vtd_as->devfn));
3577    }
3578
3579    return;
3580}
3581
3582/* Do the initialization. It will also be called when reset, so pay
3583 * attention when adding new initialization stuff.
3584 */
3585static void vtd_init(IntelIOMMUState *s)
3586{
3587    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3588
3589    memset(s->csr, 0, DMAR_REG_SIZE);
3590    memset(s->wmask, 0, DMAR_REG_SIZE);
3591    memset(s->w1cmask, 0, DMAR_REG_SIZE);
3592    memset(s->womask, 0, DMAR_REG_SIZE);
3593
3594    s->root = 0;
3595    s->root_scalable = false;
3596    s->dmar_enabled = false;
3597    s->intr_enabled = false;
3598    s->iq_head = 0;
3599    s->iq_tail = 0;
3600    s->iq = 0;
3601    s->iq_size = 0;
3602    s->qi_enabled = false;
3603    s->iq_last_desc_type = VTD_INV_DESC_NONE;
3604    s->iq_dw = false;
3605    s->next_frcd_reg = 0;
3606    s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3607             VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3608             VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3609    if (s->dma_drain) {
3610        s->cap |= VTD_CAP_DRAIN;
3611    }
3612    if (s->aw_bits == VTD_HOST_AW_48BIT) {
3613        s->cap |= VTD_CAP_SAGAW_48bit;
3614    }
3615    s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3616
3617    /*
3618     * Rsvd field masks for spte
3619     */
3620    vtd_spte_rsvd[0] = ~0ULL;
3621    vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3622                                                  x86_iommu->dt_supported);
3623    vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3624    vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3625    vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3626
3627    vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3628                                                         x86_iommu->dt_supported);
3629    vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3630                                                         x86_iommu->dt_supported);
3631
3632    if (s->scalable_mode) {
3633        vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
3634        vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
3635        vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
3636    }
3637
3638    if (x86_iommu_ir_supported(x86_iommu)) {
3639        s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3640        if (s->intr_eim == ON_OFF_AUTO_ON) {
3641            s->ecap |= VTD_ECAP_EIM;
3642        }
3643        assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3644    }
3645
3646    if (x86_iommu->dt_supported) {
3647        s->ecap |= VTD_ECAP_DT;
3648    }
3649
3650    if (x86_iommu->pt_supported) {
3651        s->ecap |= VTD_ECAP_PT;
3652    }
3653
3654    if (s->caching_mode) {
3655        s->cap |= VTD_CAP_CM;
3656    }
3657
3658    /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3659    if (s->scalable_mode) {
3660        s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3661    }
3662
3663    vtd_reset_caches(s);
3664
3665    /* Define registers with default values and bit semantics */
3666    vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3667    vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3668    vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3669    vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3670    vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3671    vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3672    vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3673    vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3674    vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3675
3676    /* Advanced Fault Logging not supported */
3677    vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3678    vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3679    vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3680    vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3681
3682    /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3683     * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3684     */
3685    vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3686
3687    /* Treated as RO for implementations that PLMR and PHMR fields reported
3688     * as Clear in the CAP_REG.
3689     * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3690     */
3691    vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3692
3693    vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3694    vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3695    vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3696    vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3697    vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3698    vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3699    vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3700    /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3701    vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3702
3703    /* IOTLB registers */
3704    vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3705    vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3706    vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3707
3708    /* Fault Recording Registers, 128-bit */
3709    vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3710    vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3711
3712    /*
3713     * Interrupt remapping registers.
3714     */
3715    vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3716}
3717
3718/* Should not reset address_spaces when reset because devices will still use
3719 * the address space they got at first (won't ask the bus again).
3720 */
3721static void vtd_reset(DeviceState *dev)
3722{
3723    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3724
3725    vtd_init(s);
3726    vtd_address_space_refresh_all(s);
3727}
3728
3729static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3730{
3731    IntelIOMMUState *s = opaque;
3732    VTDAddressSpace *vtd_as;
3733
3734    assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3735
3736    vtd_as = vtd_find_add_as(s, bus, devfn);
3737    return &vtd_as->as;
3738}
3739
3740static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3741{
3742    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3743
3744    if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3745        error_setg(errp, "eim=on cannot be selected without intremap=on");
3746        return false;
3747    }
3748
3749    if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3750        s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3751                      && x86_iommu_ir_supported(x86_iommu) ?
3752                                              ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3753    }
3754    if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3755        if (!kvm_irqchip_in_kernel()) {
3756            error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3757            return false;
3758        }
3759        if (!kvm_enable_x2apic()) {
3760            error_setg(errp, "eim=on requires support on the KVM side"
3761                             "(X2APIC_API, first shipped in v4.7)");
3762            return false;
3763        }
3764    }
3765
3766    /* Currently only address widths supported are 39 and 48 bits */
3767    if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3768        (s->aw_bits != VTD_HOST_AW_48BIT)) {
3769        error_setg(errp, "Supported values for aw-bits are: %d, %d",
3770                   VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3771        return false;
3772    }
3773
3774    if (s->scalable_mode && !s->dma_drain) {
3775        error_setg(errp, "Need to set dma_drain for scalable mode");
3776        return false;
3777    }
3778
3779    return true;
3780}
3781
3782static int vtd_machine_done_notify_one(Object *child, void *unused)
3783{
3784    IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3785
3786    /*
3787     * We hard-coded here because vfio-pci is the only special case
3788     * here.  Let's be more elegant in the future when we can, but so
3789     * far there seems to be no better way.
3790     */
3791    if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3792        vtd_panic_require_caching_mode();
3793    }
3794
3795    return 0;
3796}
3797
3798static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3799{
3800    object_child_foreach_recursive(object_get_root(),
3801                                   vtd_machine_done_notify_one, NULL);
3802}
3803
3804static Notifier vtd_machine_done_notify = {
3805    .notify = vtd_machine_done_hook,
3806};
3807
3808static void vtd_realize(DeviceState *dev, Error **errp)
3809{
3810    MachineState *ms = MACHINE(qdev_get_machine());
3811    PCMachineState *pcms = PC_MACHINE(ms);
3812    X86MachineState *x86ms = X86_MACHINE(ms);
3813    PCIBus *bus = pcms->bus;
3814    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3815
3816    if (!vtd_decide_config(s, errp)) {
3817        return;
3818    }
3819
3820    QLIST_INIT(&s->vtd_as_with_notifiers);
3821    qemu_mutex_init(&s->iommu_lock);
3822    memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3823    memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3824                          "intel_iommu", DMAR_REG_SIZE);
3825
3826    /* Create the shared memory regions by all devices */
3827    memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3828                       UINT64_MAX);
3829    memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3830                          s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3831    memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3832                             "vtd-sys-alias", get_system_memory(), 0,
3833                             memory_region_size(get_system_memory()));
3834    memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3835                                        &s->mr_sys_alias, 0);
3836    memory_region_add_subregion_overlap(&s->mr_nodmar,
3837                                        VTD_INTERRUPT_ADDR_FIRST,
3838                                        &s->mr_ir, 1);
3839
3840    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3841    /* No corresponding destroy */
3842    s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3843                                     g_free, g_free);
3844    s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3845                                              g_free, g_free);
3846    vtd_init(s);
3847    sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3848    pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3849    /* Pseudo address space under root PCI bus. */
3850    x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3851    qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
3852}
3853
3854static void vtd_class_init(ObjectClass *klass, void *data)
3855{
3856    DeviceClass *dc = DEVICE_CLASS(klass);
3857    X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
3858
3859    dc->reset = vtd_reset;
3860    dc->vmsd = &vtd_vmstate;
3861    device_class_set_props(dc, vtd_properties);
3862    dc->hotpluggable = false;
3863    x86_class->realize = vtd_realize;
3864    x86_class->int_remap = vtd_int_remap;
3865    /* Supported by the pc-q35-* machine types */
3866    dc->user_creatable = true;
3867    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3868    dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3869}
3870
3871static const TypeInfo vtd_info = {
3872    .name          = TYPE_INTEL_IOMMU_DEVICE,
3873    .parent        = TYPE_X86_IOMMU_DEVICE,
3874    .instance_size = sizeof(IntelIOMMUState),
3875    .class_init    = vtd_class_init,
3876};
3877
3878static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3879                                                     void *data)
3880{
3881    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3882
3883    imrc->translate = vtd_iommu_translate;
3884    imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3885    imrc->replay = vtd_iommu_replay;
3886}
3887
3888static const TypeInfo vtd_iommu_memory_region_info = {
3889    .parent = TYPE_IOMMU_MEMORY_REGION,
3890    .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3891    .class_init = vtd_iommu_memory_region_class_init,
3892};
3893
3894static void vtd_register_types(void)
3895{
3896    type_register_static(&vtd_info);
3897    type_register_static(&vtd_iommu_memory_region_info);
3898}
3899
3900type_init(vtd_register_types)
3901