qemu/hw/intc/arm_gic.c
<<
>>
Prefs
   1/*
   2 * ARM Generic/Distributed Interrupt Controller
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10/* This file contains implementation code for the RealView EB interrupt
  11 * controller, MPCore distributed interrupt controller and ARMv7-M
  12 * Nested Vectored Interrupt Controller.
  13 * It is compiled in two ways:
  14 *  (1) as a standalone file to produce a sysbus device which is a GIC
  15 *  that can be used on the realview board and as one of the builtin
  16 *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
  17 *  (2) by being directly #included into armv7m_nvic.c to produce the
  18 *  armv7m_nvic device.
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "hw/irq.h"
  23#include "hw/sysbus.h"
  24#include "gic_internal.h"
  25#include "qapi/error.h"
  26#include "hw/core/cpu.h"
  27#include "qemu/log.h"
  28#include "qemu/module.h"
  29#include "trace.h"
  30#include "sysemu/kvm.h"
  31#include "sysemu/qtest.h"
  32
  33/* #define DEBUG_GIC */
  34
  35#ifdef DEBUG_GIC
  36#define DEBUG_GIC_GATE 1
  37#else
  38#define DEBUG_GIC_GATE 0
  39#endif
  40
  41#define DPRINTF(fmt, ...) do {                                          \
  42        if (DEBUG_GIC_GATE) {                                           \
  43            fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
  44        }                                                               \
  45    } while (0)
  46
  47static const uint8_t gic_id_11mpcore[] = {
  48    0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
  49};
  50
  51static const uint8_t gic_id_gicv1[] = {
  52    0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
  53};
  54
  55static const uint8_t gic_id_gicv2[] = {
  56    0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
  57};
  58
  59static inline int gic_get_current_cpu(GICState *s)
  60{
  61    if (!qtest_enabled() && s->num_cpu > 1) {
  62        return current_cpu->cpu_index;
  63    }
  64    return 0;
  65}
  66
  67static inline int gic_get_current_vcpu(GICState *s)
  68{
  69    return gic_get_current_cpu(s) + GIC_NCPU;
  70}
  71
  72/* Return true if this GIC config has interrupt groups, which is
  73 * true if we're a GICv2, or a GICv1 with the security extensions.
  74 */
  75static inline bool gic_has_groups(GICState *s)
  76{
  77    return s->revision == 2 || s->security_extn;
  78}
  79
  80static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
  81{
  82    return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
  83}
  84
  85static inline void gic_get_best_irq(GICState *s, int cpu,
  86                                    int *best_irq, int *best_prio, int *group)
  87{
  88    int irq;
  89    int cm = 1 << cpu;
  90
  91    *best_irq = 1023;
  92    *best_prio = 0x100;
  93
  94    for (irq = 0; irq < s->num_irq; irq++) {
  95        if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
  96            (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
  97            (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
  98            if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
  99                *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
 100                *best_irq = irq;
 101            }
 102        }
 103    }
 104
 105    if (*best_irq < 1023) {
 106        *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
 107    }
 108}
 109
 110static inline void gic_get_best_virq(GICState *s, int cpu,
 111                                     int *best_irq, int *best_prio, int *group)
 112{
 113    int lr_idx = 0;
 114
 115    *best_irq = 1023;
 116    *best_prio = 0x100;
 117
 118    for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
 119        uint32_t lr_entry = s->h_lr[lr_idx][cpu];
 120        int state = GICH_LR_STATE(lr_entry);
 121
 122        if (state == GICH_LR_STATE_PENDING) {
 123            int prio = GICH_LR_PRIORITY(lr_entry);
 124
 125            if (prio < *best_prio) {
 126                *best_prio = prio;
 127                *best_irq = GICH_LR_VIRT_ID(lr_entry);
 128                *group = GICH_LR_GROUP(lr_entry);
 129            }
 130        }
 131    }
 132}
 133
 134/* Return true if IRQ signaling is enabled for the given cpu and at least one
 135 * of the given groups:
 136 *   - in the non-virt case, the distributor must be enabled for one of the
 137 *   given groups
 138 *   - in the virt case, the virtual interface must be enabled.
 139 *   - in all cases, the (v)CPU interface must be enabled for one of the given
 140 *   groups.
 141 */
 142static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
 143                                    int group_mask)
 144{
 145    int cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
 146
 147    if (!virt && !(s->ctlr & group_mask)) {
 148        return false;
 149    }
 150
 151    if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
 152        return false;
 153    }
 154
 155    if (!(s->cpu_ctlr[cpu_iface] & group_mask)) {
 156        return false;
 157    }
 158
 159    return true;
 160}
 161
 162/* TODO: Many places that call this routine could be optimized.  */
 163/* Update interrupt status after enabled or pending bits have been changed.  */
 164static inline void gic_update_internal(GICState *s, bool virt)
 165{
 166    int best_irq;
 167    int best_prio;
 168    int irq_level, fiq_level;
 169    int cpu, cpu_iface;
 170    int group = 0;
 171    qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
 172    qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
 173
 174    for (cpu = 0; cpu < s->num_cpu; cpu++) {
 175        cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
 176
 177        s->current_pending[cpu_iface] = 1023;
 178        if (!gic_irq_signaling_enabled(s, cpu, virt,
 179                                       GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
 180            qemu_irq_lower(irq_lines[cpu]);
 181            qemu_irq_lower(fiq_lines[cpu]);
 182            continue;
 183        }
 184
 185        if (virt) {
 186            gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
 187        } else {
 188            gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
 189        }
 190
 191        if (best_irq != 1023) {
 192            trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
 193                                     best_irq, best_prio,
 194                                     s->priority_mask[cpu_iface],
 195                                     s->running_priority[cpu_iface]);
 196        }
 197
 198        irq_level = fiq_level = 0;
 199
 200        if (best_prio < s->priority_mask[cpu_iface]) {
 201            s->current_pending[cpu_iface] = best_irq;
 202            if (best_prio < s->running_priority[cpu_iface]) {
 203                if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
 204                    if (group == 0 &&
 205                        s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
 206                        DPRINTF("Raised pending FIQ %d (cpu %d)\n",
 207                                best_irq, cpu_iface);
 208                        fiq_level = 1;
 209                        trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
 210                                                 fiq_level);
 211                    } else {
 212                        DPRINTF("Raised pending IRQ %d (cpu %d)\n",
 213                                best_irq, cpu_iface);
 214                        irq_level = 1;
 215                        trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
 216                                                 irq_level);
 217                    }
 218                }
 219            }
 220        }
 221
 222        qemu_set_irq(irq_lines[cpu], irq_level);
 223        qemu_set_irq(fiq_lines[cpu], fiq_level);
 224    }
 225}
 226
 227static void gic_update(GICState *s)
 228{
 229    gic_update_internal(s, false);
 230}
 231
 232/* Return true if this LR is empty, i.e. the corresponding bit
 233 * in ELRSR is set.
 234 */
 235static inline bool gic_lr_entry_is_free(uint32_t entry)
 236{
 237    return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
 238        && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
 239}
 240
 241/* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
 242 * corrsponding bit in EISR is set.
 243 */
 244static inline bool gic_lr_entry_is_eoi(uint32_t entry)
 245{
 246    return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
 247        && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
 248}
 249
 250static inline void gic_extract_lr_info(GICState *s, int cpu,
 251                                int *num_eoi, int *num_valid, int *num_pending)
 252{
 253    int lr_idx;
 254
 255    *num_eoi = 0;
 256    *num_valid = 0;
 257    *num_pending = 0;
 258
 259    for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
 260        uint32_t *entry = &s->h_lr[lr_idx][cpu];
 261
 262        if (gic_lr_entry_is_eoi(*entry)) {
 263            (*num_eoi)++;
 264        }
 265
 266        if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
 267            (*num_valid)++;
 268        }
 269
 270        if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
 271            (*num_pending)++;
 272        }
 273    }
 274}
 275
 276static void gic_compute_misr(GICState *s, int cpu)
 277{
 278    uint32_t value = 0;
 279    int vcpu = cpu + GIC_NCPU;
 280
 281    int num_eoi, num_valid, num_pending;
 282
 283    gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
 284
 285    /* EOI */
 286    if (num_eoi) {
 287        value |= R_GICH_MISR_EOI_MASK;
 288    }
 289
 290    /* U: true if only 0 or 1 LR entry is valid */
 291    if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
 292        value |= R_GICH_MISR_U_MASK;
 293    }
 294
 295    /* LRENP: EOICount is not 0 */
 296    if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
 297        ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
 298        value |= R_GICH_MISR_LRENP_MASK;
 299    }
 300
 301    /* NP: no pending interrupts */
 302    if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
 303        value |= R_GICH_MISR_NP_MASK;
 304    }
 305
 306    /* VGrp0E: group0 virq signaling enabled */
 307    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
 308        (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
 309        value |= R_GICH_MISR_VGrp0E_MASK;
 310    }
 311
 312    /* VGrp0D: group0 virq signaling disabled */
 313    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
 314        !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
 315        value |= R_GICH_MISR_VGrp0D_MASK;
 316    }
 317
 318    /* VGrp1E: group1 virq signaling enabled */
 319    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
 320        (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
 321        value |= R_GICH_MISR_VGrp1E_MASK;
 322    }
 323
 324    /* VGrp1D: group1 virq signaling disabled */
 325    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
 326        !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
 327        value |= R_GICH_MISR_VGrp1D_MASK;
 328    }
 329
 330    s->h_misr[cpu] = value;
 331}
 332
 333static void gic_update_maintenance(GICState *s)
 334{
 335    int cpu = 0;
 336    int maint_level;
 337
 338    for (cpu = 0; cpu < s->num_cpu; cpu++) {
 339        gic_compute_misr(s, cpu);
 340        maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
 341
 342        trace_gic_update_maintenance_irq(cpu, maint_level);
 343        qemu_set_irq(s->maintenance_irq[cpu], maint_level);
 344    }
 345}
 346
 347static void gic_update_virt(GICState *s)
 348{
 349    gic_update_internal(s, true);
 350    gic_update_maintenance(s);
 351}
 352
 353static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
 354                                 int cm, int target)
 355{
 356    if (level) {
 357        GIC_DIST_SET_LEVEL(irq, cm);
 358        if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
 359            DPRINTF("Set %d pending mask %x\n", irq, target);
 360            GIC_DIST_SET_PENDING(irq, target);
 361        }
 362    } else {
 363        GIC_DIST_CLEAR_LEVEL(irq, cm);
 364    }
 365}
 366
 367static void gic_set_irq_generic(GICState *s, int irq, int level,
 368                                int cm, int target)
 369{
 370    if (level) {
 371        GIC_DIST_SET_LEVEL(irq, cm);
 372        DPRINTF("Set %d pending mask %x\n", irq, target);
 373        if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
 374            GIC_DIST_SET_PENDING(irq, target);
 375        }
 376    } else {
 377        GIC_DIST_CLEAR_LEVEL(irq, cm);
 378    }
 379}
 380
 381/* Process a change in an external IRQ input.  */
 382static void gic_set_irq(void *opaque, int irq, int level)
 383{
 384    /* Meaning of the 'irq' parameter:
 385     *  [0..N-1] : external interrupts
 386     *  [N..N+31] : PPI (internal) interrupts for CPU 0
 387     *  [N+32..N+63] : PPI (internal interrupts for CPU 1
 388     *  ...
 389     */
 390    GICState *s = (GICState *)opaque;
 391    int cm, target;
 392    if (irq < (s->num_irq - GIC_INTERNAL)) {
 393        /* The first external input line is internal interrupt 32.  */
 394        cm = ALL_CPU_MASK;
 395        irq += GIC_INTERNAL;
 396        target = GIC_DIST_TARGET(irq);
 397    } else {
 398        int cpu;
 399        irq -= (s->num_irq - GIC_INTERNAL);
 400        cpu = irq / GIC_INTERNAL;
 401        irq %= GIC_INTERNAL;
 402        cm = 1 << cpu;
 403        target = cm;
 404    }
 405
 406    assert(irq >= GIC_NR_SGIS);
 407
 408    if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
 409        return;
 410    }
 411
 412    if (s->revision == REV_11MPCORE) {
 413        gic_set_irq_11mpcore(s, irq, level, cm, target);
 414    } else {
 415        gic_set_irq_generic(s, irq, level, cm, target);
 416    }
 417    trace_gic_set_irq(irq, level, cm, target);
 418
 419    gic_update(s);
 420}
 421
 422static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
 423                                            MemTxAttrs attrs)
 424{
 425    uint16_t pending_irq = s->current_pending[cpu];
 426
 427    if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
 428        int group = gic_test_group(s, pending_irq, cpu);
 429
 430        /* On a GIC without the security extensions, reading this register
 431         * behaves in the same way as a secure access to a GIC with them.
 432         */
 433        bool secure = !gic_cpu_ns_access(s, cpu, attrs);
 434
 435        if (group == 0 && !secure) {
 436            /* Group0 interrupts hidden from Non-secure access */
 437            return 1023;
 438        }
 439        if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
 440            /* Group1 interrupts only seen by Secure access if
 441             * AckCtl bit set.
 442             */
 443            return 1022;
 444        }
 445    }
 446    return pending_irq;
 447}
 448
 449static int gic_get_group_priority(GICState *s, int cpu, int irq)
 450{
 451    /* Return the group priority of the specified interrupt
 452     * (which is the top bits of its priority, with the number
 453     * of bits masked determined by the applicable binary point register).
 454     */
 455    int bpr;
 456    uint32_t mask;
 457
 458    if (gic_has_groups(s) &&
 459        !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
 460        gic_test_group(s, irq, cpu)) {
 461        bpr = s->abpr[cpu] - 1;
 462        assert(bpr >= 0);
 463    } else {
 464        bpr = s->bpr[cpu];
 465    }
 466
 467    /* a BPR of 0 means the group priority bits are [7:1];
 468     * a BPR of 1 means they are [7:2], and so on down to
 469     * a BPR of 7 meaning no group priority bits at all.
 470     */
 471    mask = ~0U << ((bpr & 7) + 1);
 472
 473    return gic_get_priority(s, irq, cpu) & mask;
 474}
 475
 476static void gic_activate_irq(GICState *s, int cpu, int irq)
 477{
 478    /* Set the appropriate Active Priority Register bit for this IRQ,
 479     * and update the running priority.
 480     */
 481    int prio = gic_get_group_priority(s, cpu, irq);
 482    int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
 483    int preemption_level = prio >> (min_bpr + 1);
 484    int regno = preemption_level / 32;
 485    int bitno = preemption_level % 32;
 486    uint32_t *papr = NULL;
 487
 488    if (gic_is_vcpu(cpu)) {
 489        assert(regno == 0);
 490        papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
 491    } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
 492        papr = &s->nsapr[regno][cpu];
 493    } else {
 494        papr = &s->apr[regno][cpu];
 495    }
 496
 497    *papr |= (1 << bitno);
 498
 499    s->running_priority[cpu] = prio;
 500    gic_set_active(s, irq, cpu);
 501}
 502
 503static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
 504{
 505    /* Recalculate the current running priority for this CPU based
 506     * on the set bits in the Active Priority Registers.
 507     */
 508    int i;
 509
 510    if (gic_is_vcpu(cpu)) {
 511        uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
 512        if (apr) {
 513            return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
 514        } else {
 515            return 0x100;
 516        }
 517    }
 518
 519    for (i = 0; i < GIC_NR_APRS; i++) {
 520        uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
 521        if (!apr) {
 522            continue;
 523        }
 524        return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
 525    }
 526    return 0x100;
 527}
 528
 529static void gic_drop_prio(GICState *s, int cpu, int group)
 530{
 531    /* Drop the priority of the currently active interrupt in the
 532     * specified group.
 533     *
 534     * Note that we can guarantee (because of the requirement to nest
 535     * GICC_IAR reads [which activate an interrupt and raise priority]
 536     * with GICC_EOIR writes [which drop the priority for the interrupt])
 537     * that the interrupt we're being called for is the highest priority
 538     * active interrupt, meaning that it has the lowest set bit in the
 539     * APR registers.
 540     *
 541     * If the guest does not honour the ordering constraints then the
 542     * behaviour of the GIC is UNPREDICTABLE, which for us means that
 543     * the values of the APR registers might become incorrect and the
 544     * running priority will be wrong, so interrupts that should preempt
 545     * might not do so, and interrupts that should not preempt might do so.
 546     */
 547    if (gic_is_vcpu(cpu)) {
 548        int rcpu = gic_get_vcpu_real_id(cpu);
 549
 550        if (s->h_apr[rcpu]) {
 551            /* Clear lowest set bit */
 552            s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
 553        }
 554    } else {
 555        int i;
 556
 557        for (i = 0; i < GIC_NR_APRS; i++) {
 558            uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
 559            if (!*papr) {
 560                continue;
 561            }
 562            /* Clear lowest set bit */
 563            *papr &= *papr - 1;
 564            break;
 565        }
 566    }
 567
 568    s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
 569}
 570
 571static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
 572{
 573    int src;
 574    uint32_t ret;
 575
 576    if (!gic_is_vcpu(cpu)) {
 577        /* Lookup the source CPU for the SGI and clear this in the
 578         * sgi_pending map.  Return the src and clear the overall pending
 579         * state on this CPU if the SGI is not pending from any CPUs.
 580         */
 581        assert(s->sgi_pending[irq][cpu] != 0);
 582        src = ctz32(s->sgi_pending[irq][cpu]);
 583        s->sgi_pending[irq][cpu] &= ~(1 << src);
 584        if (s->sgi_pending[irq][cpu] == 0) {
 585            gic_clear_pending(s, irq, cpu);
 586        }
 587        ret = irq | ((src & 0x7) << 10);
 588    } else {
 589        uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
 590        src = GICH_LR_CPUID(*lr_entry);
 591
 592        gic_clear_pending(s, irq, cpu);
 593        ret = irq | (src << 10);
 594    }
 595
 596    return ret;
 597}
 598
 599uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
 600{
 601    int ret, irq;
 602
 603    /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
 604     * for the case where this GIC supports grouping and the pending interrupt
 605     * is in the wrong group.
 606     */
 607    irq = gic_get_current_pending_irq(s, cpu, attrs);
 608    trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
 609                              gic_get_vcpu_real_id(cpu), irq);
 610
 611    if (irq >= GIC_MAXIRQ) {
 612        DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
 613        return irq;
 614    }
 615
 616    if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
 617        DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
 618        return 1023;
 619    }
 620
 621    gic_activate_irq(s, cpu, irq);
 622
 623    if (s->revision == REV_11MPCORE) {
 624        /* Clear pending flags for both level and edge triggered interrupts.
 625         * Level triggered IRQs will be reasserted once they become inactive.
 626         */
 627        gic_clear_pending(s, irq, cpu);
 628        ret = irq;
 629    } else {
 630        if (irq < GIC_NR_SGIS) {
 631            ret = gic_clear_pending_sgi(s, irq, cpu);
 632        } else {
 633            gic_clear_pending(s, irq, cpu);
 634            ret = irq;
 635        }
 636    }
 637
 638    if (gic_is_vcpu(cpu)) {
 639        gic_update_virt(s);
 640    } else {
 641        gic_update(s);
 642    }
 643    DPRINTF("ACK %d\n", irq);
 644    return ret;
 645}
 646
 647static uint32_t gic_fullprio_mask(GICState *s, int cpu)
 648{
 649    /*
 650     * Return a mask word which clears the unimplemented priority
 651     * bits from a priority value for an interrupt. (Not to be
 652     * confused with the group priority, whose mask depends on BPR.)
 653     */
 654    int priBits;
 655
 656    if (gic_is_vcpu(cpu)) {
 657        priBits = GIC_VIRT_MAX_GROUP_PRIO_BITS;
 658    } else {
 659        priBits = s->n_prio_bits;
 660    }
 661    return ~0U << (8 - priBits);
 662}
 663
 664void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
 665                      MemTxAttrs attrs)
 666{
 667    if (s->security_extn && !attrs.secure) {
 668        if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
 669            return; /* Ignore Non-secure access of Group0 IRQ */
 670        }
 671        val = 0x80 | (val >> 1); /* Non-secure view */
 672    }
 673
 674    val &= gic_fullprio_mask(s, cpu);
 675
 676    if (irq < GIC_INTERNAL) {
 677        s->priority1[irq][cpu] = val;
 678    } else {
 679        s->priority2[(irq) - GIC_INTERNAL] = val;
 680    }
 681}
 682
 683static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
 684                                 MemTxAttrs attrs)
 685{
 686    uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
 687
 688    if (s->security_extn && !attrs.secure) {
 689        if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
 690            return 0; /* Non-secure access cannot read priority of Group0 IRQ */
 691        }
 692        prio = (prio << 1) & 0xff; /* Non-secure view */
 693    }
 694    return prio & gic_fullprio_mask(s, cpu);
 695}
 696
 697static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
 698                                  MemTxAttrs attrs)
 699{
 700    if (gic_cpu_ns_access(s, cpu, attrs)) {
 701        if (s->priority_mask[cpu] & 0x80) {
 702            /* Priority Mask in upper half */
 703            pmask = 0x80 | (pmask >> 1);
 704        } else {
 705            /* Non-secure write ignored if priority mask is in lower half */
 706            return;
 707        }
 708    }
 709    s->priority_mask[cpu] = pmask & gic_fullprio_mask(s, cpu);
 710}
 711
 712static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
 713{
 714    uint32_t pmask = s->priority_mask[cpu];
 715
 716    if (gic_cpu_ns_access(s, cpu, attrs)) {
 717        if (pmask & 0x80) {
 718            /* Priority Mask in upper half, return Non-secure view */
 719            pmask = (pmask << 1) & 0xff;
 720        } else {
 721            /* Priority Mask in lower half, RAZ */
 722            pmask = 0;
 723        }
 724    }
 725    return pmask;
 726}
 727
 728static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
 729{
 730    uint32_t ret = s->cpu_ctlr[cpu];
 731
 732    if (gic_cpu_ns_access(s, cpu, attrs)) {
 733        /* Construct the NS banked view of GICC_CTLR from the correct
 734         * bits of the S banked view. We don't need to move the bypass
 735         * control bits because we don't implement that (IMPDEF) part
 736         * of the GIC architecture.
 737         */
 738        ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
 739    }
 740    return ret;
 741}
 742
 743static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
 744                                MemTxAttrs attrs)
 745{
 746    uint32_t mask;
 747
 748    if (gic_cpu_ns_access(s, cpu, attrs)) {
 749        /* The NS view can only write certain bits in the register;
 750         * the rest are unchanged
 751         */
 752        mask = GICC_CTLR_EN_GRP1;
 753        if (s->revision == 2) {
 754            mask |= GICC_CTLR_EOIMODE_NS;
 755        }
 756        s->cpu_ctlr[cpu] &= ~mask;
 757        s->cpu_ctlr[cpu] |= (value << 1) & mask;
 758    } else {
 759        if (s->revision == 2) {
 760            mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
 761        } else {
 762            mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
 763        }
 764        s->cpu_ctlr[cpu] = value & mask;
 765    }
 766    DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
 767            "Group1 Interrupts %sabled\n", cpu,
 768            (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
 769            (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
 770}
 771
 772static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
 773{
 774    if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
 775        /* Idle priority */
 776        return 0xff;
 777    }
 778
 779    if (gic_cpu_ns_access(s, cpu, attrs)) {
 780        if (s->running_priority[cpu] & 0x80) {
 781            /* Running priority in upper half of range: return the Non-secure
 782             * view of the priority.
 783             */
 784            return s->running_priority[cpu] << 1;
 785        } else {
 786            /* Running priority in lower half of range: RAZ */
 787            return 0;
 788        }
 789    } else {
 790        return s->running_priority[cpu];
 791    }
 792}
 793
 794/* Return true if we should split priority drop and interrupt deactivation,
 795 * ie whether the relevant EOIMode bit is set.
 796 */
 797static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
 798{
 799    if (s->revision != 2) {
 800        /* Before GICv2 prio-drop and deactivate are not separable */
 801        return false;
 802    }
 803    if (gic_cpu_ns_access(s, cpu, attrs)) {
 804        return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
 805    }
 806    return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
 807}
 808
 809static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
 810{
 811    int group;
 812
 813    if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
 814        /*
 815         * This handles two cases:
 816         * 1. If software writes the ID of a spurious interrupt [ie 1023]
 817         * to the GICC_DIR, the GIC ignores that write.
 818         * 2. If software writes the number of a non-existent interrupt
 819         * this must be a subcase of "value written is not an active interrupt"
 820         * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
 821         * all IRQs potentially exist, so this limit does not apply.
 822         */
 823        return;
 824    }
 825
 826    if (!gic_eoi_split(s, cpu, attrs)) {
 827        /* This is UNPREDICTABLE; we choose to ignore it */
 828        qemu_log_mask(LOG_GUEST_ERROR,
 829                      "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
 830        return;
 831    }
 832
 833    if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
 834        /* This vIRQ does not have an LR entry which is either active or
 835         * pending and active. Increment EOICount and ignore the write.
 836         */
 837        int rcpu = gic_get_vcpu_real_id(cpu);
 838        s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
 839
 840        /* Update the virtual interface in case a maintenance interrupt should
 841         * be raised.
 842         */
 843        gic_update_virt(s);
 844        return;
 845    }
 846
 847    group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
 848
 849    if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
 850        DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
 851        return;
 852    }
 853
 854    gic_clear_active(s, irq, cpu);
 855}
 856
 857static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
 858{
 859    int cm = 1 << cpu;
 860    int group;
 861
 862    DPRINTF("EOI %d\n", irq);
 863    if (gic_is_vcpu(cpu)) {
 864        /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
 865         * running prio is < 0x100.
 866         */
 867        bool prio_drop = s->running_priority[cpu] < 0x100;
 868
 869        if (irq >= GIC_MAXIRQ) {
 870            /* Ignore spurious interrupt */
 871            return;
 872        }
 873
 874        gic_drop_prio(s, cpu, 0);
 875
 876        if (!gic_eoi_split(s, cpu, attrs)) {
 877            bool valid = gic_virq_is_valid(s, irq, cpu);
 878            if (prio_drop && !valid) {
 879                /* We are in a situation where:
 880                 *   - V_CTRL.EOIMode is false (no EOI split),
 881                 *   - The call to gic_drop_prio() cleared a bit in GICH_APR,
 882                 *   - This vIRQ does not have an LR entry which is either
 883                 *     active or pending and active.
 884                 * In that case, we must increment EOICount.
 885                 */
 886                int rcpu = gic_get_vcpu_real_id(cpu);
 887                s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
 888            } else if (valid) {
 889                gic_clear_active(s, irq, cpu);
 890            }
 891        }
 892
 893        gic_update_virt(s);
 894        return;
 895    }
 896
 897    if (irq >= s->num_irq) {
 898        /* This handles two cases:
 899         * 1. If software writes the ID of a spurious interrupt [ie 1023]
 900         * to the GICC_EOIR, the GIC ignores that write.
 901         * 2. If software writes the number of a non-existent interrupt
 902         * this must be a subcase of "value written does not match the last
 903         * valid interrupt value read from the Interrupt Acknowledge
 904         * register" and so this is UNPREDICTABLE. We choose to ignore it.
 905         */
 906        return;
 907    }
 908    if (s->running_priority[cpu] == 0x100) {
 909        return; /* No active IRQ.  */
 910    }
 911
 912    if (s->revision == REV_11MPCORE) {
 913        /* Mark level triggered interrupts as pending if they are still
 914           raised.  */
 915        if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
 916            && GIC_DIST_TEST_LEVEL(irq, cm)
 917            && (GIC_DIST_TARGET(irq) & cm) != 0) {
 918            DPRINTF("Set %d pending mask %x\n", irq, cm);
 919            GIC_DIST_SET_PENDING(irq, cm);
 920        }
 921    }
 922
 923    group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
 924
 925    if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
 926        DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
 927        return;
 928    }
 929
 930    /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
 931     * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
 932     * i.e. go ahead and complete the irq anyway.
 933     */
 934
 935    gic_drop_prio(s, cpu, group);
 936
 937    /* In GICv2 the guest can choose to split priority-drop and deactivate */
 938    if (!gic_eoi_split(s, cpu, attrs)) {
 939        gic_clear_active(s, irq, cpu);
 940    }
 941    gic_update(s);
 942}
 943
 944static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
 945{
 946    GICState *s = (GICState *)opaque;
 947    uint32_t res;
 948    int irq;
 949    int i;
 950    int cpu;
 951    int cm;
 952    int mask;
 953
 954    cpu = gic_get_current_cpu(s);
 955    cm = 1 << cpu;
 956    if (offset < 0x100) {
 957        if (offset == 0) {      /* GICD_CTLR */
 958            if (s->security_extn && !attrs.secure) {
 959                /* The NS bank of this register is just an alias of the
 960                 * EnableGrp1 bit in the S bank version.
 961                 */
 962                return extract32(s->ctlr, 1, 1);
 963            } else {
 964                return s->ctlr;
 965            }
 966        }
 967        if (offset == 4)
 968            /* Interrupt Controller Type Register */
 969            return ((s->num_irq / 32) - 1)
 970                    | ((s->num_cpu - 1) << 5)
 971                    | (s->security_extn << 10);
 972        if (offset < 0x08)
 973            return 0;
 974        if (offset >= 0x80) {
 975            /* Interrupt Group Registers: these RAZ/WI if this is an NS
 976             * access to a GIC with the security extensions, or if the GIC
 977             * doesn't have groups at all.
 978             */
 979            res = 0;
 980            if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
 981                /* Every byte offset holds 8 group status bits */
 982                irq = (offset - 0x080) * 8;
 983                if (irq >= s->num_irq) {
 984                    goto bad_reg;
 985                }
 986                for (i = 0; i < 8; i++) {
 987                    if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
 988                        res |= (1 << i);
 989                    }
 990                }
 991            }
 992            return res;
 993        }
 994        goto bad_reg;
 995    } else if (offset < 0x200) {
 996        /* Interrupt Set/Clear Enable.  */
 997        if (offset < 0x180)
 998            irq = (offset - 0x100) * 8;
 999        else
1000            irq = (offset - 0x180) * 8;
1001        if (irq >= s->num_irq)
1002            goto bad_reg;
1003        res = 0;
1004        for (i = 0; i < 8; i++) {
1005            if (s->security_extn && !attrs.secure &&
1006                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1007                continue; /* Ignore Non-secure access of Group0 IRQ */
1008            }
1009
1010            if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1011                res |= (1 << i);
1012            }
1013        }
1014    } else if (offset < 0x300) {
1015        /* Interrupt Set/Clear Pending.  */
1016        if (offset < 0x280)
1017            irq = (offset - 0x200) * 8;
1018        else
1019            irq = (offset - 0x280) * 8;
1020        if (irq >= s->num_irq)
1021            goto bad_reg;
1022        res = 0;
1023        mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1024        for (i = 0; i < 8; i++) {
1025            if (s->security_extn && !attrs.secure &&
1026                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1027                continue; /* Ignore Non-secure access of Group0 IRQ */
1028            }
1029
1030            if (gic_test_pending(s, irq + i, mask)) {
1031                res |= (1 << i);
1032            }
1033        }
1034    } else if (offset < 0x400) {
1035        /* Interrupt Set/Clear Active.  */
1036        if (offset < 0x380) {
1037            irq = (offset - 0x300) * 8;
1038        } else if (s->revision == 2) {
1039            irq = (offset - 0x380) * 8;
1040        } else {
1041            goto bad_reg;
1042        }
1043
1044        if (irq >= s->num_irq)
1045            goto bad_reg;
1046        res = 0;
1047        mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1048        for (i = 0; i < 8; i++) {
1049            if (s->security_extn && !attrs.secure &&
1050                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1051                continue; /* Ignore Non-secure access of Group0 IRQ */
1052            }
1053
1054            if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1055                res |= (1 << i);
1056            }
1057        }
1058    } else if (offset < 0x800) {
1059        /* Interrupt Priority.  */
1060        irq = (offset - 0x400);
1061        if (irq >= s->num_irq)
1062            goto bad_reg;
1063        res = gic_dist_get_priority(s, cpu, irq, attrs);
1064    } else if (offset < 0xc00) {
1065        /* Interrupt CPU Target.  */
1066        if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1067            /* For uniprocessor GICs these RAZ/WI */
1068            res = 0;
1069        } else {
1070            irq = (offset - 0x800);
1071            if (irq >= s->num_irq) {
1072                goto bad_reg;
1073            }
1074            if (irq < 29 && s->revision == REV_11MPCORE) {
1075                res = 0;
1076            } else if (irq < GIC_INTERNAL) {
1077                res = cm;
1078            } else {
1079                res = GIC_DIST_TARGET(irq);
1080            }
1081        }
1082    } else if (offset < 0xf00) {
1083        /* Interrupt Configuration.  */
1084        irq = (offset - 0xc00) * 4;
1085        if (irq >= s->num_irq)
1086            goto bad_reg;
1087        res = 0;
1088        for (i = 0; i < 4; i++) {
1089            if (s->security_extn && !attrs.secure &&
1090                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1091                continue; /* Ignore Non-secure access of Group0 IRQ */
1092            }
1093
1094            if (GIC_DIST_TEST_MODEL(irq + i)) {
1095                res |= (1 << (i * 2));
1096            }
1097            if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1098                res |= (2 << (i * 2));
1099            }
1100        }
1101    } else if (offset < 0xf10) {
1102        goto bad_reg;
1103    } else if (offset < 0xf30) {
1104        if (s->revision == REV_11MPCORE) {
1105            goto bad_reg;
1106        }
1107
1108        if (offset < 0xf20) {
1109            /* GICD_CPENDSGIRn */
1110            irq = (offset - 0xf10);
1111        } else {
1112            irq = (offset - 0xf20);
1113            /* GICD_SPENDSGIRn */
1114        }
1115
1116        if (s->security_extn && !attrs.secure &&
1117            !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1118            res = 0; /* Ignore Non-secure access of Group0 IRQ */
1119        } else {
1120            res = s->sgi_pending[irq][cpu];
1121        }
1122    } else if (offset < 0xfd0) {
1123        goto bad_reg;
1124    } else if (offset < 0x1000) {
1125        if (offset & 3) {
1126            res = 0;
1127        } else {
1128            switch (s->revision) {
1129            case REV_11MPCORE:
1130                res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1131                break;
1132            case 1:
1133                res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1134                break;
1135            case 2:
1136                res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1137                break;
1138            default:
1139                res = 0;
1140            }
1141        }
1142    } else {
1143        g_assert_not_reached();
1144    }
1145    return res;
1146bad_reg:
1147    qemu_log_mask(LOG_GUEST_ERROR,
1148                  "gic_dist_readb: Bad offset %x\n", (int)offset);
1149    return 0;
1150}
1151
1152static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1153                                 unsigned size, MemTxAttrs attrs)
1154{
1155    switch (size) {
1156    case 1:
1157        *data = gic_dist_readb(opaque, offset, attrs);
1158        break;
1159    case 2:
1160        *data = gic_dist_readb(opaque, offset, attrs);
1161        *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1162        break;
1163    case 4:
1164        *data = gic_dist_readb(opaque, offset, attrs);
1165        *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1166        *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1167        *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1168        break;
1169    default:
1170        return MEMTX_ERROR;
1171    }
1172
1173    trace_gic_dist_read(offset, size, *data);
1174    return MEMTX_OK;
1175}
1176
1177static void gic_dist_writeb(void *opaque, hwaddr offset,
1178                            uint32_t value, MemTxAttrs attrs)
1179{
1180    GICState *s = (GICState *)opaque;
1181    int irq;
1182    int i;
1183    int cpu;
1184
1185    cpu = gic_get_current_cpu(s);
1186    if (offset < 0x100) {
1187        if (offset == 0) {
1188            if (s->security_extn && !attrs.secure) {
1189                /* NS version is just an alias of the S version's bit 1 */
1190                s->ctlr = deposit32(s->ctlr, 1, 1, value);
1191            } else if (gic_has_groups(s)) {
1192                s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1193            } else {
1194                s->ctlr = value & GICD_CTLR_EN_GRP0;
1195            }
1196            DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1197                    s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1198                    s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1199        } else if (offset < 4) {
1200            /* ignored.  */
1201        } else if (offset >= 0x80) {
1202            /* Interrupt Group Registers: RAZ/WI for NS access to secure
1203             * GIC, or for GICs without groups.
1204             */
1205            if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1206                /* Every byte offset holds 8 group status bits */
1207                irq = (offset - 0x80) * 8;
1208                if (irq >= s->num_irq) {
1209                    goto bad_reg;
1210                }
1211                for (i = 0; i < 8; i++) {
1212                    /* Group bits are banked for private interrupts */
1213                    int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1214                    if (value & (1 << i)) {
1215                        /* Group1 (Non-secure) */
1216                        GIC_DIST_SET_GROUP(irq + i, cm);
1217                    } else {
1218                        /* Group0 (Secure) */
1219                        GIC_DIST_CLEAR_GROUP(irq + i, cm);
1220                    }
1221                }
1222            }
1223        } else {
1224            goto bad_reg;
1225        }
1226    } else if (offset < 0x180) {
1227        /* Interrupt Set Enable.  */
1228        irq = (offset - 0x100) * 8;
1229        if (irq >= s->num_irq)
1230            goto bad_reg;
1231        if (irq < GIC_NR_SGIS) {
1232            value = 0xff;
1233        }
1234
1235        for (i = 0; i < 8; i++) {
1236            if (value & (1 << i)) {
1237                int mask =
1238                    (irq < GIC_INTERNAL) ? (1 << cpu)
1239                                         : GIC_DIST_TARGET(irq + i);
1240                int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1241
1242                if (s->security_extn && !attrs.secure &&
1243                    !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1244                    continue; /* Ignore Non-secure access of Group0 IRQ */
1245                }
1246
1247                if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1248                    DPRINTF("Enabled IRQ %d\n", irq + i);
1249                    trace_gic_enable_irq(irq + i);
1250                }
1251                GIC_DIST_SET_ENABLED(irq + i, cm);
1252                /* If a raised level triggered IRQ enabled then mark
1253                   is as pending.  */
1254                if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1255                        && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1256                    DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1257                    GIC_DIST_SET_PENDING(irq + i, mask);
1258                }
1259            }
1260        }
1261    } else if (offset < 0x200) {
1262        /* Interrupt Clear Enable.  */
1263        irq = (offset - 0x180) * 8;
1264        if (irq >= s->num_irq)
1265            goto bad_reg;
1266        if (irq < GIC_NR_SGIS) {
1267            value = 0;
1268        }
1269
1270        for (i = 0; i < 8; i++) {
1271            if (value & (1 << i)) {
1272                int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1273
1274                if (s->security_extn && !attrs.secure &&
1275                    !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1276                    continue; /* Ignore Non-secure access of Group0 IRQ */
1277                }
1278
1279                if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1280                    DPRINTF("Disabled IRQ %d\n", irq + i);
1281                    trace_gic_disable_irq(irq + i);
1282                }
1283                GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1284            }
1285        }
1286    } else if (offset < 0x280) {
1287        /* Interrupt Set Pending.  */
1288        irq = (offset - 0x200) * 8;
1289        if (irq >= s->num_irq)
1290            goto bad_reg;
1291        if (irq < GIC_NR_SGIS) {
1292            value = 0;
1293        }
1294
1295        for (i = 0; i < 8; i++) {
1296            if (value & (1 << i)) {
1297                if (s->security_extn && !attrs.secure &&
1298                    !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1299                    continue; /* Ignore Non-secure access of Group0 IRQ */
1300                }
1301
1302                GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1303            }
1304        }
1305    } else if (offset < 0x300) {
1306        /* Interrupt Clear Pending.  */
1307        irq = (offset - 0x280) * 8;
1308        if (irq >= s->num_irq)
1309            goto bad_reg;
1310        if (irq < GIC_NR_SGIS) {
1311            value = 0;
1312        }
1313
1314        for (i = 0; i < 8; i++) {
1315            if (s->security_extn && !attrs.secure &&
1316                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1317                continue; /* Ignore Non-secure access of Group0 IRQ */
1318            }
1319
1320            /* ??? This currently clears the pending bit for all CPUs, even
1321               for per-CPU interrupts.  It's unclear whether this is the
1322               corect behavior.  */
1323            if (value & (1 << i)) {
1324                GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1325            }
1326        }
1327    } else if (offset < 0x380) {
1328        /* Interrupt Set Active.  */
1329        if (s->revision != 2) {
1330            goto bad_reg;
1331        }
1332
1333        irq = (offset - 0x300) * 8;
1334        if (irq >= s->num_irq) {
1335            goto bad_reg;
1336        }
1337
1338        /* This register is banked per-cpu for PPIs */
1339        int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1340
1341        for (i = 0; i < 8; i++) {
1342            if (s->security_extn && !attrs.secure &&
1343                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1344                continue; /* Ignore Non-secure access of Group0 IRQ */
1345            }
1346
1347            if (value & (1 << i)) {
1348                GIC_DIST_SET_ACTIVE(irq + i, cm);
1349            }
1350        }
1351    } else if (offset < 0x400) {
1352        /* Interrupt Clear Active.  */
1353        if (s->revision != 2) {
1354            goto bad_reg;
1355        }
1356
1357        irq = (offset - 0x380) * 8;
1358        if (irq >= s->num_irq) {
1359            goto bad_reg;
1360        }
1361
1362        /* This register is banked per-cpu for PPIs */
1363        int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1364
1365        for (i = 0; i < 8; i++) {
1366            if (s->security_extn && !attrs.secure &&
1367                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1368                continue; /* Ignore Non-secure access of Group0 IRQ */
1369            }
1370
1371            if (value & (1 << i)) {
1372                GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1373            }
1374        }
1375    } else if (offset < 0x800) {
1376        /* Interrupt Priority.  */
1377        irq = (offset - 0x400);
1378        if (irq >= s->num_irq)
1379            goto bad_reg;
1380        gic_dist_set_priority(s, cpu, irq, value, attrs);
1381    } else if (offset < 0xc00) {
1382        /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1383         * annoying exception of the 11MPCore's GIC.
1384         */
1385        if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1386            irq = (offset - 0x800);
1387            if (irq >= s->num_irq) {
1388                goto bad_reg;
1389            }
1390            if (irq < 29 && s->revision == REV_11MPCORE) {
1391                value = 0;
1392            } else if (irq < GIC_INTERNAL) {
1393                value = ALL_CPU_MASK;
1394            }
1395            s->irq_target[irq] = value & ALL_CPU_MASK;
1396        }
1397    } else if (offset < 0xf00) {
1398        /* Interrupt Configuration.  */
1399        irq = (offset - 0xc00) * 4;
1400        if (irq >= s->num_irq)
1401            goto bad_reg;
1402        if (irq < GIC_NR_SGIS)
1403            value |= 0xaa;
1404        for (i = 0; i < 4; i++) {
1405            if (s->security_extn && !attrs.secure &&
1406                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1407                continue; /* Ignore Non-secure access of Group0 IRQ */
1408            }
1409
1410            if (s->revision == REV_11MPCORE) {
1411                if (value & (1 << (i * 2))) {
1412                    GIC_DIST_SET_MODEL(irq + i);
1413                } else {
1414                    GIC_DIST_CLEAR_MODEL(irq + i);
1415                }
1416            }
1417            if (value & (2 << (i * 2))) {
1418                GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1419            } else {
1420                GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1421            }
1422        }
1423    } else if (offset < 0xf10) {
1424        /* 0xf00 is only handled for 32-bit writes.  */
1425        goto bad_reg;
1426    } else if (offset < 0xf20) {
1427        /* GICD_CPENDSGIRn */
1428        if (s->revision == REV_11MPCORE) {
1429            goto bad_reg;
1430        }
1431        irq = (offset - 0xf10);
1432
1433        if (!s->security_extn || attrs.secure ||
1434            GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1435            s->sgi_pending[irq][cpu] &= ~value;
1436            if (s->sgi_pending[irq][cpu] == 0) {
1437                GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1438            }
1439        }
1440    } else if (offset < 0xf30) {
1441        /* GICD_SPENDSGIRn */
1442        if (s->revision == REV_11MPCORE) {
1443            goto bad_reg;
1444        }
1445        irq = (offset - 0xf20);
1446
1447        if (!s->security_extn || attrs.secure ||
1448            GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1449            GIC_DIST_SET_PENDING(irq, 1 << cpu);
1450            s->sgi_pending[irq][cpu] |= value;
1451        }
1452    } else {
1453        goto bad_reg;
1454    }
1455    gic_update(s);
1456    return;
1457bad_reg:
1458    qemu_log_mask(LOG_GUEST_ERROR,
1459                  "gic_dist_writeb: Bad offset %x\n", (int)offset);
1460}
1461
1462static void gic_dist_writew(void *opaque, hwaddr offset,
1463                            uint32_t value, MemTxAttrs attrs)
1464{
1465    gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1466    gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1467}
1468
1469static void gic_dist_writel(void *opaque, hwaddr offset,
1470                            uint32_t value, MemTxAttrs attrs)
1471{
1472    GICState *s = (GICState *)opaque;
1473    if (offset == 0xf00) {
1474        int cpu;
1475        int irq;
1476        int mask;
1477        int target_cpu;
1478
1479        cpu = gic_get_current_cpu(s);
1480        irq = value & 0xf;
1481        switch ((value >> 24) & 3) {
1482        case 0:
1483            mask = (value >> 16) & ALL_CPU_MASK;
1484            break;
1485        case 1:
1486            mask = ALL_CPU_MASK ^ (1 << cpu);
1487            break;
1488        case 2:
1489            mask = 1 << cpu;
1490            break;
1491        default:
1492            DPRINTF("Bad Soft Int target filter\n");
1493            mask = ALL_CPU_MASK;
1494            break;
1495        }
1496        GIC_DIST_SET_PENDING(irq, mask);
1497        target_cpu = ctz32(mask);
1498        while (target_cpu < GIC_NCPU) {
1499            s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1500            mask &= ~(1 << target_cpu);
1501            target_cpu = ctz32(mask);
1502        }
1503        gic_update(s);
1504        return;
1505    }
1506    gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1507    gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1508}
1509
1510static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1511                                  unsigned size, MemTxAttrs attrs)
1512{
1513    trace_gic_dist_write(offset, size, data);
1514
1515    switch (size) {
1516    case 1:
1517        gic_dist_writeb(opaque, offset, data, attrs);
1518        return MEMTX_OK;
1519    case 2:
1520        gic_dist_writew(opaque, offset, data, attrs);
1521        return MEMTX_OK;
1522    case 4:
1523        gic_dist_writel(opaque, offset, data, attrs);
1524        return MEMTX_OK;
1525    default:
1526        return MEMTX_ERROR;
1527    }
1528}
1529
1530static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1531{
1532    /* Return the Nonsecure view of GICC_APR<regno>. This is the
1533     * second half of GICC_NSAPR.
1534     */
1535    switch (GIC_MIN_BPR) {
1536    case 0:
1537        if (regno < 2) {
1538            return s->nsapr[regno + 2][cpu];
1539        }
1540        break;
1541    case 1:
1542        if (regno == 0) {
1543            return s->nsapr[regno + 1][cpu];
1544        }
1545        break;
1546    case 2:
1547        if (regno == 0) {
1548            return extract32(s->nsapr[0][cpu], 16, 16);
1549        }
1550        break;
1551    case 3:
1552        if (regno == 0) {
1553            return extract32(s->nsapr[0][cpu], 8, 8);
1554        }
1555        break;
1556    default:
1557        g_assert_not_reached();
1558    }
1559    return 0;
1560}
1561
1562static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1563                                         uint32_t value)
1564{
1565    /* Write the Nonsecure view of GICC_APR<regno>. */
1566    switch (GIC_MIN_BPR) {
1567    case 0:
1568        if (regno < 2) {
1569            s->nsapr[regno + 2][cpu] = value;
1570        }
1571        break;
1572    case 1:
1573        if (regno == 0) {
1574            s->nsapr[regno + 1][cpu] = value;
1575        }
1576        break;
1577    case 2:
1578        if (regno == 0) {
1579            s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1580        }
1581        break;
1582    case 3:
1583        if (regno == 0) {
1584            s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1585        }
1586        break;
1587    default:
1588        g_assert_not_reached();
1589    }
1590}
1591
1592static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1593                                uint64_t *data, MemTxAttrs attrs)
1594{
1595    switch (offset) {
1596    case 0x00: /* Control */
1597        *data = gic_get_cpu_control(s, cpu, attrs);
1598        break;
1599    case 0x04: /* Priority mask */
1600        *data = gic_get_priority_mask(s, cpu, attrs);
1601        break;
1602    case 0x08: /* Binary Point */
1603        if (gic_cpu_ns_access(s, cpu, attrs)) {
1604            if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1605                /* NS view of BPR when CBPR is 1 */
1606                *data = MIN(s->bpr[cpu] + 1, 7);
1607            } else {
1608                /* BPR is banked. Non-secure copy stored in ABPR. */
1609                *data = s->abpr[cpu];
1610            }
1611        } else {
1612            *data = s->bpr[cpu];
1613        }
1614        break;
1615    case 0x0c: /* Acknowledge */
1616        *data = gic_acknowledge_irq(s, cpu, attrs);
1617        break;
1618    case 0x14: /* Running Priority */
1619        *data = gic_get_running_priority(s, cpu, attrs);
1620        break;
1621    case 0x18: /* Highest Pending Interrupt */
1622        *data = gic_get_current_pending_irq(s, cpu, attrs);
1623        break;
1624    case 0x1c: /* Aliased Binary Point */
1625        /* GIC v2, no security: ABPR
1626         * GIC v1, no security: not implemented (RAZ/WI)
1627         * With security extensions, secure access: ABPR (alias of NS BPR)
1628         * With security extensions, nonsecure access: RAZ/WI
1629         */
1630        if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1631            *data = 0;
1632        } else {
1633            *data = s->abpr[cpu];
1634        }
1635        break;
1636    case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1637    {
1638        int regno = (offset - 0xd0) / 4;
1639        int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1640
1641        if (regno >= nr_aprs || s->revision != 2) {
1642            *data = 0;
1643        } else if (gic_is_vcpu(cpu)) {
1644            *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1645        } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1646            /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1647            *data = gic_apr_ns_view(s, regno, cpu);
1648        } else {
1649            *data = s->apr[regno][cpu];
1650        }
1651        break;
1652    }
1653    case 0xe0: case 0xe4: case 0xe8: case 0xec:
1654    {
1655        int regno = (offset - 0xe0) / 4;
1656
1657        if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1658            gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1659            *data = 0;
1660        } else {
1661            *data = s->nsapr[regno][cpu];
1662        }
1663        break;
1664    }
1665    default:
1666        qemu_log_mask(LOG_GUEST_ERROR,
1667                      "gic_cpu_read: Bad offset %x\n", (int)offset);
1668        *data = 0;
1669        break;
1670    }
1671
1672    trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1673                       gic_get_vcpu_real_id(cpu), offset, *data);
1674    return MEMTX_OK;
1675}
1676
1677static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1678                                 uint32_t value, MemTxAttrs attrs)
1679{
1680    trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1681                        gic_get_vcpu_real_id(cpu), offset, value);
1682
1683    switch (offset) {
1684    case 0x00: /* Control */
1685        gic_set_cpu_control(s, cpu, value, attrs);
1686        break;
1687    case 0x04: /* Priority mask */
1688        gic_set_priority_mask(s, cpu, value, attrs);
1689        break;
1690    case 0x08: /* Binary Point */
1691        if (gic_cpu_ns_access(s, cpu, attrs)) {
1692            if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1693                /* WI when CBPR is 1 */
1694                return MEMTX_OK;
1695            } else {
1696                s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1697            }
1698        } else {
1699            int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1700            s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1701        }
1702        break;
1703    case 0x10: /* End Of Interrupt */
1704        gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1705        return MEMTX_OK;
1706    case 0x1c: /* Aliased Binary Point */
1707        if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1708            /* unimplemented, or NS access: RAZ/WI */
1709            return MEMTX_OK;
1710        } else {
1711            s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1712        }
1713        break;
1714    case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1715    {
1716        int regno = (offset - 0xd0) / 4;
1717        int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1718
1719        if (regno >= nr_aprs || s->revision != 2) {
1720            return MEMTX_OK;
1721        }
1722        if (gic_is_vcpu(cpu)) {
1723            s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1724        } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1725            /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1726            gic_apr_write_ns_view(s, regno, cpu, value);
1727        } else {
1728            s->apr[regno][cpu] = value;
1729        }
1730        break;
1731    }
1732    case 0xe0: case 0xe4: case 0xe8: case 0xec:
1733    {
1734        int regno = (offset - 0xe0) / 4;
1735
1736        if (regno >= GIC_NR_APRS || s->revision != 2) {
1737            return MEMTX_OK;
1738        }
1739        if (gic_is_vcpu(cpu)) {
1740            return MEMTX_OK;
1741        }
1742        if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1743            return MEMTX_OK;
1744        }
1745        s->nsapr[regno][cpu] = value;
1746        break;
1747    }
1748    case 0x1000:
1749        /* GICC_DIR */
1750        gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1751        break;
1752    default:
1753        qemu_log_mask(LOG_GUEST_ERROR,
1754                      "gic_cpu_write: Bad offset %x\n", (int)offset);
1755        return MEMTX_OK;
1756    }
1757
1758    if (gic_is_vcpu(cpu)) {
1759        gic_update_virt(s);
1760    } else {
1761        gic_update(s);
1762    }
1763
1764    return MEMTX_OK;
1765}
1766
1767/* Wrappers to read/write the GIC CPU interface for the current CPU */
1768static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1769                                    unsigned size, MemTxAttrs attrs)
1770{
1771    GICState *s = (GICState *)opaque;
1772    return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1773}
1774
1775static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1776                                     uint64_t value, unsigned size,
1777                                     MemTxAttrs attrs)
1778{
1779    GICState *s = (GICState *)opaque;
1780    return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1781}
1782
1783/* Wrappers to read/write the GIC CPU interface for a specific CPU.
1784 * These just decode the opaque pointer into GICState* + cpu id.
1785 */
1786static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1787                                   unsigned size, MemTxAttrs attrs)
1788{
1789    GICState **backref = (GICState **)opaque;
1790    GICState *s = *backref;
1791    int id = (backref - s->backref);
1792    return gic_cpu_read(s, id, addr, data, attrs);
1793}
1794
1795static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1796                                    uint64_t value, unsigned size,
1797                                    MemTxAttrs attrs)
1798{
1799    GICState **backref = (GICState **)opaque;
1800    GICState *s = *backref;
1801    int id = (backref - s->backref);
1802    return gic_cpu_write(s, id, addr, value, attrs);
1803}
1804
1805static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1806                                    unsigned size, MemTxAttrs attrs)
1807{
1808    GICState *s = (GICState *)opaque;
1809
1810    return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1811}
1812
1813static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1814                                     uint64_t value, unsigned size,
1815                                     MemTxAttrs attrs)
1816{
1817    GICState *s = (GICState *)opaque;
1818
1819    return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1820}
1821
1822static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1823{
1824    int lr_idx;
1825    uint32_t ret = 0;
1826
1827    for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1828        uint32_t *entry = &s->h_lr[lr_idx][cpu];
1829        ret = deposit32(ret, lr_idx - lr_start, 1,
1830                        gic_lr_entry_is_eoi(*entry));
1831    }
1832
1833    return ret;
1834}
1835
1836static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1837{
1838    int lr_idx;
1839    uint32_t ret = 0;
1840
1841    for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1842        uint32_t *entry = &s->h_lr[lr_idx][cpu];
1843        ret = deposit32(ret, lr_idx - lr_start, 1,
1844                        gic_lr_entry_is_free(*entry));
1845    }
1846
1847    return ret;
1848}
1849
1850static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1851{
1852    int vcpu = gic_get_current_vcpu(s);
1853    uint32_t ctlr;
1854    uint32_t abpr;
1855    uint32_t bpr;
1856    uint32_t prio_mask;
1857
1858    ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1859    abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1860    bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1861    prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1862
1863    gic_set_cpu_control(s, vcpu, ctlr, attrs);
1864    s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1865    s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1866    gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1867}
1868
1869static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1870                                uint64_t *data, MemTxAttrs attrs)
1871{
1872    GICState *s = ARM_GIC(opaque);
1873    int vcpu = cpu + GIC_NCPU;
1874
1875    switch (addr) {
1876    case A_GICH_HCR: /* Hypervisor Control */
1877        *data = s->h_hcr[cpu];
1878        break;
1879
1880    case A_GICH_VTR: /* VGIC Type */
1881        *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1882        *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1883                           GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1884        *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1885                           (7 - GIC_VIRT_MIN_BPR) - 1);
1886        break;
1887
1888    case A_GICH_VMCR: /* Virtual Machine Control */
1889        *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1890                           extract32(s->cpu_ctlr[vcpu], 0, 10));
1891        *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1892        *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1893        *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1894                           extract32(s->priority_mask[vcpu], 3, 5));
1895        break;
1896
1897    case A_GICH_MISR: /* Maintenance Interrupt Status */
1898        *data = s->h_misr[cpu];
1899        break;
1900
1901    case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1902    case A_GICH_EISR1:
1903        *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1904        break;
1905
1906    case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1907    case A_GICH_ELRSR1:
1908        *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1909        break;
1910
1911    case A_GICH_APR: /* Active Priorities */
1912        *data = s->h_apr[cpu];
1913        break;
1914
1915    case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1916    {
1917        int lr_idx = (addr - A_GICH_LR0) / 4;
1918
1919        if (lr_idx > s->num_lrs) {
1920            *data = 0;
1921        } else {
1922            *data = s->h_lr[lr_idx][cpu];
1923        }
1924        break;
1925    }
1926
1927    default:
1928        qemu_log_mask(LOG_GUEST_ERROR,
1929                      "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1930        return MEMTX_OK;
1931    }
1932
1933    trace_gic_hyp_read(addr, *data);
1934    return MEMTX_OK;
1935}
1936
1937static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1938                                 uint64_t value, MemTxAttrs attrs)
1939{
1940    GICState *s = ARM_GIC(opaque);
1941    int vcpu = cpu + GIC_NCPU;
1942
1943    trace_gic_hyp_write(addr, value);
1944
1945    switch (addr) {
1946    case A_GICH_HCR: /* Hypervisor Control */
1947        s->h_hcr[cpu] = value & GICH_HCR_MASK;
1948        break;
1949
1950    case A_GICH_VMCR: /* Virtual Machine Control */
1951        gic_vmcr_write(s, value, attrs);
1952        break;
1953
1954    case A_GICH_APR: /* Active Priorities */
1955        s->h_apr[cpu] = value;
1956        s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1957        break;
1958
1959    case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1960    {
1961        int lr_idx = (addr - A_GICH_LR0) / 4;
1962
1963        if (lr_idx > s->num_lrs) {
1964            return MEMTX_OK;
1965        }
1966
1967        s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1968        trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1969        break;
1970    }
1971
1972    default:
1973        qemu_log_mask(LOG_GUEST_ERROR,
1974                      "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
1975        return MEMTX_OK;
1976    }
1977
1978    gic_update_virt(s);
1979    return MEMTX_OK;
1980}
1981
1982static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1983                                    unsigned size, MemTxAttrs attrs)
1984{
1985    GICState *s = (GICState *)opaque;
1986
1987    return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
1988}
1989
1990static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
1991                                     uint64_t value, unsigned size,
1992                                     MemTxAttrs attrs)
1993{
1994    GICState *s = (GICState *)opaque;
1995
1996    return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
1997}
1998
1999static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
2000                                    unsigned size, MemTxAttrs attrs)
2001{
2002    GICState **backref = (GICState **)opaque;
2003    GICState *s = *backref;
2004    int id = (backref - s->backref);
2005
2006    return gic_hyp_read(s, id, addr, data, attrs);
2007}
2008
2009static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
2010                                     uint64_t value, unsigned size,
2011                                     MemTxAttrs attrs)
2012{
2013    GICState **backref = (GICState **)opaque;
2014    GICState *s = *backref;
2015    int id = (backref - s->backref);
2016
2017    return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
2018
2019}
2020
2021static const MemoryRegionOps gic_ops[2] = {
2022    {
2023        .read_with_attrs = gic_dist_read,
2024        .write_with_attrs = gic_dist_write,
2025        .endianness = DEVICE_NATIVE_ENDIAN,
2026    },
2027    {
2028        .read_with_attrs = gic_thiscpu_read,
2029        .write_with_attrs = gic_thiscpu_write,
2030        .endianness = DEVICE_NATIVE_ENDIAN,
2031    }
2032};
2033
2034static const MemoryRegionOps gic_cpu_ops = {
2035    .read_with_attrs = gic_do_cpu_read,
2036    .write_with_attrs = gic_do_cpu_write,
2037    .endianness = DEVICE_NATIVE_ENDIAN,
2038};
2039
2040static const MemoryRegionOps gic_virt_ops[2] = {
2041    {
2042        .read_with_attrs = gic_thiscpu_hyp_read,
2043        .write_with_attrs = gic_thiscpu_hyp_write,
2044        .endianness = DEVICE_NATIVE_ENDIAN,
2045    },
2046    {
2047        .read_with_attrs = gic_thisvcpu_read,
2048        .write_with_attrs = gic_thisvcpu_write,
2049        .endianness = DEVICE_NATIVE_ENDIAN,
2050    }
2051};
2052
2053static const MemoryRegionOps gic_viface_ops = {
2054    .read_with_attrs = gic_do_hyp_read,
2055    .write_with_attrs = gic_do_hyp_write,
2056    .endianness = DEVICE_NATIVE_ENDIAN,
2057};
2058
2059static void arm_gic_realize(DeviceState *dev, Error **errp)
2060{
2061    /* Device instance realize function for the GIC sysbus device */
2062    int i;
2063    GICState *s = ARM_GIC(dev);
2064    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2065    ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2066    Error *local_err = NULL;
2067
2068    agc->parent_realize(dev, &local_err);
2069    if (local_err) {
2070        error_propagate(errp, local_err);
2071        return;
2072    }
2073
2074    if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2075        error_setg(errp, "KVM with user space irqchip only works when the "
2076                         "host kernel supports KVM_CAP_ARM_USER_IRQ");
2077        return;
2078    }
2079
2080    if (s->n_prio_bits > GIC_MAX_PRIORITY_BITS ||
2081       (s->virt_extn ? s->n_prio_bits < GIC_VIRT_MAX_GROUP_PRIO_BITS :
2082        s->n_prio_bits < GIC_MIN_PRIORITY_BITS)) {
2083        error_setg(errp, "num-priority-bits cannot be greater than %d"
2084                   " or less than %d", GIC_MAX_PRIORITY_BITS,
2085                   s->virt_extn ? GIC_VIRT_MAX_GROUP_PRIO_BITS :
2086                   GIC_MIN_PRIORITY_BITS);
2087        return;
2088    }
2089
2090    /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2091     * enabled, virtualization extensions related interfaces (main virtual
2092     * interface (s->vifaceiomem[0]) and virtual CPU interface).
2093     */
2094    gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2095
2096    /* Extra core-specific regions for the CPU interfaces. This is
2097     * necessary for "franken-GIC" implementations, for example on
2098     * Exynos 4.
2099     * NB that the memory region size of 0x100 applies for the 11MPCore
2100     * and also cores following the GIC v1 spec (ie A9).
2101     * GIC v2 defines a larger memory region (0x1000) so this will need
2102     * to be extended when we implement A15.
2103     */
2104    for (i = 0; i < s->num_cpu; i++) {
2105        s->backref[i] = s;
2106        memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2107                              &s->backref[i], "gic_cpu", 0x100);
2108        sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2109    }
2110
2111    /* Extra core-specific regions for virtual interfaces. This is required by
2112     * the GICv2 specification.
2113     */
2114    if (s->virt_extn) {
2115        for (i = 0; i < s->num_cpu; i++) {
2116            memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2117                                  &gic_viface_ops, &s->backref[i],
2118                                  "gic_viface", 0x200);
2119            sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2120        }
2121    }
2122
2123}
2124
2125static void arm_gic_class_init(ObjectClass *klass, void *data)
2126{
2127    DeviceClass *dc = DEVICE_CLASS(klass);
2128    ARMGICClass *agc = ARM_GIC_CLASS(klass);
2129
2130    device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2131}
2132
2133static const TypeInfo arm_gic_info = {
2134    .name = TYPE_ARM_GIC,
2135    .parent = TYPE_ARM_GIC_COMMON,
2136    .instance_size = sizeof(GICState),
2137    .class_init = arm_gic_class_init,
2138    .class_size = sizeof(ARMGICClass),
2139};
2140
2141static void arm_gic_register_types(void)
2142{
2143    type_register_static(&arm_gic_info);
2144}
2145
2146type_init(arm_gic_register_types)
2147