qemu/hw/intc/arm_gicv3_dist.c
<<
>>
Prefs
   1/*
   2 * ARM GICv3 emulation: Distributor
   3 *
   4 * Copyright (c) 2015 Huawei.
   5 * Copyright (c) 2016 Linaro Limited.
   6 * Written by Shlomo Pongratz, Peter Maydell
   7 *
   8 * This code is licensed under the GPL, version 2 or (at your option)
   9 * any later version.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "qemu/log.h"
  14#include "trace.h"
  15#include "gicv3_internal.h"
  16
  17/* The GICD_NSACR registers contain a two bit field for each interrupt which
  18 * allows the guest to give NonSecure code access to registers controlling
  19 * Secure interrupts:
  20 *  0b00: no access (NS accesses to bits for Secure interrupts will RAZ/WI)
  21 *  0b01: NS r/w accesses permitted to ISPENDR, SETSPI_NSR, SGIR
  22 *  0b10: as 0b01, and also r/w to ICPENDR, r/o to ISACTIVER/ICACTIVER,
  23 *        and w/o to CLRSPI_NSR
  24 *  0b11: as 0b10, and also r/w to IROUTER and ITARGETSR
  25 *
  26 * Given a (multiple-of-32) interrupt number, these mask functions return
  27 * a mask word where each bit is 1 if the NSACR settings permit access
  28 * to the interrupt. The mask returned can then be ORed with the GICD_GROUP
  29 * word for this set of interrupts to give an overall mask.
  30 */
  31
  32typedef uint32_t maskfn(GICv3State *s, int irq);
  33
  34static uint32_t mask_nsacr_ge1(GICv3State *s, int irq)
  35{
  36    /* Return a mask where each bit is set if the NSACR field is >= 1 */
  37    uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
  38
  39    raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
  40    raw_nsacr = (raw_nsacr >> 1) | raw_nsacr;
  41    return half_unshuffle64(raw_nsacr);
  42}
  43
  44static uint32_t mask_nsacr_ge2(GICv3State *s, int irq)
  45{
  46    /* Return a mask where each bit is set if the NSACR field is >= 2 */
  47    uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
  48
  49    raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
  50    raw_nsacr = raw_nsacr >> 1;
  51    return half_unshuffle64(raw_nsacr);
  52}
  53
  54/* We don't need a mask_nsacr_ge3() because IROUTER<n> isn't a bitmap register,
  55 * but it would be implemented using:
  56 *  raw_nsacr = (raw_nsacr >> 1) & raw_nsacr;
  57 */
  58
  59static uint32_t mask_group_and_nsacr(GICv3State *s, MemTxAttrs attrs,
  60                                     maskfn *maskfn, int irq)
  61{
  62    /* Return a 32-bit mask which should be applied for this set of 32
  63     * interrupts; each bit is 1 if access is permitted by the
  64     * combination of attrs.secure, GICD_GROUPR and GICD_NSACR.
  65     */
  66    uint32_t mask;
  67
  68    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
  69        /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI
  70         * unless the NSACR bits permit access.
  71         */
  72        mask = *gic_bmp_ptr32(s->group, irq);
  73        if (maskfn) {
  74            mask |= maskfn(s, irq);
  75        }
  76        return mask;
  77    }
  78    return 0xFFFFFFFFU;
  79}
  80
  81static int gicd_ns_access(GICv3State *s, int irq)
  82{
  83    /* Return the 2 bit NS_access<x> field from GICD_NSACR<n> for the
  84     * specified interrupt.
  85     */
  86    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
  87        return 0;
  88    }
  89    return extract32(s->gicd_nsacr[irq / 16], (irq % 16) * 2, 2);
  90}
  91
  92static void gicd_write_set_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
  93                                      uint32_t *bmp,
  94                                      maskfn *maskfn,
  95                                      int offset, uint32_t val)
  96{
  97    /* Helper routine to implement writing to a "set-bitmap" register
  98     * (GICD_ISENABLER, GICD_ISPENDR, etc).
  99     * Semantics implemented here:
 100     * RAZ/WI for SGIs, PPIs, unimplemented IRQs
 101     * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
 102     * Writing 1 means "set bit in bitmap"; writing 0 is ignored.
 103     * offset should be the offset in bytes of the register from the start
 104     * of its group.
 105     */
 106    int irq = offset * 8;
 107
 108    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 109        return;
 110    }
 111    val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
 112    *gic_bmp_ptr32(bmp, irq) |= val;
 113    gicv3_update(s, irq, 32);
 114}
 115
 116static void gicd_write_clear_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
 117                                        uint32_t *bmp,
 118                                        maskfn *maskfn,
 119                                        int offset, uint32_t val)
 120{
 121    /* Helper routine to implement writing to a "clear-bitmap" register
 122     * (GICD_ICENABLER, GICD_ICPENDR, etc).
 123     * Semantics implemented here:
 124     * RAZ/WI for SGIs, PPIs, unimplemented IRQs
 125     * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
 126     * Writing 1 means "clear bit in bitmap"; writing 0 is ignored.
 127     * offset should be the offset in bytes of the register from the start
 128     * of its group.
 129     */
 130    int irq = offset * 8;
 131
 132    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 133        return;
 134    }
 135    val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
 136    *gic_bmp_ptr32(bmp, irq) &= ~val;
 137    gicv3_update(s, irq, 32);
 138}
 139
 140static uint32_t gicd_read_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
 141                                     uint32_t *bmp,
 142                                     maskfn *maskfn,
 143                                     int offset)
 144{
 145    /* Helper routine to implement reading a "set/clear-bitmap" register
 146     * (GICD_ICENABLER, GICD_ISENABLER, GICD_ICPENDR, etc).
 147     * Semantics implemented here:
 148     * RAZ/WI for SGIs, PPIs, unimplemented IRQs
 149     * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
 150     * offset should be the offset in bytes of the register from the start
 151     * of its group.
 152     */
 153    int irq = offset * 8;
 154    uint32_t val;
 155
 156    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 157        return 0;
 158    }
 159    val = *gic_bmp_ptr32(bmp, irq);
 160    if (bmp == s->pending) {
 161        /* The PENDING register is a special case -- for level triggered
 162         * interrupts, the PENDING state is the logical OR of the state of
 163         * the PENDING latch with the input line level.
 164         */
 165        uint32_t edge = *gic_bmp_ptr32(s->edge_trigger, irq);
 166        uint32_t level = *gic_bmp_ptr32(s->level, irq);
 167        val |= (~edge & level);
 168    }
 169    val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
 170    return val;
 171}
 172
 173static uint8_t gicd_read_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq)
 174{
 175    /* Read the value of GICD_IPRIORITYR<n> for the specified interrupt,
 176     * honouring security state (these are RAZ/WI for Group 0 or Secure
 177     * Group 1 interrupts).
 178     */
 179    uint32_t prio;
 180
 181    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 182        return 0;
 183    }
 184
 185    prio = s->gicd_ipriority[irq];
 186
 187    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
 188        if (!gicv3_gicd_group_test(s, irq)) {
 189            /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
 190            return 0;
 191        }
 192        /* NS view of the interrupt priority */
 193        prio = (prio << 1) & 0xff;
 194    }
 195    return prio;
 196}
 197
 198static void gicd_write_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq,
 199                                  uint8_t value)
 200{
 201    /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
 202     * honouring security state (these are RAZ/WI for Group 0 or Secure
 203     * Group 1 interrupts).
 204     */
 205    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 206        return;
 207    }
 208
 209    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
 210        if (!gicv3_gicd_group_test(s, irq)) {
 211            /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
 212            return;
 213        }
 214        /* NS view of the interrupt priority */
 215        value = 0x80 | (value >> 1);
 216    }
 217    s->gicd_ipriority[irq] = value;
 218}
 219
 220static uint64_t gicd_read_irouter(GICv3State *s, MemTxAttrs attrs, int irq)
 221{
 222    /* Read the value of GICD_IROUTER<n> for the specified interrupt,
 223     * honouring security state.
 224     */
 225    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 226        return 0;
 227    }
 228
 229    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
 230        /* RAZ/WI for NS accesses to secure interrupts */
 231        if (!gicv3_gicd_group_test(s, irq)) {
 232            if (gicd_ns_access(s, irq) != 3) {
 233                return 0;
 234            }
 235        }
 236    }
 237
 238    return s->gicd_irouter[irq];
 239}
 240
 241static void gicd_write_irouter(GICv3State *s, MemTxAttrs attrs, int irq,
 242                               uint64_t val)
 243{
 244    /* Write the value of GICD_IROUTER<n> for the specified interrupt,
 245     * honouring security state.
 246     */
 247    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 248        return;
 249    }
 250
 251    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
 252        /* RAZ/WI for NS accesses to secure interrupts */
 253        if (!gicv3_gicd_group_test(s, irq)) {
 254            if (gicd_ns_access(s, irq) != 3) {
 255                return;
 256            }
 257        }
 258    }
 259
 260    s->gicd_irouter[irq] = val;
 261    gicv3_cache_target_cpustate(s, irq);
 262    gicv3_update(s, irq, 1);
 263}
 264
 265/**
 266 * gicd_readb
 267 * gicd_readw
 268 * gicd_readl
 269 * gicd_readq
 270 * gicd_writeb
 271 * gicd_writew
 272 * gicd_writel
 273 * gicd_writeq
 274 *
 275 * Return %true if the operation succeeded, %false otherwise.
 276 */
 277
 278static bool gicd_readb(GICv3State *s, hwaddr offset,
 279                       uint64_t *data, MemTxAttrs attrs)
 280{
 281    /* Most GICv3 distributor registers do not support byte accesses. */
 282    switch (offset) {
 283    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
 284    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
 285    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
 286        /* This GIC implementation always has affinity routing enabled,
 287         * so these registers are all RAZ/WI.
 288         */
 289        return true;
 290    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
 291        *data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR);
 292        return true;
 293    default:
 294        return false;
 295    }
 296}
 297
 298static bool gicd_writeb(GICv3State *s, hwaddr offset,
 299                        uint64_t value, MemTxAttrs attrs)
 300{
 301    /* Most GICv3 distributor registers do not support byte accesses. */
 302    switch (offset) {
 303    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
 304    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
 305    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
 306        /* This GIC implementation always has affinity routing enabled,
 307         * so these registers are all RAZ/WI.
 308         */
 309        return true;
 310    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
 311    {
 312        int irq = offset - GICD_IPRIORITYR;
 313
 314        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 315            return true;
 316        }
 317        gicd_write_ipriorityr(s, attrs, irq, value);
 318        gicv3_update(s, irq, 1);
 319        return true;
 320    }
 321    default:
 322        return false;
 323    }
 324}
 325
 326static bool gicd_readw(GICv3State *s, hwaddr offset,
 327                       uint64_t *data, MemTxAttrs attrs)
 328{
 329    /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
 330     * support 16 bit accesses, and those registers are all part of the
 331     * optional message-based SPI feature which this GIC does not currently
 332     * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
 333     * reserved.
 334     */
 335    return false;
 336}
 337
 338static bool gicd_writew(GICv3State *s, hwaddr offset,
 339                        uint64_t value, MemTxAttrs attrs)
 340{
 341    /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
 342     * support 16 bit accesses, and those registers are all part of the
 343     * optional message-based SPI feature which this GIC does not currently
 344     * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
 345     * reserved.
 346     */
 347    return false;
 348}
 349
 350static bool gicd_readl(GICv3State *s, hwaddr offset,
 351                       uint64_t *data, MemTxAttrs attrs)
 352{
 353    /* Almost all GICv3 distributor registers are 32-bit.
 354     * Note that WO registers must return an UNKNOWN value on reads,
 355     * not an abort.
 356     */
 357
 358    switch (offset) {
 359    case GICD_CTLR:
 360        if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
 361            /* The NS view of the GICD_CTLR sees only certain bits:
 362             * + bit [31] (RWP) is an alias of the Secure bit [31]
 363             * + bit [4] (ARE_NS) is an alias of Secure bit [5]
 364             * + bit [1] (EnableGrp1A) is an alias of Secure bit [1] if
 365             *   NS affinity routing is enabled, otherwise RES0
 366             * + bit [0] (EnableGrp1) is an alias of Secure bit [1] if
 367             *   NS affinity routing is not enabled, otherwise RES0
 368             * Since for QEMU affinity routing is always enabled
 369             * for both S and NS this means that bits [4] and [5] are
 370             * both always 1, and we can simply make the NS view
 371             * be bits 31, 4 and 1 of the S view.
 372             */
 373            *data = s->gicd_ctlr & (GICD_CTLR_ARE_S |
 374                                    GICD_CTLR_EN_GRP1NS |
 375                                    GICD_CTLR_RWP);
 376        } else {
 377            *data = s->gicd_ctlr;
 378        }
 379        return true;
 380    case GICD_TYPER:
 381    {
 382        /* For this implementation:
 383         * No1N == 1 (1-of-N SPI interrupts not supported)
 384         * A3V == 1 (non-zero values of Affinity level 3 supported)
 385         * IDbits == 0xf (we support 16-bit interrupt identifiers)
 386         * DVIS == 0 (Direct virtual LPI injection not supported)
 387         * LPIS == 1 (LPIs are supported if affinity routing is enabled)
 388         * num_LPIs == 0b00000 (bits [15:11],Number of LPIs as indicated
 389         *                      by GICD_TYPER.IDbits)
 390         * MBIS == 0 (message-based SPIs not supported)
 391         * SecurityExtn == 1 if security extns supported
 392         * CPUNumber == 0 since for us ARE is always 1
 393         * ITLinesNumber == (num external irqs / 32) - 1
 394         */
 395        int itlinesnumber = ((s->num_irq - GIC_INTERNAL) / 32) - 1;
 396        /*
 397         * SecurityExtn must be RAZ if GICD_CTLR.DS == 1, and
 398         * "security extensions not supported" always implies DS == 1,
 399         * so we only need to check the DS bit.
 400         */
 401        bool sec_extn = !(s->gicd_ctlr & GICD_CTLR_DS);
 402
 403        *data = (1 << 25) | (1 << 24) | (sec_extn << 10) |
 404            (s->lpi_enable << GICD_TYPER_LPIS_SHIFT) |
 405            (0xf << 19) | itlinesnumber;
 406        return true;
 407    }
 408    case GICD_IIDR:
 409        /* We claim to be an ARM r0p0 with a zero ProductID.
 410         * This is the same as an r0p0 GIC-500.
 411         */
 412        *data = gicv3_iidr();
 413        return true;
 414    case GICD_STATUSR:
 415        /* RAZ/WI for us (this is an optional register and our implementation
 416         * does not track RO/WO/reserved violations to report them to the guest)
 417         */
 418        *data = 0;
 419        return true;
 420    case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
 421    {
 422        int irq;
 423
 424        if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
 425            *data = 0;
 426            return true;
 427        }
 428        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
 429        irq = (offset - GICD_IGROUPR) * 8;
 430        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 431            *data = 0;
 432            return true;
 433        }
 434        *data = *gic_bmp_ptr32(s->group, irq);
 435        return true;
 436    }
 437    case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
 438        *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
 439                                     offset - GICD_ISENABLER);
 440        return true;
 441    case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
 442        *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
 443                                     offset - GICD_ICENABLER);
 444        return true;
 445    case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
 446        *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
 447                                     offset - GICD_ISPENDR);
 448        return true;
 449    case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
 450        *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
 451                                     offset - GICD_ICPENDR);
 452        return true;
 453    case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
 454        *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
 455                                     offset - GICD_ISACTIVER);
 456        return true;
 457    case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
 458        *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
 459                                     offset - GICD_ICACTIVER);
 460        return true;
 461    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
 462    {
 463        int i, irq = offset - GICD_IPRIORITYR;
 464        uint32_t value = 0;
 465
 466        for (i = irq + 3; i >= irq; i--) {
 467            value <<= 8;
 468            value |= gicd_read_ipriorityr(s, attrs, i);
 469        }
 470        *data = value;
 471        return true;
 472    }
 473    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
 474        /* RAZ/WI since affinity routing is always enabled */
 475        *data = 0;
 476        return true;
 477    case GICD_ICFGR ... GICD_ICFGR + 0xff:
 478    {
 479        /* Here only the even bits are used; odd bits are RES0 */
 480        int irq = (offset - GICD_ICFGR) * 4;
 481        uint32_t value = 0;
 482
 483        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 484            *data = 0;
 485            return true;
 486        }
 487
 488        /* Since our edge_trigger bitmap is one bit per irq, we only need
 489         * half of the 32-bit word, which we can then spread out
 490         * into the odd bits.
 491         */
 492        value = *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f);
 493        value &= mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
 494        value = extract32(value, (irq & 0x1f) ? 16 : 0, 16);
 495        value = half_shuffle32(value) << 1;
 496        *data = value;
 497        return true;
 498    }
 499    case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
 500    {
 501        int irq;
 502
 503        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 504            /* RAZ/WI if security disabled, or if
 505             * security enabled and this is an NS access
 506             */
 507            *data = 0;
 508            return true;
 509        }
 510        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
 511        irq = (offset - GICD_IGRPMODR) * 8;
 512        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 513            *data = 0;
 514            return true;
 515        }
 516        *data = *gic_bmp_ptr32(s->grpmod, irq);
 517        return true;
 518    }
 519    case GICD_NSACR ... GICD_NSACR + 0xff:
 520    {
 521        /* Two bits per interrupt */
 522        int irq = (offset - GICD_NSACR) * 4;
 523
 524        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 525            *data = 0;
 526            return true;
 527        }
 528
 529        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 530            /* RAZ/WI if security disabled, or if
 531             * security enabled and this is an NS access
 532             */
 533            *data = 0;
 534            return true;
 535        }
 536
 537        *data = s->gicd_nsacr[irq / 16];
 538        return true;
 539    }
 540    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
 541    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
 542        /* RAZ/WI since affinity routing is always enabled */
 543        *data = 0;
 544        return true;
 545    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
 546    {
 547        uint64_t r;
 548        int irq = (offset - GICD_IROUTER) / 8;
 549
 550        r = gicd_read_irouter(s, attrs, irq);
 551        if (offset & 7) {
 552            *data = r >> 32;
 553        } else {
 554            *data = (uint32_t)r;
 555        }
 556        return true;
 557    }
 558    case GICD_IDREGS ... GICD_IDREGS + 0x2f:
 559        /* ID registers */
 560        *data = gicv3_idreg(offset - GICD_IDREGS);
 561        return true;
 562    case GICD_SGIR:
 563        /* WO registers, return unknown value */
 564        qemu_log_mask(LOG_GUEST_ERROR,
 565                      "%s: invalid guest read from WO register at offset "
 566                      TARGET_FMT_plx "\n", __func__, offset);
 567        *data = 0;
 568        return true;
 569    default:
 570        return false;
 571    }
 572}
 573
 574static bool gicd_writel(GICv3State *s, hwaddr offset,
 575                        uint64_t value, MemTxAttrs attrs)
 576{
 577    /* Almost all GICv3 distributor registers are 32-bit. Note that
 578     * RO registers must ignore writes, not abort.
 579     */
 580
 581    switch (offset) {
 582    case GICD_CTLR:
 583    {
 584        uint32_t mask;
 585        /* GICv3 5.3.20 */
 586        if (s->gicd_ctlr & GICD_CTLR_DS) {
 587            /* With only one security state, E1NWF is RAZ/WI, DS is RAO/WI,
 588             * ARE is RAO/WI (affinity routing always on), and only
 589             * bits 0 and 1 (group enables) are writable.
 590             */
 591            mask = GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1NS;
 592        } else {
 593            if (attrs.secure) {
 594                /* for secure access:
 595                 * ARE_NS and ARE_S are RAO/WI (affinity routing always on)
 596                 * E1NWF is RAZ/WI (we don't support enable-1-of-n-wakeup)
 597                 *
 598                 * We can only modify bits[2:0] (the group enables).
 599                 */
 600                mask = GICD_CTLR_DS | GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1_ALL;
 601            } else {
 602                /* For non secure access ARE_NS is RAO/WI and EnableGrp1
 603                 * is RES0. The only writable bit is [1] (EnableGrp1A), which
 604                 * is an alias of the Secure bit [1].
 605                 */
 606                mask = GICD_CTLR_EN_GRP1NS;
 607            }
 608        }
 609        s->gicd_ctlr = (s->gicd_ctlr & ~mask) | (value & mask);
 610        if (value & mask & GICD_CTLR_DS) {
 611            /* We just set DS, so the ARE_NS and EnG1S bits are now RES0.
 612             * Note that this is a one-way transition because if DS is set
 613             * then it's not writeable, so it can only go back to 0 with a
 614             * hardware reset.
 615             */
 616            s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS);
 617        }
 618        gicv3_full_update(s);
 619        return true;
 620    }
 621    case GICD_STATUSR:
 622        /* RAZ/WI for our implementation */
 623        return true;
 624    case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
 625    {
 626        int irq;
 627
 628        if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
 629            return true;
 630        }
 631        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
 632        irq = (offset - GICD_IGROUPR) * 8;
 633        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 634            return true;
 635        }
 636        *gic_bmp_ptr32(s->group, irq) = value;
 637        gicv3_update(s, irq, 32);
 638        return true;
 639    }
 640    case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
 641        gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL,
 642                                  offset - GICD_ISENABLER, value);
 643        return true;
 644    case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
 645        gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL,
 646                                    offset - GICD_ICENABLER, value);
 647        return true;
 648    case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
 649        gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
 650                                  offset - GICD_ISPENDR, value);
 651        return true;
 652    case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
 653        gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
 654                                    offset - GICD_ICPENDR, value);
 655        return true;
 656    case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
 657        gicd_write_set_bitmap_reg(s, attrs, s->active, NULL,
 658                                  offset - GICD_ISACTIVER, value);
 659        return true;
 660    case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
 661        gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL,
 662                                    offset - GICD_ICACTIVER, value);
 663        return true;
 664    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
 665    {
 666        int i, irq = offset - GICD_IPRIORITYR;
 667
 668        if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) {
 669            return true;
 670        }
 671
 672        for (i = irq; i < irq + 4; i++, value >>= 8) {
 673            gicd_write_ipriorityr(s, attrs, i, value);
 674        }
 675        gicv3_update(s, irq, 4);
 676        return true;
 677    }
 678    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
 679        /* RAZ/WI since affinity routing is always enabled */
 680        return true;
 681    case GICD_ICFGR ... GICD_ICFGR + 0xff:
 682    {
 683        /* Here only the odd bits are used; even bits are RES0 */
 684        int irq = (offset - GICD_ICFGR) * 4;
 685        uint32_t mask, oldval;
 686
 687        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 688            return true;
 689        }
 690
 691        /* Since our edge_trigger bitmap is one bit per irq, our input
 692         * 32-bits will compress down into 16 bits which we need
 693         * to write into the bitmap.
 694         */
 695        value = half_unshuffle32(value >> 1);
 696        mask = mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
 697        if (irq & 0x1f) {
 698            value <<= 16;
 699            mask &= 0xffff0000U;
 700        } else {
 701            mask &= 0xffff;
 702        }
 703        oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f));
 704        value = (oldval & ~mask) | (value & mask);
 705        *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value;
 706        return true;
 707    }
 708    case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
 709    {
 710        int irq;
 711
 712        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 713            /* RAZ/WI if security disabled, or if
 714             * security enabled and this is an NS access
 715             */
 716            return true;
 717        }
 718        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
 719        irq = (offset - GICD_IGRPMODR) * 8;
 720        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 721            return true;
 722        }
 723        *gic_bmp_ptr32(s->grpmod, irq) = value;
 724        gicv3_update(s, irq, 32);
 725        return true;
 726    }
 727    case GICD_NSACR ... GICD_NSACR + 0xff:
 728    {
 729        /* Two bits per interrupt */
 730        int irq = (offset - GICD_NSACR) * 4;
 731
 732        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 733            return true;
 734        }
 735
 736        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 737            /* RAZ/WI if security disabled, or if
 738             * security enabled and this is an NS access
 739             */
 740            return true;
 741        }
 742
 743        s->gicd_nsacr[irq / 16] = value;
 744        /* No update required as this only affects access permission checks */
 745        return true;
 746    }
 747    case GICD_SGIR:
 748        /* RES0 if affinity routing is enabled */
 749        return true;
 750    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
 751    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
 752        /* RAZ/WI since affinity routing is always enabled */
 753        return true;
 754    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
 755    {
 756        uint64_t r;
 757        int irq = (offset - GICD_IROUTER) / 8;
 758
 759        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 760            return true;
 761        }
 762
 763        /* Write half of the 64-bit register */
 764        r = gicd_read_irouter(s, attrs, irq);
 765        r = deposit64(r, (offset & 7) ? 32 : 0, 32, value);
 766        gicd_write_irouter(s, attrs, irq, r);
 767        return true;
 768    }
 769    case GICD_IDREGS ... GICD_IDREGS + 0x2f:
 770    case GICD_TYPER:
 771    case GICD_IIDR:
 772        /* RO registers, ignore the write */
 773        qemu_log_mask(LOG_GUEST_ERROR,
 774                      "%s: invalid guest write to RO register at offset "
 775                      TARGET_FMT_plx "\n", __func__, offset);
 776        return true;
 777    default:
 778        return false;
 779    }
 780}
 781
 782static bool gicd_writeq(GICv3State *s, hwaddr offset,
 783                        uint64_t value, MemTxAttrs attrs)
 784{
 785    /* Our only 64-bit registers are GICD_IROUTER<n> */
 786    int irq;
 787
 788    switch (offset) {
 789    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
 790        irq = (offset - GICD_IROUTER) / 8;
 791        gicd_write_irouter(s, attrs, irq, value);
 792        return true;
 793    default:
 794        return false;
 795    }
 796}
 797
 798static bool gicd_readq(GICv3State *s, hwaddr offset,
 799                       uint64_t *data, MemTxAttrs attrs)
 800{
 801    /* Our only 64-bit registers are GICD_IROUTER<n> */
 802    int irq;
 803
 804    switch (offset) {
 805    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
 806        irq = (offset - GICD_IROUTER) / 8;
 807        *data = gicd_read_irouter(s, attrs, irq);
 808        return true;
 809    default:
 810        return false;
 811    }
 812}
 813
 814MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data,
 815                            unsigned size, MemTxAttrs attrs)
 816{
 817    GICv3State *s = (GICv3State *)opaque;
 818    bool r;
 819
 820    switch (size) {
 821    case 1:
 822        r = gicd_readb(s, offset, data, attrs);
 823        break;
 824    case 2:
 825        r = gicd_readw(s, offset, data, attrs);
 826        break;
 827    case 4:
 828        r = gicd_readl(s, offset, data, attrs);
 829        break;
 830    case 8:
 831        r = gicd_readq(s, offset, data, attrs);
 832        break;
 833    default:
 834        r = false;
 835        break;
 836    }
 837
 838    if (!r) {
 839        qemu_log_mask(LOG_GUEST_ERROR,
 840                      "%s: invalid guest read at offset " TARGET_FMT_plx
 841                      "size %u\n", __func__, offset, size);
 842        trace_gicv3_dist_badread(offset, size, attrs.secure);
 843        /* The spec requires that reserved registers are RAZ/WI;
 844         * so use MEMTX_ERROR returns from leaf functions as a way to
 845         * trigger the guest-error logging but don't return it to
 846         * the caller, or we'll cause a spurious guest data abort.
 847         */
 848        *data = 0;
 849    } else {
 850        trace_gicv3_dist_read(offset, *data, size, attrs.secure);
 851    }
 852    return MEMTX_OK;
 853}
 854
 855MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data,
 856                             unsigned size, MemTxAttrs attrs)
 857{
 858    GICv3State *s = (GICv3State *)opaque;
 859    bool r;
 860
 861    switch (size) {
 862    case 1:
 863        r = gicd_writeb(s, offset, data, attrs);
 864        break;
 865    case 2:
 866        r = gicd_writew(s, offset, data, attrs);
 867        break;
 868    case 4:
 869        r = gicd_writel(s, offset, data, attrs);
 870        break;
 871    case 8:
 872        r = gicd_writeq(s, offset, data, attrs);
 873        break;
 874    default:
 875        r = false;
 876        break;
 877    }
 878
 879    if (!r) {
 880        qemu_log_mask(LOG_GUEST_ERROR,
 881                      "%s: invalid guest write at offset " TARGET_FMT_plx
 882                      "size %u\n", __func__, offset, size);
 883        trace_gicv3_dist_badwrite(offset, data, size, attrs.secure);
 884        /* The spec requires that reserved registers are RAZ/WI;
 885         * so use MEMTX_ERROR returns from leaf functions as a way to
 886         * trigger the guest-error logging but don't return it to
 887         * the caller, or we'll cause a spurious guest data abort.
 888         */
 889    } else {
 890        trace_gicv3_dist_write(offset, data, size, attrs.secure);
 891    }
 892    return MEMTX_OK;
 893}
 894
 895void gicv3_dist_set_irq(GICv3State *s, int irq, int level)
 896{
 897    /* Update distributor state for a change in an external SPI input line */
 898    if (level == gicv3_gicd_level_test(s, irq)) {
 899        return;
 900    }
 901
 902    trace_gicv3_dist_set_irq(irq, level);
 903
 904    gicv3_gicd_level_replace(s, irq, level);
 905
 906    if (level) {
 907        /* 0->1 edges latch the pending bit for edge-triggered interrupts */
 908        if (gicv3_gicd_edge_trigger_test(s, irq)) {
 909            gicv3_gicd_pending_set(s, irq);
 910        }
 911    }
 912
 913    gicv3_update(s, irq, 1);
 914}
 915