qemu/hw/intc/arm_gicv3_redist.c
<<
>>
Prefs
   1/*
   2 * ARM GICv3 emulation: Redistributor
   3 *
   4 * Copyright (c) 2015 Huawei.
   5 * Copyright (c) 2016 Linaro Limited.
   6 * Written by Shlomo Pongratz, Peter Maydell
   7 *
   8 * This code is licensed under the GPL, version 2 or (at your option)
   9 * any later version.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "qemu/log.h"
  14#include "trace.h"
  15#include "gicv3_internal.h"
  16
  17static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
  18{
  19    /* Return a 32-bit mask which should be applied for this set of 32
  20     * interrupts; each bit is 1 if access is permitted by the
  21     * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
  22     * not affect config register accesses, unlike GICD_NSACR.)
  23     */
  24    if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
  25        /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
  26        return cs->gicr_igroupr0;
  27    }
  28    return 0xFFFFFFFFU;
  29}
  30
  31static int gicr_ns_access(GICv3CPUState *cs, int irq)
  32{
  33    /* Return the 2 bit NSACR.NS_access field for this SGI */
  34    assert(irq < 16);
  35    return extract32(cs->gicr_nsacr, irq * 2, 2);
  36}
  37
  38static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
  39                                      uint32_t *reg, uint32_t val)
  40{
  41    /* Helper routine to implement writing to a "set-bitmap" register */
  42    val &= mask_group(cs, attrs);
  43    *reg |= val;
  44    gicv3_redist_update(cs);
  45}
  46
  47static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
  48                                        uint32_t *reg, uint32_t val)
  49{
  50    /* Helper routine to implement writing to a "clear-bitmap" register */
  51    val &= mask_group(cs, attrs);
  52    *reg &= ~val;
  53    gicv3_redist_update(cs);
  54}
  55
  56static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
  57                                     uint32_t reg)
  58{
  59    reg &= mask_group(cs, attrs);
  60    return reg;
  61}
  62
  63static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
  64                                    int irq)
  65{
  66    /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
  67     * honouring security state (these are RAZ/WI for Group 0 or Secure
  68     * Group 1 interrupts).
  69     */
  70    uint32_t prio;
  71
  72    prio = cs->gicr_ipriorityr[irq];
  73
  74    if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
  75        if (!(cs->gicr_igroupr0 & (1U << irq))) {
  76            /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
  77            return 0;
  78        }
  79        /* NS view of the interrupt priority */
  80        prio = (prio << 1) & 0xff;
  81    }
  82    return prio;
  83}
  84
  85static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
  86                                  uint8_t value)
  87{
  88    /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
  89     * honouring security state (these are RAZ/WI for Group 0 or Secure
  90     * Group 1 interrupts).
  91     */
  92    if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
  93        if (!(cs->gicr_igroupr0 & (1U << irq))) {
  94            /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
  95            return;
  96        }
  97        /* NS view of the interrupt priority */
  98        value = 0x80 | (value >> 1);
  99    }
 100    cs->gicr_ipriorityr[irq] = value;
 101}
 102
 103static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
 104                              uint64_t *data, MemTxAttrs attrs)
 105{
 106    switch (offset) {
 107    case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
 108        *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
 109        return MEMTX_OK;
 110    default:
 111        return MEMTX_ERROR;
 112    }
 113}
 114
 115static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
 116                               uint64_t value, MemTxAttrs attrs)
 117{
 118    switch (offset) {
 119    case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
 120        gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
 121        gicv3_redist_update(cs);
 122        return MEMTX_OK;
 123    default:
 124        return MEMTX_ERROR;
 125    }
 126}
 127
 128static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
 129                              uint64_t *data, MemTxAttrs attrs)
 130{
 131    switch (offset) {
 132    case GICR_CTLR:
 133        *data = cs->gicr_ctlr;
 134        return MEMTX_OK;
 135    case GICR_IIDR:
 136        *data = gicv3_iidr();
 137        return MEMTX_OK;
 138    case GICR_TYPER:
 139        *data = extract64(cs->gicr_typer, 0, 32);
 140        return MEMTX_OK;
 141    case GICR_TYPER + 4:
 142        *data = extract64(cs->gicr_typer, 32, 32);
 143        return MEMTX_OK;
 144    case GICR_STATUSR:
 145        /* RAZ/WI for us (this is an optional register and our implementation
 146         * does not track RO/WO/reserved violations to report them to the guest)
 147         */
 148        *data = 0;
 149        return MEMTX_OK;
 150    case GICR_WAKER:
 151        *data = cs->gicr_waker;
 152        return MEMTX_OK;
 153    case GICR_PROPBASER:
 154        *data = extract64(cs->gicr_propbaser, 0, 32);
 155        return MEMTX_OK;
 156    case GICR_PROPBASER + 4:
 157        *data = extract64(cs->gicr_propbaser, 32, 32);
 158        return MEMTX_OK;
 159    case GICR_PENDBASER:
 160        *data = extract64(cs->gicr_pendbaser, 0, 32);
 161        return MEMTX_OK;
 162    case GICR_PENDBASER + 4:
 163        *data = extract64(cs->gicr_pendbaser, 32, 32);
 164        return MEMTX_OK;
 165    case GICR_IGROUPR0:
 166        if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
 167            *data = 0;
 168            return MEMTX_OK;
 169        }
 170        *data = cs->gicr_igroupr0;
 171        return MEMTX_OK;
 172    case GICR_ISENABLER0:
 173    case GICR_ICENABLER0:
 174        *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
 175        return MEMTX_OK;
 176    case GICR_ISPENDR0:
 177    case GICR_ICPENDR0:
 178    {
 179        /* The pending register reads as the logical OR of the pending
 180         * latch and the input line level for level-triggered interrupts.
 181         */
 182        uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
 183        *data = gicr_read_bitmap_reg(cs, attrs, val);
 184        return MEMTX_OK;
 185    }
 186    case GICR_ISACTIVER0:
 187    case GICR_ICACTIVER0:
 188        *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
 189        return MEMTX_OK;
 190    case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
 191    {
 192        int i, irq = offset - GICR_IPRIORITYR;
 193        uint32_t value = 0;
 194
 195        for (i = irq + 3; i >= irq; i--) {
 196            value <<= 8;
 197            value |= gicr_read_ipriorityr(cs, attrs, i);
 198        }
 199        *data = value;
 200        return MEMTX_OK;
 201    }
 202    case GICR_ICFGR0:
 203    case GICR_ICFGR1:
 204    {
 205        /* Our edge_trigger bitmap is one bit per irq; take the correct
 206         * half of it, and spread it out into the odd bits.
 207         */
 208        uint32_t value;
 209
 210        value = cs->edge_trigger & mask_group(cs, attrs);
 211        value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
 212        value = half_shuffle32(value) << 1;
 213        *data = value;
 214        return MEMTX_OK;
 215    }
 216    case GICR_IGRPMODR0:
 217        if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 218            /* RAZ/WI if security disabled, or if
 219             * security enabled and this is an NS access
 220             */
 221            *data = 0;
 222            return MEMTX_OK;
 223        }
 224        *data = cs->gicr_igrpmodr0;
 225        return MEMTX_OK;
 226    case GICR_NSACR:
 227        if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 228            /* RAZ/WI if security disabled, or if
 229             * security enabled and this is an NS access
 230             */
 231            *data = 0;
 232            return MEMTX_OK;
 233        }
 234        *data = cs->gicr_nsacr;
 235        return MEMTX_OK;
 236    case GICR_IDREGS ... GICR_IDREGS + 0x2f:
 237        *data = gicv3_idreg(offset - GICR_IDREGS);
 238        return MEMTX_OK;
 239    default:
 240        return MEMTX_ERROR;
 241    }
 242}
 243
 244static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
 245                               uint64_t value, MemTxAttrs attrs)
 246{
 247    switch (offset) {
 248    case GICR_CTLR:
 249        /* For our implementation, GICR_TYPER.DPGS is 0 and so all
 250         * the DPG bits are RAZ/WI. We don't do anything asynchronously,
 251         * so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we
 252         * implement LPIs) so Enable_LPIs is programmable.
 253         */
 254        if (cs->gicr_typer & GICR_TYPER_PLPIS) {
 255            if (value & GICR_CTLR_ENABLE_LPIS) {
 256                cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS;
 257                /* Check for any pending interr in pending table */
 258                gicv3_redist_update_lpi(cs);
 259            } else {
 260                cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS;
 261                /* cs->hppi might have been an LPI; recalculate */
 262                gicv3_redist_update(cs);
 263            }
 264        }
 265        return MEMTX_OK;
 266    case GICR_STATUSR:
 267        /* RAZ/WI for our implementation */
 268        return MEMTX_OK;
 269    case GICR_WAKER:
 270        /* Only the ProcessorSleep bit is writeable. When the guest sets
 271         * it it requests that we transition the channel between the
 272         * redistributor and the cpu interface to quiescent, and that
 273         * we set the ChildrenAsleep bit once the inteface has reached the
 274         * quiescent state.
 275         * Setting the ProcessorSleep to 0 reverses the quiescing, and
 276         * ChildrenAsleep is cleared once the transition is complete.
 277         * Since our interface is not asynchronous, we complete these
 278         * transitions instantaneously, so we set ChildrenAsleep to the
 279         * same value as ProcessorSleep here.
 280         */
 281        value &= GICR_WAKER_ProcessorSleep;
 282        if (value & GICR_WAKER_ProcessorSleep) {
 283            value |= GICR_WAKER_ChildrenAsleep;
 284        }
 285        cs->gicr_waker = value;
 286        return MEMTX_OK;
 287    case GICR_PROPBASER:
 288        cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
 289        return MEMTX_OK;
 290    case GICR_PROPBASER + 4:
 291        cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
 292        return MEMTX_OK;
 293    case GICR_PENDBASER:
 294        cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
 295        return MEMTX_OK;
 296    case GICR_PENDBASER + 4:
 297        cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
 298        return MEMTX_OK;
 299    case GICR_IGROUPR0:
 300        if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
 301            return MEMTX_OK;
 302        }
 303        cs->gicr_igroupr0 = value;
 304        gicv3_redist_update(cs);
 305        return MEMTX_OK;
 306    case GICR_ISENABLER0:
 307        gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
 308        return MEMTX_OK;
 309    case GICR_ICENABLER0:
 310        gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
 311        return MEMTX_OK;
 312    case GICR_ISPENDR0:
 313        gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
 314        return MEMTX_OK;
 315    case GICR_ICPENDR0:
 316        gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
 317        return MEMTX_OK;
 318    case GICR_ISACTIVER0:
 319        gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
 320        return MEMTX_OK;
 321    case GICR_ICACTIVER0:
 322        gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
 323        return MEMTX_OK;
 324    case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
 325    {
 326        int i, irq = offset - GICR_IPRIORITYR;
 327
 328        for (i = irq; i < irq + 4; i++, value >>= 8) {
 329            gicr_write_ipriorityr(cs, attrs, i, value);
 330        }
 331        gicv3_redist_update(cs);
 332        return MEMTX_OK;
 333    }
 334    case GICR_ICFGR0:
 335        /* Register is all RAZ/WI or RAO/WI bits */
 336        return MEMTX_OK;
 337    case GICR_ICFGR1:
 338    {
 339        uint32_t mask;
 340
 341        /* Since our edge_trigger bitmap is one bit per irq, our input
 342         * 32-bits will compress down into 16 bits which we need
 343         * to write into the bitmap.
 344         */
 345        value = half_unshuffle32(value >> 1) << 16;
 346        mask = mask_group(cs, attrs) & 0xffff0000U;
 347
 348        cs->edge_trigger &= ~mask;
 349        cs->edge_trigger |= (value & mask);
 350
 351        gicv3_redist_update(cs);
 352        return MEMTX_OK;
 353    }
 354    case GICR_IGRPMODR0:
 355        if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 356            /* RAZ/WI if security disabled, or if
 357             * security enabled and this is an NS access
 358             */
 359            return MEMTX_OK;
 360        }
 361        cs->gicr_igrpmodr0 = value;
 362        gicv3_redist_update(cs);
 363        return MEMTX_OK;
 364    case GICR_NSACR:
 365        if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 366            /* RAZ/WI if security disabled, or if
 367             * security enabled and this is an NS access
 368             */
 369            return MEMTX_OK;
 370        }
 371        cs->gicr_nsacr = value;
 372        /* no update required as this only affects access permission checks */
 373        return MEMTX_OK;
 374    case GICR_IIDR:
 375    case GICR_TYPER:
 376    case GICR_IDREGS ... GICR_IDREGS + 0x2f:
 377        /* RO registers, ignore the write */
 378        qemu_log_mask(LOG_GUEST_ERROR,
 379                      "%s: invalid guest write to RO register at offset "
 380                      TARGET_FMT_plx "\n", __func__, offset);
 381        return MEMTX_OK;
 382    default:
 383        return MEMTX_ERROR;
 384    }
 385}
 386
 387static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
 388                               uint64_t *data, MemTxAttrs attrs)
 389{
 390    switch (offset) {
 391    case GICR_TYPER:
 392        *data = cs->gicr_typer;
 393        return MEMTX_OK;
 394    case GICR_PROPBASER:
 395        *data = cs->gicr_propbaser;
 396        return MEMTX_OK;
 397    case GICR_PENDBASER:
 398        *data = cs->gicr_pendbaser;
 399        return MEMTX_OK;
 400    default:
 401        return MEMTX_ERROR;
 402    }
 403}
 404
 405static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
 406                                uint64_t value, MemTxAttrs attrs)
 407{
 408    switch (offset) {
 409    case GICR_PROPBASER:
 410        cs->gicr_propbaser = value;
 411        return MEMTX_OK;
 412    case GICR_PENDBASER:
 413        cs->gicr_pendbaser = value;
 414        return MEMTX_OK;
 415    case GICR_TYPER:
 416        /* RO register, ignore the write */
 417        qemu_log_mask(LOG_GUEST_ERROR,
 418                      "%s: invalid guest write to RO register at offset "
 419                      TARGET_FMT_plx "\n", __func__, offset);
 420        return MEMTX_OK;
 421    default:
 422        return MEMTX_ERROR;
 423    }
 424}
 425
 426MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
 427                              unsigned size, MemTxAttrs attrs)
 428{
 429    GICv3RedistRegion *region = opaque;
 430    GICv3State *s = region->gic;
 431    GICv3CPUState *cs;
 432    MemTxResult r;
 433    int cpuidx;
 434
 435    assert((offset & (size - 1)) == 0);
 436
 437    /*
 438     * There are (for GICv3) two 64K redistributor pages per CPU.
 439     * In some cases the redistributor pages for all CPUs are not
 440     * contiguous (eg on the virt board they are split into two
 441     * parts if there are too many CPUs to all fit in the same place
 442     * in the memory map); if so then the GIC has multiple MemoryRegions
 443     * for the redistributors.
 444     */
 445    cpuidx = region->cpuidx + offset / GICV3_REDIST_SIZE;
 446    offset %= GICV3_REDIST_SIZE;
 447
 448    cs = &s->cpu[cpuidx];
 449
 450    switch (size) {
 451    case 1:
 452        r = gicr_readb(cs, offset, data, attrs);
 453        break;
 454    case 4:
 455        r = gicr_readl(cs, offset, data, attrs);
 456        break;
 457    case 8:
 458        r = gicr_readll(cs, offset, data, attrs);
 459        break;
 460    default:
 461        r = MEMTX_ERROR;
 462        break;
 463    }
 464
 465    if (r == MEMTX_ERROR) {
 466        qemu_log_mask(LOG_GUEST_ERROR,
 467                      "%s: invalid guest read at offset " TARGET_FMT_plx
 468                      " size %u\n", __func__, offset, size);
 469        trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
 470                                   size, attrs.secure);
 471        /* The spec requires that reserved registers are RAZ/WI;
 472         * so use MEMTX_ERROR returns from leaf functions as a way to
 473         * trigger the guest-error logging but don't return it to
 474         * the caller, or we'll cause a spurious guest data abort.
 475         */
 476        r = MEMTX_OK;
 477        *data = 0;
 478    } else {
 479        trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
 480                                size, attrs.secure);
 481    }
 482    return r;
 483}
 484
 485MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
 486                               unsigned size, MemTxAttrs attrs)
 487{
 488    GICv3RedistRegion *region = opaque;
 489    GICv3State *s = region->gic;
 490    GICv3CPUState *cs;
 491    MemTxResult r;
 492    int cpuidx;
 493
 494    assert((offset & (size - 1)) == 0);
 495
 496    /*
 497     * There are (for GICv3) two 64K redistributor pages per CPU.
 498     * In some cases the redistributor pages for all CPUs are not
 499     * contiguous (eg on the virt board they are split into two
 500     * parts if there are too many CPUs to all fit in the same place
 501     * in the memory map); if so then the GIC has multiple MemoryRegions
 502     * for the redistributors.
 503     */
 504    cpuidx = region->cpuidx + offset / GICV3_REDIST_SIZE;
 505    offset %= GICV3_REDIST_SIZE;
 506
 507    cs = &s->cpu[cpuidx];
 508
 509    switch (size) {
 510    case 1:
 511        r = gicr_writeb(cs, offset, data, attrs);
 512        break;
 513    case 4:
 514        r = gicr_writel(cs, offset, data, attrs);
 515        break;
 516    case 8:
 517        r = gicr_writell(cs, offset, data, attrs);
 518        break;
 519    default:
 520        r = MEMTX_ERROR;
 521        break;
 522    }
 523
 524    if (r == MEMTX_ERROR) {
 525        qemu_log_mask(LOG_GUEST_ERROR,
 526                      "%s: invalid guest write at offset " TARGET_FMT_plx
 527                      " size %u\n", __func__, offset, size);
 528        trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
 529                                    size, attrs.secure);
 530        /* The spec requires that reserved registers are RAZ/WI;
 531         * so use MEMTX_ERROR returns from leaf functions as a way to
 532         * trigger the guest-error logging but don't return it to
 533         * the caller, or we'll cause a spurious guest data abort.
 534         */
 535        r = MEMTX_OK;
 536    } else {
 537        trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
 538                                 size, attrs.secure);
 539    }
 540    return r;
 541}
 542
 543static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq)
 544{
 545    AddressSpace *as = &cs->gic->dma_as;
 546    uint64_t lpict_baddr;
 547    uint8_t lpite;
 548    uint8_t prio;
 549
 550    lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
 551
 552    address_space_read(as, lpict_baddr + ((irq - GICV3_LPI_INTID_START) *
 553                       sizeof(lpite)), MEMTXATTRS_UNSPECIFIED, &lpite,
 554                       sizeof(lpite));
 555
 556    if (!(lpite & LPI_CTE_ENABLED)) {
 557        return;
 558    }
 559
 560    if (cs->gic->gicd_ctlr & GICD_CTLR_DS) {
 561        prio = lpite & LPI_PRIORITY_MASK;
 562    } else {
 563        prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80;
 564    }
 565
 566    if ((prio < cs->hpplpi.prio) ||
 567        ((prio == cs->hpplpi.prio) && (irq <= cs->hpplpi.irq))) {
 568        cs->hpplpi.irq = irq;
 569        cs->hpplpi.prio = prio;
 570        /* LPIs are always non-secure Grp1 interrupts */
 571        cs->hpplpi.grp = GICV3_G1NS;
 572    }
 573}
 574
 575void gicv3_redist_update_lpi_only(GICv3CPUState *cs)
 576{
 577    /*
 578     * This function scans the LPI pending table and for each pending
 579     * LPI, reads the corresponding entry from LPI configuration table
 580     * to extract the priority info and determine if the current LPI
 581     * priority is lower than the last computed high priority lpi interrupt.
 582     * If yes, replace current LPI as the new high priority lpi interrupt.
 583     */
 584    AddressSpace *as = &cs->gic->dma_as;
 585    uint64_t lpipt_baddr;
 586    uint32_t pendt_size = 0;
 587    uint8_t pend;
 588    int i, bit;
 589    uint64_t idbits;
 590
 591    idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
 592                 GICD_TYPER_IDBITS);
 593
 594    if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || !cs->gicr_propbaser ||
 595        !cs->gicr_pendbaser) {
 596        return;
 597    }
 598
 599    cs->hpplpi.prio = 0xff;
 600
 601    lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
 602
 603    /* Determine the highest priority pending interrupt among LPIs */
 604    pendt_size = (1ULL << (idbits + 1));
 605
 606    for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
 607        address_space_read(as, lpipt_baddr + i, MEMTXATTRS_UNSPECIFIED, &pend,
 608                           sizeof(pend));
 609
 610        while (pend) {
 611            bit = ctz32(pend);
 612            gicv3_redist_check_lpi_priority(cs, i * 8 + bit);
 613            pend &= ~(1 << bit);
 614        }
 615    }
 616}
 617
 618void gicv3_redist_update_lpi(GICv3CPUState *cs)
 619{
 620    gicv3_redist_update_lpi_only(cs);
 621    gicv3_redist_update(cs);
 622}
 623
 624void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level)
 625{
 626    /*
 627     * This function updates the pending bit in lpi pending table for
 628     * the irq being activated or deactivated.
 629     */
 630    AddressSpace *as = &cs->gic->dma_as;
 631    uint64_t lpipt_baddr;
 632    bool ispend = false;
 633    uint8_t pend;
 634
 635    /*
 636     * get the bit value corresponding to this irq in the
 637     * lpi pending table
 638     */
 639    lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
 640
 641    address_space_read(as, lpipt_baddr + ((irq / 8) * sizeof(pend)),
 642                       MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend));
 643
 644    ispend = extract32(pend, irq % 8, 1);
 645
 646    /* no change in the value of pending bit, return */
 647    if (ispend == level) {
 648        return;
 649    }
 650    pend = deposit32(pend, irq % 8, 1, level ? 1 : 0);
 651
 652    address_space_write(as, lpipt_baddr + ((irq / 8) * sizeof(pend)),
 653                        MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend));
 654
 655    /*
 656     * check if this LPI is better than the current hpplpi, if yes
 657     * just set hpplpi.prio and .irq without doing a full rescan
 658     */
 659    if (level) {
 660        gicv3_redist_check_lpi_priority(cs, irq);
 661        gicv3_redist_update(cs);
 662    } else {
 663        if (irq == cs->hpplpi.irq) {
 664            gicv3_redist_update_lpi(cs);
 665        }
 666    }
 667}
 668
 669void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level)
 670{
 671    uint64_t idbits;
 672
 673    idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
 674                 GICD_TYPER_IDBITS);
 675
 676    if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || !cs->gicr_propbaser ||
 677         !cs->gicr_pendbaser || (irq > (1ULL << (idbits + 1)) - 1) ||
 678         irq < GICV3_LPI_INTID_START) {
 679        return;
 680    }
 681
 682    /* set/clear the pending bit for this irq */
 683    gicv3_redist_lpi_pending(cs, irq, level);
 684}
 685
 686void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
 687{
 688    /* Update redistributor state for a change in an external PPI input line */
 689    if (level == extract32(cs->level, irq, 1)) {
 690        return;
 691    }
 692
 693    trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
 694
 695    cs->level = deposit32(cs->level, irq, 1, level);
 696
 697    if (level) {
 698        /* 0->1 edges latch the pending bit for edge-triggered interrupts */
 699        if (extract32(cs->edge_trigger, irq, 1)) {
 700            cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
 701        }
 702    }
 703
 704    gicv3_redist_update(cs);
 705}
 706
 707void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
 708{
 709    /* Update redistributor state for a generated SGI */
 710    int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
 711
 712    /* If we are asked for a Secure Group 1 SGI and it's actually
 713     * configured as Secure Group 0 this is OK (subject to the usual
 714     * NSACR checks).
 715     */
 716    if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
 717        grp = GICV3_G0;
 718    }
 719
 720    if (grp != irqgrp) {
 721        return;
 722    }
 723
 724    if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
 725        /* If security is enabled we must test the NSACR bits */
 726        int nsaccess = gicr_ns_access(cs, irq);
 727
 728        if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
 729            (irqgrp == GICV3_G1 && nsaccess < 2)) {
 730            return;
 731        }
 732    }
 733
 734    /* OK, we can accept the SGI */
 735    trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
 736    cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
 737    gicv3_redist_update(cs);
 738}
 739