qemu/hw/mips/boston.c
<<
>>
Prefs
   1/*
   2 * MIPS Boston development board emulation.
   3 *
   4 * Copyright (c) 2016 Imagination Technologies
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/units.h"
  22
  23#include "elf.h"
  24#include "hw/boards.h"
  25#include "hw/char/serial.h"
  26#include "hw/ide/pci.h"
  27#include "hw/ide/ahci.h"
  28#include "hw/loader.h"
  29#include "hw/loader-fit.h"
  30#include "hw/mips/bootloader.h"
  31#include "hw/mips/cps.h"
  32#include "hw/pci-host/xilinx-pcie.h"
  33#include "hw/qdev-clock.h"
  34#include "hw/qdev-properties.h"
  35#include "qapi/error.h"
  36#include "qemu/error-report.h"
  37#include "qemu/log.h"
  38#include "chardev/char.h"
  39#include "sysemu/device_tree.h"
  40#include "sysemu/sysemu.h"
  41#include "sysemu/qtest.h"
  42#include "sysemu/runstate.h"
  43
  44#include <libfdt.h>
  45#include "qom/object.h"
  46
  47#define TYPE_BOSTON "mips-boston"
  48typedef struct BostonState BostonState;
  49DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
  50                         TYPE_BOSTON)
  51
  52#define FDT_IRQ_TYPE_NONE       0
  53#define FDT_IRQ_TYPE_LEVEL_HIGH 4
  54#define FDT_GIC_SHARED          0
  55#define FDT_GIC_LOCAL           1
  56#define FDT_BOSTON_CLK_SYS      1
  57#define FDT_BOSTON_CLK_CPU      2
  58#define FDT_PCI_IRQ_MAP_PINS    4
  59#define FDT_PCI_IRQ_MAP_DESCS   6
  60
  61struct BostonState {
  62    SysBusDevice parent_obj;
  63
  64    MachineState *mach;
  65    MIPSCPSState cps;
  66    SerialMM *uart;
  67    Clock *cpuclk;
  68
  69    CharBackend lcd_display;
  70    char lcd_content[8];
  71    bool lcd_inited;
  72
  73    hwaddr kernel_entry;
  74    hwaddr fdt_base;
  75};
  76
  77enum {
  78    BOSTON_LOWDDR,
  79    BOSTON_PCIE0,
  80    BOSTON_PCIE1,
  81    BOSTON_PCIE2,
  82    BOSTON_PCIE2_MMIO,
  83    BOSTON_CM,
  84    BOSTON_GIC,
  85    BOSTON_CDMM,
  86    BOSTON_CPC,
  87    BOSTON_PLATREG,
  88    BOSTON_UART,
  89    BOSTON_LCD,
  90    BOSTON_FLASH,
  91    BOSTON_PCIE1_MMIO,
  92    BOSTON_PCIE0_MMIO,
  93    BOSTON_HIGHDDR,
  94};
  95
  96static const MemMapEntry boston_memmap[] = {
  97    [BOSTON_LOWDDR] =     {        0x0,    0x10000000 },
  98    [BOSTON_PCIE0] =      { 0x10000000,     0x2000000 },
  99    [BOSTON_PCIE1] =      { 0x12000000,     0x2000000 },
 100    [BOSTON_PCIE2] =      { 0x14000000,     0x2000000 },
 101    [BOSTON_PCIE2_MMIO] = { 0x16000000,      0x100000 },
 102    [BOSTON_CM] =         { 0x16100000,       0x20000 },
 103    [BOSTON_GIC] =        { 0x16120000,       0x20000 },
 104    [BOSTON_CDMM] =       { 0x16140000,        0x8000 },
 105    [BOSTON_CPC] =        { 0x16200000,        0x8000 },
 106    [BOSTON_PLATREG] =    { 0x17ffd000,        0x1000 },
 107    [BOSTON_UART] =       { 0x17ffe000,          0x20 },
 108    [BOSTON_LCD] =        { 0x17fff000,           0x8 },
 109    [BOSTON_FLASH] =      { 0x18000000,     0x8000000 },
 110    [BOSTON_PCIE1_MMIO] = { 0x20000000,    0x20000000 },
 111    [BOSTON_PCIE0_MMIO] = { 0x40000000,    0x40000000 },
 112    [BOSTON_HIGHDDR] =    { 0x80000000,           0x0 },
 113};
 114
 115enum boston_plat_reg {
 116    PLAT_FPGA_BUILD     = 0x00,
 117    PLAT_CORE_CL        = 0x04,
 118    PLAT_WRAPPER_CL     = 0x08,
 119    PLAT_SYSCLK_STATUS  = 0x0c,
 120    PLAT_SOFTRST_CTL    = 0x10,
 121#define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
 122    PLAT_DDR3_STATUS    = 0x14,
 123#define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
 124#define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
 125    PLAT_PCIE_STATUS    = 0x18,
 126#define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
 127#define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
 128#define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
 129    PLAT_FLASH_CTL      = 0x1c,
 130    PLAT_SPARE0         = 0x20,
 131    PLAT_SPARE1         = 0x24,
 132    PLAT_SPARE2         = 0x28,
 133    PLAT_SPARE3         = 0x2c,
 134    PLAT_MMCM_DIV       = 0x30,
 135#define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
 136#define PLAT_MMCM_DIV_INPUT_SHIFT       8
 137#define PLAT_MMCM_DIV_MUL_SHIFT         16
 138#define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
 139    PLAT_BUILD_CFG      = 0x34,
 140#define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
 141#define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
 142#define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
 143#define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
 144    PLAT_DDR_CFG        = 0x38,
 145#define PLAT_DDR_CFG_SIZE               (0xf << 0)
 146#define PLAT_DDR_CFG_MHZ                (0xfff << 4)
 147    PLAT_NOC_PCIE0_ADDR = 0x3c,
 148    PLAT_NOC_PCIE1_ADDR = 0x40,
 149    PLAT_NOC_PCIE2_ADDR = 0x44,
 150    PLAT_SYS_CTL        = 0x48,
 151};
 152
 153static void boston_lcd_event(void *opaque, QEMUChrEvent event)
 154{
 155    BostonState *s = opaque;
 156    if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
 157        qemu_chr_fe_printf(&s->lcd_display, "        ");
 158        s->lcd_inited = true;
 159    }
 160}
 161
 162static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
 163                                unsigned size)
 164{
 165    BostonState *s = opaque;
 166    uint64_t val = 0;
 167
 168    switch (size) {
 169    case 8:
 170        val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
 171        val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
 172        val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
 173        val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
 174        /* fall through */
 175    case 4:
 176        val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
 177        val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
 178        /* fall through */
 179    case 2:
 180        val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
 181        /* fall through */
 182    case 1:
 183        val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
 184        break;
 185    }
 186
 187    return val;
 188}
 189
 190static void boston_lcd_write(void *opaque, hwaddr addr,
 191                             uint64_t val, unsigned size)
 192{
 193    BostonState *s = opaque;
 194
 195    switch (size) {
 196    case 8:
 197        s->lcd_content[(addr + 7) & 0x7] = val >> 56;
 198        s->lcd_content[(addr + 6) & 0x7] = val >> 48;
 199        s->lcd_content[(addr + 5) & 0x7] = val >> 40;
 200        s->lcd_content[(addr + 4) & 0x7] = val >> 32;
 201        /* fall through */
 202    case 4:
 203        s->lcd_content[(addr + 3) & 0x7] = val >> 24;
 204        s->lcd_content[(addr + 2) & 0x7] = val >> 16;
 205        /* fall through */
 206    case 2:
 207        s->lcd_content[(addr + 1) & 0x7] = val >> 8;
 208        /* fall through */
 209    case 1:
 210        s->lcd_content[(addr + 0) & 0x7] = val;
 211        break;
 212    }
 213
 214    qemu_chr_fe_printf(&s->lcd_display,
 215                       "\r%-8.8s", s->lcd_content);
 216}
 217
 218static const MemoryRegionOps boston_lcd_ops = {
 219    .read = boston_lcd_read,
 220    .write = boston_lcd_write,
 221    .endianness = DEVICE_NATIVE_ENDIAN,
 222};
 223
 224static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
 225                                    unsigned size)
 226{
 227    BostonState *s = opaque;
 228    uint32_t gic_freq, val;
 229
 230    if (size != 4) {
 231        qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
 232        return 0;
 233    }
 234
 235    switch (addr & 0xffff) {
 236    case PLAT_FPGA_BUILD:
 237    case PLAT_CORE_CL:
 238    case PLAT_WRAPPER_CL:
 239        return 0;
 240    case PLAT_DDR3_STATUS:
 241        return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
 242    case PLAT_MMCM_DIV:
 243        gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
 244        val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
 245        val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
 246        val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
 247        val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
 248        return val;
 249    case PLAT_BUILD_CFG:
 250        val = PLAT_BUILD_CFG_PCIE0_EN;
 251        val |= PLAT_BUILD_CFG_PCIE1_EN;
 252        val |= PLAT_BUILD_CFG_PCIE2_EN;
 253        return val;
 254    case PLAT_DDR_CFG:
 255        val = s->mach->ram_size / GiB;
 256        assert(!(val & ~PLAT_DDR_CFG_SIZE));
 257        val |= PLAT_DDR_CFG_MHZ;
 258        return val;
 259    default:
 260        qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
 261                      addr & 0xffff);
 262        return 0;
 263    }
 264}
 265
 266static void boston_platreg_write(void *opaque, hwaddr addr,
 267                                 uint64_t val, unsigned size)
 268{
 269    if (size != 4) {
 270        qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
 271        return;
 272    }
 273
 274    switch (addr & 0xffff) {
 275    case PLAT_FPGA_BUILD:
 276    case PLAT_CORE_CL:
 277    case PLAT_WRAPPER_CL:
 278    case PLAT_DDR3_STATUS:
 279    case PLAT_PCIE_STATUS:
 280    case PLAT_MMCM_DIV:
 281    case PLAT_BUILD_CFG:
 282    case PLAT_DDR_CFG:
 283        /* read only */
 284        break;
 285    case PLAT_SOFTRST_CTL:
 286        if (val & PLAT_SOFTRST_CTL_SYSRESET) {
 287            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 288        }
 289        break;
 290    default:
 291        qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
 292                      " = 0x%" PRIx64 "\n", addr & 0xffff, val);
 293        break;
 294    }
 295}
 296
 297static const MemoryRegionOps boston_platreg_ops = {
 298    .read = boston_platreg_read,
 299    .write = boston_platreg_write,
 300    .endianness = DEVICE_NATIVE_ENDIAN,
 301};
 302
 303static void mips_boston_instance_init(Object *obj)
 304{
 305    BostonState *s = BOSTON(obj);
 306
 307    s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
 308    clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
 309}
 310
 311static const TypeInfo boston_device = {
 312    .name          = TYPE_BOSTON,
 313    .parent        = TYPE_SYS_BUS_DEVICE,
 314    .instance_size = sizeof(BostonState),
 315    .instance_init = mips_boston_instance_init,
 316};
 317
 318static void boston_register_types(void)
 319{
 320    type_register_static(&boston_device);
 321}
 322type_init(boston_register_types)
 323
 324static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr)
 325{
 326    uint64_t regaddr;
 327
 328    /* Move CM GCRs */
 329    regaddr = cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS),
 330    bl_gen_write_ulong(&p, regaddr,
 331                       boston_memmap[BOSTON_CM].base);
 332
 333    /* Move & enable GIC GCRs */
 334    regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
 335                                           + GCR_GIC_BASE_OFS),
 336    bl_gen_write_ulong(&p, regaddr,
 337                       boston_memmap[BOSTON_GIC].base | GCR_GIC_BASE_GICEN_MSK);
 338
 339    /* Move & enable CPC GCRs */
 340    regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
 341                                           + GCR_CPC_BASE_OFS),
 342    bl_gen_write_ulong(&p, regaddr,
 343                       boston_memmap[BOSTON_CPC].base | GCR_CPC_BASE_CPCEN_MSK);
 344
 345    /*
 346     * Setup argument registers to follow the UHI boot protocol:
 347     *
 348     * a0/$4 = -2
 349     * a1/$5 = virtual address of FDT
 350     * a2/$6 = 0
 351     * a3/$7 = 0
 352     */
 353    bl_gen_jump_kernel(&p, 0, (int32_t)-2, fdt_addr, 0, 0, kernel_entry);
 354}
 355
 356static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
 357                                     const void *match_data, hwaddr *load_addr)
 358{
 359    BostonState *s = BOSTON(opaque);
 360    MachineState *machine = s->mach;
 361    const char *cmdline;
 362    int err;
 363    size_t ram_low_sz, ram_high_sz;
 364    size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
 365    g_autofree void *fdt = g_malloc0(fdt_sz);
 366
 367    err = fdt_open_into(fdt_orig, fdt, fdt_sz);
 368    if (err) {
 369        fprintf(stderr, "unable to open FDT\n");
 370        return NULL;
 371    }
 372
 373    cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
 374            ? machine->kernel_cmdline : " ";
 375    err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
 376    if (err < 0) {
 377        fprintf(stderr, "couldn't set /chosen/bootargs\n");
 378        return NULL;
 379    }
 380
 381    ram_low_sz = MIN(256 * MiB, machine->ram_size);
 382    ram_high_sz = machine->ram_size - ram_low_sz;
 383    qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
 384                        1, boston_memmap[BOSTON_LOWDDR].base, 1, ram_low_sz,
 385                        1, boston_memmap[BOSTON_HIGHDDR].base + ram_low_sz,
 386                        1, ram_high_sz);
 387
 388    fdt = g_realloc(fdt, fdt_totalsize(fdt));
 389    qemu_fdt_dumpdtb(fdt, fdt_sz);
 390
 391    s->fdt_base = *load_addr;
 392
 393    return g_steal_pointer(&fdt);
 394}
 395
 396static const void *boston_kernel_filter(void *opaque, const void *kernel,
 397                                        hwaddr *load_addr, hwaddr *entry_addr)
 398{
 399    BostonState *s = BOSTON(opaque);
 400
 401    s->kernel_entry = *entry_addr;
 402
 403    return kernel;
 404}
 405
 406static const struct fit_loader_match boston_matches[] = {
 407    { "img,boston" },
 408    { NULL },
 409};
 410
 411static const struct fit_loader boston_fit_loader = {
 412    .matches = boston_matches,
 413    .addr_to_phys = cpu_mips_kseg0_to_phys,
 414    .fdt_filter = boston_fdt_filter,
 415    .kernel_filter = boston_kernel_filter,
 416};
 417
 418static inline XilinxPCIEHost *
 419xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
 420                 hwaddr cfg_base, uint64_t cfg_size,
 421                 hwaddr mmio_base, uint64_t mmio_size,
 422                 qemu_irq irq, bool link_up)
 423{
 424    DeviceState *dev;
 425    MemoryRegion *cfg, *mmio;
 426
 427    dev = qdev_new(TYPE_XILINX_PCIE_HOST);
 428
 429    qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
 430    qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
 431    qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
 432    qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
 433    qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
 434    qdev_prop_set_bit(dev, "link_up", link_up);
 435
 436    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 437
 438    cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
 439    memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
 440
 441    mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
 442    memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
 443
 444    qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
 445
 446    return XILINX_PCIE_HOST(dev);
 447}
 448
 449
 450static void fdt_create_pcie(void *fdt, int gic_ph, int irq, hwaddr reg_base,
 451                            hwaddr reg_size, hwaddr mmio_base, hwaddr mmio_size)
 452{
 453    int i;
 454    char *name, *intc_name;
 455    uint32_t intc_ph;
 456    uint32_t interrupt_map[FDT_PCI_IRQ_MAP_PINS][FDT_PCI_IRQ_MAP_DESCS];
 457
 458    intc_ph = qemu_fdt_alloc_phandle(fdt);
 459    name = g_strdup_printf("/soc/pci@%" HWADDR_PRIx, reg_base);
 460    qemu_fdt_add_subnode(fdt, name);
 461    qemu_fdt_setprop_string(fdt, name, "compatible",
 462                            "xlnx,axi-pcie-host-1.00.a");
 463    qemu_fdt_setprop_string(fdt, name, "device_type", "pci");
 464    qemu_fdt_setprop_cells(fdt, name, "reg", reg_base, reg_size);
 465
 466    qemu_fdt_setprop_cell(fdt, name, "#address-cells", 3);
 467    qemu_fdt_setprop_cell(fdt, name, "#size-cells", 2);
 468    qemu_fdt_setprop_cell(fdt, name, "#interrupt-cells", 1);
 469
 470    qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
 471    qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, irq,
 472                            FDT_IRQ_TYPE_LEVEL_HIGH);
 473
 474    qemu_fdt_setprop_cells(fdt, name, "ranges", 0x02000000, 0, mmio_base,
 475                            mmio_base, 0, mmio_size);
 476    qemu_fdt_setprop_cells(fdt, name, "bus-range", 0x00, 0xff);
 477
 478
 479
 480    intc_name = g_strdup_printf("%s/interrupt-controller", name);
 481    qemu_fdt_add_subnode(fdt, intc_name);
 482    qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
 483    qemu_fdt_setprop_cell(fdt, intc_name, "#address-cells", 0);
 484    qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
 485    qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_ph);
 486
 487    qemu_fdt_setprop_cells(fdt, name, "interrupt-map-mask", 0, 0, 0, 7);
 488    for (i = 0; i < FDT_PCI_IRQ_MAP_PINS; i++) {
 489        uint32_t *irqmap = interrupt_map[i];
 490
 491        irqmap[0] = cpu_to_be32(0);
 492        irqmap[1] = cpu_to_be32(0);
 493        irqmap[2] = cpu_to_be32(0);
 494        irqmap[3] = cpu_to_be32(i + 1);
 495        irqmap[4] = cpu_to_be32(intc_ph);
 496        irqmap[5] = cpu_to_be32(i + 1);
 497    }
 498    qemu_fdt_setprop(fdt, name, "interrupt-map",
 499                     &interrupt_map, sizeof(interrupt_map));
 500
 501    g_free(intc_name);
 502    g_free(name);
 503}
 504
 505static const void *create_fdt(BostonState *s,
 506                              const MemMapEntry *memmap, int *dt_size)
 507{
 508    void *fdt;
 509    int cpu;
 510    MachineState *mc = s->mach;
 511    uint32_t platreg_ph, gic_ph, clk_ph;
 512    char *name, *gic_name, *platreg_name, *stdout_name;
 513    static const char * const syscon_compat[2] = {
 514        "img,boston-platform-regs", "syscon"
 515    };
 516
 517    fdt = create_device_tree(dt_size);
 518    if (!fdt) {
 519        error_report("create_device_tree() failed");
 520        exit(1);
 521    }
 522
 523    platreg_ph = qemu_fdt_alloc_phandle(fdt);
 524    gic_ph = qemu_fdt_alloc_phandle(fdt);
 525    clk_ph = qemu_fdt_alloc_phandle(fdt);
 526
 527    qemu_fdt_setprop_string(fdt, "/", "model", "img,boston");
 528    qemu_fdt_setprop_string(fdt, "/", "compatible", "img,boston");
 529    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x1);
 530    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x1);
 531
 532
 533    qemu_fdt_add_subnode(fdt, "/cpus");
 534    qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
 535    qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
 536
 537    for (cpu = 0; cpu < mc->smp.cpus; cpu++) {
 538        name = g_strdup_printf("/cpus/cpu@%d", cpu);
 539        qemu_fdt_add_subnode(fdt, name);
 540        qemu_fdt_setprop_string(fdt, name, "compatible", "img,mips");
 541        qemu_fdt_setprop_string(fdt, name, "status", "okay");
 542        qemu_fdt_setprop_cell(fdt, name, "reg", cpu);
 543        qemu_fdt_setprop_string(fdt, name, "device_type", "cpu");
 544        qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
 545        g_free(name);
 546    }
 547
 548    qemu_fdt_add_subnode(fdt, "/soc");
 549    qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
 550    qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
 551    qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x1);
 552    qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x1);
 553
 554    fdt_create_pcie(fdt, gic_ph, 2,
 555                memmap[BOSTON_PCIE0].base, memmap[BOSTON_PCIE0].size,
 556                memmap[BOSTON_PCIE0_MMIO].base, memmap[BOSTON_PCIE0_MMIO].size);
 557
 558    fdt_create_pcie(fdt, gic_ph, 1,
 559                memmap[BOSTON_PCIE1].base, memmap[BOSTON_PCIE1].size,
 560                memmap[BOSTON_PCIE1_MMIO].base, memmap[BOSTON_PCIE1_MMIO].size);
 561
 562    fdt_create_pcie(fdt, gic_ph, 0,
 563                memmap[BOSTON_PCIE2].base, memmap[BOSTON_PCIE2].size,
 564                memmap[BOSTON_PCIE2_MMIO].base, memmap[BOSTON_PCIE2_MMIO].size);
 565
 566    /* GIC with it's timer node */
 567    gic_name = g_strdup_printf("/soc/interrupt-controller@%" HWADDR_PRIx,
 568                                memmap[BOSTON_GIC].base);
 569    qemu_fdt_add_subnode(fdt, gic_name);
 570    qemu_fdt_setprop_string(fdt, gic_name, "compatible", "mti,gic");
 571    qemu_fdt_setprop_cells(fdt, gic_name, "reg", memmap[BOSTON_GIC].base,
 572                            memmap[BOSTON_GIC].size);
 573    qemu_fdt_setprop(fdt, gic_name, "interrupt-controller", NULL, 0);
 574    qemu_fdt_setprop_cell(fdt, gic_name, "#interrupt-cells", 3);
 575    qemu_fdt_setprop_cell(fdt, gic_name, "phandle", gic_ph);
 576
 577    name = g_strdup_printf("%s/timer", gic_name);
 578    qemu_fdt_add_subnode(fdt, name);
 579    qemu_fdt_setprop_string(fdt, name, "compatible", "mti,gic-timer");
 580    qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_LOCAL, 1,
 581                            FDT_IRQ_TYPE_NONE);
 582    qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
 583    g_free(name);
 584    g_free(gic_name);
 585
 586    /* CDMM node */
 587    name = g_strdup_printf("/soc/cdmm@%" HWADDR_PRIx, memmap[BOSTON_CDMM].base);
 588    qemu_fdt_add_subnode(fdt, name);
 589    qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cdmm");
 590    qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CDMM].base,
 591                            memmap[BOSTON_CDMM].size);
 592    g_free(name);
 593
 594    /* CPC node */
 595    name = g_strdup_printf("/soc/cpc@%" HWADDR_PRIx, memmap[BOSTON_CPC].base);
 596    qemu_fdt_add_subnode(fdt, name);
 597    qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cpc");
 598    qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CPC].base,
 599                            memmap[BOSTON_CPC].size);
 600    g_free(name);
 601
 602    /* platreg and it's clk node */
 603    platreg_name = g_strdup_printf("/soc/system-controller@%" HWADDR_PRIx,
 604                                   memmap[BOSTON_PLATREG].base);
 605    qemu_fdt_add_subnode(fdt, platreg_name);
 606    qemu_fdt_setprop_string_array(fdt, platreg_name, "compatible",
 607                                 (char **)&syscon_compat,
 608                                 ARRAY_SIZE(syscon_compat));
 609    qemu_fdt_setprop_cells(fdt, platreg_name, "reg",
 610                           memmap[BOSTON_PLATREG].base,
 611                           memmap[BOSTON_PLATREG].size);
 612    qemu_fdt_setprop_cell(fdt, platreg_name, "phandle", platreg_ph);
 613
 614    name = g_strdup_printf("%s/clock", platreg_name);
 615    qemu_fdt_add_subnode(fdt, name);
 616    qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-clock");
 617    qemu_fdt_setprop_cell(fdt, name, "#clock-cells", 1);
 618    qemu_fdt_setprop_cell(fdt, name, "phandle", clk_ph);
 619    g_free(name);
 620    g_free(platreg_name);
 621
 622    /* reboot node */
 623    name = g_strdup_printf("/soc/reboot");
 624    qemu_fdt_add_subnode(fdt, name);
 625    qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-reboot");
 626    qemu_fdt_setprop_cell(fdt, name, "regmap", platreg_ph);
 627    qemu_fdt_setprop_cell(fdt, name, "offset", 0x10);
 628    qemu_fdt_setprop_cell(fdt, name, "mask", 0x10);
 629    g_free(name);
 630
 631    /* uart node */
 632    name = g_strdup_printf("/soc/uart@%" HWADDR_PRIx, memmap[BOSTON_UART].base);
 633    qemu_fdt_add_subnode(fdt, name);
 634    qemu_fdt_setprop_string(fdt, name, "compatible", "ns16550a");
 635    qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_UART].base,
 636                            memmap[BOSTON_UART].size);
 637    qemu_fdt_setprop_cell(fdt, name, "reg-shift", 0x2);
 638    qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
 639    qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, 3,
 640                            FDT_IRQ_TYPE_LEVEL_HIGH);
 641    qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_SYS);
 642
 643    qemu_fdt_add_subnode(fdt, "/chosen");
 644    stdout_name = g_strdup_printf("%s:115200", name);
 645    qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", stdout_name);
 646    g_free(stdout_name);
 647    g_free(name);
 648
 649    /* lcd node */
 650    name = g_strdup_printf("/soc/lcd@%" HWADDR_PRIx, memmap[BOSTON_LCD].base);
 651    qemu_fdt_add_subnode(fdt, name);
 652    qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-lcd");
 653    qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_LCD].base,
 654                            memmap[BOSTON_LCD].size);
 655    g_free(name);
 656
 657    name = g_strdup_printf("/memory@0");
 658    qemu_fdt_add_subnode(fdt, name);
 659    qemu_fdt_setprop_string(fdt, name, "device_type", "memory");
 660    g_free(name);
 661
 662    return fdt;
 663}
 664
 665static void boston_mach_init(MachineState *machine)
 666{
 667    DeviceState *dev;
 668    BostonState *s;
 669    MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
 670    MemoryRegion *sys_mem = get_system_memory();
 671    XilinxPCIEHost *pcie2;
 672    PCIDevice *ahci;
 673    DriveInfo *hd[6];
 674    Chardev *chr;
 675    int fw_size, fit_err;
 676
 677    if ((machine->ram_size % GiB) ||
 678        (machine->ram_size > (2 * GiB))) {
 679        error_report("Memory size must be 1GB or 2GB");
 680        exit(1);
 681    }
 682
 683    dev = qdev_new(TYPE_BOSTON);
 684    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 685
 686    s = BOSTON(dev);
 687    s->mach = machine;
 688
 689    if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
 690        error_report("Boston requires CPUs which support CPS");
 691        exit(1);
 692    }
 693
 694    object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
 695    object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
 696                            &error_fatal);
 697    object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
 698                            &error_fatal);
 699    qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
 700                          qdev_get_clock_out(dev, "cpu-refclk"));
 701    sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
 702
 703    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
 704
 705    flash =  g_new(MemoryRegion, 1);
 706    memory_region_init_rom(flash, NULL, "boston.flash",
 707                           boston_memmap[BOSTON_FLASH].size, &error_fatal);
 708    memory_region_add_subregion_overlap(sys_mem,
 709                                        boston_memmap[BOSTON_FLASH].base,
 710                                        flash, 0);
 711
 712    memory_region_add_subregion_overlap(sys_mem,
 713                                        boston_memmap[BOSTON_HIGHDDR].base,
 714                                        machine->ram, 0);
 715
 716    ddr_low_alias = g_new(MemoryRegion, 1);
 717    memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
 718                             machine->ram, 0,
 719                             MIN(machine->ram_size, (256 * MiB)));
 720    memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
 721
 722    xilinx_pcie_init(sys_mem, 0,
 723                     boston_memmap[BOSTON_PCIE0].base,
 724                     boston_memmap[BOSTON_PCIE0].size,
 725                     boston_memmap[BOSTON_PCIE0_MMIO].base,
 726                     boston_memmap[BOSTON_PCIE0_MMIO].size,
 727                     get_cps_irq(&s->cps, 2), false);
 728
 729    xilinx_pcie_init(sys_mem, 1,
 730                     boston_memmap[BOSTON_PCIE1].base,
 731                     boston_memmap[BOSTON_PCIE1].size,
 732                     boston_memmap[BOSTON_PCIE1_MMIO].base,
 733                     boston_memmap[BOSTON_PCIE1_MMIO].size,
 734                     get_cps_irq(&s->cps, 1), false);
 735
 736    pcie2 = xilinx_pcie_init(sys_mem, 2,
 737                             boston_memmap[BOSTON_PCIE2].base,
 738                             boston_memmap[BOSTON_PCIE2].size,
 739                             boston_memmap[BOSTON_PCIE2_MMIO].base,
 740                             boston_memmap[BOSTON_PCIE2_MMIO].size,
 741                             get_cps_irq(&s->cps, 0), true);
 742
 743    platreg = g_new(MemoryRegion, 1);
 744    memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
 745                          "boston-platregs",
 746                          boston_memmap[BOSTON_PLATREG].size);
 747    memory_region_add_subregion_overlap(sys_mem,
 748                          boston_memmap[BOSTON_PLATREG].base, platreg, 0);
 749
 750    s->uart = serial_mm_init(sys_mem, boston_memmap[BOSTON_UART].base, 2,
 751                             get_cps_irq(&s->cps, 3), 10000000,
 752                             serial_hd(0), DEVICE_NATIVE_ENDIAN);
 753
 754    lcd = g_new(MemoryRegion, 1);
 755    memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
 756    memory_region_add_subregion_overlap(sys_mem,
 757                                        boston_memmap[BOSTON_LCD].base, lcd, 0);
 758
 759    chr = qemu_chr_new("lcd", "vc:320x240", NULL);
 760    qemu_chr_fe_init(&s->lcd_display, chr, NULL);
 761    qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
 762                             boston_lcd_event, NULL, s, NULL, true);
 763
 764    ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
 765                                           PCI_DEVFN(0, 0),
 766                                           true, TYPE_ICH9_AHCI);
 767    g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
 768    ide_drive_get(hd, ahci_get_num_ports(ahci));
 769    ahci_ide_create_devs(ahci, hd);
 770
 771    if (machine->firmware) {
 772        fw_size = load_image_targphys(machine->firmware,
 773                                      0x1fc00000, 4 * MiB);
 774        if (fw_size == -1) {
 775            error_report("unable to load firmware image '%s'",
 776                          machine->firmware);
 777            exit(1);
 778        }
 779    } else if (machine->kernel_filename) {
 780        uint64_t kernel_entry, kernel_high;
 781        ssize_t kernel_size;
 782
 783        kernel_size = load_elf(machine->kernel_filename, NULL,
 784                           cpu_mips_kseg0_to_phys, NULL,
 785                           &kernel_entry, NULL, &kernel_high,
 786                           NULL, 0, EM_MIPS, 1, 0);
 787
 788        if (kernel_size > 0) {
 789            int dt_size;
 790            g_autofree const void *dtb_file_data, *dtb_load_data;
 791            hwaddr dtb_paddr = QEMU_ALIGN_UP(kernel_high, 64 * KiB);
 792            hwaddr dtb_vaddr = cpu_mips_phys_to_kseg0(NULL, dtb_paddr);
 793
 794            s->kernel_entry = kernel_entry;
 795            if (machine->dtb) {
 796                dtb_file_data = load_device_tree(machine->dtb, &dt_size);
 797            } else {
 798                dtb_file_data = create_fdt(s, boston_memmap, &dt_size);
 799            }
 800
 801            dtb_load_data = boston_fdt_filter(s, dtb_file_data,
 802                                              NULL, &dtb_vaddr);
 803
 804            /* Calculate real fdt size after filter */
 805            dt_size = fdt_totalsize(dtb_load_data);
 806            rom_add_blob_fixed("dtb", dtb_load_data, dt_size, dtb_paddr);
 807        } else {
 808            /* Try to load file as FIT */
 809            fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
 810            if (fit_err) {
 811                error_report("unable to load kernel image");
 812                exit(1);
 813            }
 814        }
 815
 816        gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
 817                     s->kernel_entry, s->fdt_base);
 818    } else if (!qtest_enabled()) {
 819        error_report("Please provide either a -kernel or -bios argument");
 820        exit(1);
 821    }
 822}
 823
 824static void boston_mach_class_init(MachineClass *mc)
 825{
 826    mc->desc = "MIPS Boston";
 827    mc->init = boston_mach_init;
 828    mc->block_default_type = IF_IDE;
 829    mc->default_ram_size = 1 * GiB;
 830    mc->default_ram_id = "boston.ddr";
 831    mc->max_cpus = 16;
 832    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
 833}
 834
 835DEFINE_MACHINE("boston", boston_mach_class_init)
 836