qemu/hw/mips/malta.c
<<
>>
Prefs
   1/*
   2 * QEMU Malta board support
   3 *
   4 * Copyright (c) 2006 Aurelien Jarno
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu/units.h"
  27#include "qemu/bitops.h"
  28#include "qemu-common.h"
  29#include "qemu/datadir.h"
  30#include "hw/clock.h"
  31#include "hw/southbridge/piix.h"
  32#include "hw/isa/superio.h"
  33#include "hw/char/serial.h"
  34#include "net/net.h"
  35#include "hw/boards.h"
  36#include "hw/i2c/smbus_eeprom.h"
  37#include "hw/block/flash.h"
  38#include "hw/mips/mips.h"
  39#include "hw/mips/cpudevs.h"
  40#include "hw/pci/pci.h"
  41#include "qemu/log.h"
  42#include "hw/mips/bios.h"
  43#include "hw/ide.h"
  44#include "hw/irq.h"
  45#include "hw/loader.h"
  46#include "elf.h"
  47#include "qom/object.h"
  48#include "hw/sysbus.h"             /* SysBusDevice */
  49#include "qemu/host-utils.h"
  50#include "sysemu/qtest.h"
  51#include "sysemu/reset.h"
  52#include "sysemu/runstate.h"
  53#include "qapi/error.h"
  54#include "qemu/error-report.h"
  55#include "hw/misc/empty_slot.h"
  56#include "sysemu/kvm.h"
  57#include "semihosting/semihost.h"
  58#include "hw/mips/cps.h"
  59#include "hw/qdev-clock.h"
  60
  61#define ENVP_PADDR          0x2000
  62#define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
  63#define ENVP_NB_ENTRIES     16
  64#define ENVP_ENTRY_SIZE     256
  65
  66/* Hardware addresses */
  67#define FLASH_ADDRESS       0x1e000000ULL
  68#define FPGA_ADDRESS        0x1f000000ULL
  69#define RESET_ADDRESS       0x1fc00000ULL
  70
  71#define FLASH_SIZE          0x400000
  72
  73#define MAX_IDE_BUS         2
  74
  75typedef struct {
  76    MemoryRegion iomem;
  77    MemoryRegion iomem_lo; /* 0 - 0x900 */
  78    MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
  79    uint32_t leds;
  80    uint32_t brk;
  81    uint32_t gpout;
  82    uint32_t i2cin;
  83    uint32_t i2coe;
  84    uint32_t i2cout;
  85    uint32_t i2csel;
  86    CharBackend display;
  87    char display_text[9];
  88    SerialMM *uart;
  89    bool display_inited;
  90} MaltaFPGAState;
  91
  92#define TYPE_MIPS_MALTA "mips-malta"
  93OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
  94
  95struct MaltaState {
  96    SysBusDevice parent_obj;
  97
  98    Clock *cpuclk;
  99    MIPSCPSState cps;
 100    qemu_irq i8259[ISA_NUM_IRQS];
 101};
 102
 103static struct _loaderparams {
 104    int ram_size, ram_low_size;
 105    const char *kernel_filename;
 106    const char *kernel_cmdline;
 107    const char *initrd_filename;
 108} loaderparams;
 109
 110/* Malta FPGA */
 111static void malta_fpga_update_display(void *opaque)
 112{
 113    char leds_text[9];
 114    int i;
 115    MaltaFPGAState *s = opaque;
 116
 117    for (i = 7 ; i >= 0 ; i--) {
 118        if (s->leds & (1 << i)) {
 119            leds_text[i] = '#';
 120        } else {
 121            leds_text[i] = ' ';
 122        }
 123    }
 124    leds_text[8] = '\0';
 125
 126    qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
 127                       leds_text);
 128    qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
 129                       s->display_text);
 130}
 131
 132/*
 133 * EEPROM 24C01 / 24C02 emulation.
 134 *
 135 * Emulation for serial EEPROMs:
 136 * 24C01 - 1024 bit (128 x 8)
 137 * 24C02 - 2048 bit (256 x 8)
 138 *
 139 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
 140 */
 141
 142#if defined(DEBUG)
 143#  define logout(fmt, ...) \
 144          fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
 145#else
 146#  define logout(fmt, ...) ((void)0)
 147#endif
 148
 149struct _eeprom24c0x_t {
 150  uint8_t tick;
 151  uint8_t address;
 152  uint8_t command;
 153  uint8_t ack;
 154  uint8_t scl;
 155  uint8_t sda;
 156  uint8_t data;
 157  /* uint16_t size; */
 158  uint8_t contents[256];
 159};
 160
 161typedef struct _eeprom24c0x_t eeprom24c0x_t;
 162
 163static eeprom24c0x_t spd_eeprom = {
 164    .contents = {
 165        /* 00000000: */
 166        0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
 167        /* 00000008: */
 168        0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
 169        /* 00000010: */
 170        0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
 171        /* 00000018: */
 172        0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
 173        /* 00000020: */
 174        0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
 175        /* 00000028: */
 176        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 177        /* 00000030: */
 178        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 179        /* 00000038: */
 180        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
 181        /* 00000040: */
 182        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 183        /* 00000048: */
 184        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 185        /* 00000050: */
 186        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 187        /* 00000058: */
 188        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 189        /* 00000060: */
 190        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 191        /* 00000068: */
 192        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 193        /* 00000070: */
 194        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 195        /* 00000078: */
 196        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
 197    },
 198};
 199
 200static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
 201{
 202    enum { SDR = 0x4, DDR2 = 0x8 } type;
 203    uint8_t *spd = spd_eeprom.contents;
 204    uint8_t nbanks = 0;
 205    uint16_t density = 0;
 206    int i;
 207
 208    /* work in terms of MB */
 209    ram_size /= MiB;
 210
 211    while ((ram_size >= 4) && (nbanks <= 2)) {
 212        int sz_log2 = MIN(31 - clz32(ram_size), 14);
 213        nbanks++;
 214        density |= 1 << (sz_log2 - 2);
 215        ram_size -= 1 << sz_log2;
 216    }
 217
 218    /* split to 2 banks if possible */
 219    if ((nbanks == 1) && (density > 1)) {
 220        nbanks++;
 221        density >>= 1;
 222    }
 223
 224    if (density & 0xff00) {
 225        density = (density & 0xe0) | ((density >> 8) & 0x1f);
 226        type = DDR2;
 227    } else if (!(density & 0x1f)) {
 228        type = DDR2;
 229    } else {
 230        type = SDR;
 231    }
 232
 233    if (ram_size) {
 234        warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
 235                    " of SDRAM", ram_size);
 236    }
 237
 238    /* fill in SPD memory information */
 239    spd[2] = type;
 240    spd[5] = nbanks;
 241    spd[31] = density;
 242
 243    /* checksum */
 244    spd[63] = 0;
 245    for (i = 0; i < 63; i++) {
 246        spd[63] += spd[i];
 247    }
 248
 249    /* copy for SMBUS */
 250    memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
 251}
 252
 253static void generate_eeprom_serial(uint8_t *eeprom)
 254{
 255    int i, pos = 0;
 256    uint8_t mac[6] = { 0x00 };
 257    uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
 258
 259    /* version */
 260    eeprom[pos++] = 0x01;
 261
 262    /* count */
 263    eeprom[pos++] = 0x02;
 264
 265    /* MAC address */
 266    eeprom[pos++] = 0x01; /* MAC */
 267    eeprom[pos++] = 0x06; /* length */
 268    memcpy(&eeprom[pos], mac, sizeof(mac));
 269    pos += sizeof(mac);
 270
 271    /* serial number */
 272    eeprom[pos++] = 0x02; /* serial */
 273    eeprom[pos++] = 0x05; /* length */
 274    memcpy(&eeprom[pos], sn, sizeof(sn));
 275    pos += sizeof(sn);
 276
 277    /* checksum */
 278    eeprom[pos] = 0;
 279    for (i = 0; i < pos; i++) {
 280        eeprom[pos] += eeprom[i];
 281    }
 282}
 283
 284static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
 285{
 286    logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
 287        eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
 288    return eeprom->sda;
 289}
 290
 291static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
 292{
 293    if (eeprom->scl && scl && (eeprom->sda != sda)) {
 294        logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
 295                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
 296                sda ? "stop" : "start");
 297        if (!sda) {
 298            eeprom->tick = 1;
 299            eeprom->command = 0;
 300        }
 301    } else if (eeprom->tick == 0 && !eeprom->ack) {
 302        /* Waiting for start. */
 303        logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
 304                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
 305    } else if (!eeprom->scl && scl) {
 306        logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
 307                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
 308        if (eeprom->ack) {
 309            logout("\ti2c ack bit = 0\n");
 310            sda = 0;
 311            eeprom->ack = 0;
 312        } else if (eeprom->sda == sda) {
 313            uint8_t bit = (sda != 0);
 314            logout("\ti2c bit = %d\n", bit);
 315            if (eeprom->tick < 9) {
 316                eeprom->command <<= 1;
 317                eeprom->command += bit;
 318                eeprom->tick++;
 319                if (eeprom->tick == 9) {
 320                    logout("\tcommand 0x%04x, %s\n", eeprom->command,
 321                           bit ? "read" : "write");
 322                    eeprom->ack = 1;
 323                }
 324            } else if (eeprom->tick < 17) {
 325                if (eeprom->command & 1) {
 326                    sda = ((eeprom->data & 0x80) != 0);
 327                }
 328                eeprom->address <<= 1;
 329                eeprom->address += bit;
 330                eeprom->tick++;
 331                eeprom->data <<= 1;
 332                if (eeprom->tick == 17) {
 333                    eeprom->data = eeprom->contents[eeprom->address];
 334                    logout("\taddress 0x%04x, data 0x%02x\n",
 335                           eeprom->address, eeprom->data);
 336                    eeprom->ack = 1;
 337                    eeprom->tick = 0;
 338                }
 339            } else if (eeprom->tick >= 17) {
 340                sda = 0;
 341            }
 342        } else {
 343            logout("\tsda changed with raising scl\n");
 344        }
 345    } else {
 346        logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
 347               scl, eeprom->sda, sda);
 348    }
 349    eeprom->scl = scl;
 350    eeprom->sda = sda;
 351}
 352
 353static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
 354                                unsigned size)
 355{
 356    MaltaFPGAState *s = opaque;
 357    uint32_t val = 0;
 358    uint32_t saddr;
 359
 360    saddr = (addr & 0xfffff);
 361
 362    switch (saddr) {
 363
 364    /* SWITCH Register */
 365    case 0x00200:
 366        val = 0x00000000;
 367        break;
 368
 369    /* STATUS Register */
 370    case 0x00208:
 371#ifdef TARGET_WORDS_BIGENDIAN
 372        val = 0x00000012;
 373#else
 374        val = 0x00000010;
 375#endif
 376        break;
 377
 378    /* JMPRS Register */
 379    case 0x00210:
 380        val = 0x00;
 381        break;
 382
 383    /* LEDBAR Register */
 384    case 0x00408:
 385        val = s->leds;
 386        break;
 387
 388    /* BRKRES Register */
 389    case 0x00508:
 390        val = s->brk;
 391        break;
 392
 393    /* UART Registers are handled directly by the serial device */
 394
 395    /* GPOUT Register */
 396    case 0x00a00:
 397        val = s->gpout;
 398        break;
 399
 400    /* XXX: implement a real I2C controller */
 401
 402    /* GPINP Register */
 403    case 0x00a08:
 404        /* IN = OUT until a real I2C control is implemented */
 405        if (s->i2csel) {
 406            val = s->i2cout;
 407        } else {
 408            val = 0x00;
 409        }
 410        break;
 411
 412    /* I2CINP Register */
 413    case 0x00b00:
 414        val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
 415        break;
 416
 417    /* I2COE Register */
 418    case 0x00b08:
 419        val = s->i2coe;
 420        break;
 421
 422    /* I2COUT Register */
 423    case 0x00b10:
 424        val = s->i2cout;
 425        break;
 426
 427    /* I2CSEL Register */
 428    case 0x00b18:
 429        val = s->i2csel;
 430        break;
 431
 432    default:
 433        qemu_log_mask(LOG_GUEST_ERROR,
 434                      "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
 435                      addr);
 436        break;
 437    }
 438    return val;
 439}
 440
 441static void malta_fpga_write(void *opaque, hwaddr addr,
 442                             uint64_t val, unsigned size)
 443{
 444    MaltaFPGAState *s = opaque;
 445    uint32_t saddr;
 446
 447    saddr = (addr & 0xfffff);
 448
 449    switch (saddr) {
 450
 451    /* SWITCH Register */
 452    case 0x00200:
 453        break;
 454
 455    /* JMPRS Register */
 456    case 0x00210:
 457        break;
 458
 459    /* LEDBAR Register */
 460    case 0x00408:
 461        s->leds = val & 0xff;
 462        malta_fpga_update_display(s);
 463        break;
 464
 465    /* ASCIIWORD Register */
 466    case 0x00410:
 467        snprintf(s->display_text, 9, "%08X", (uint32_t)val);
 468        malta_fpga_update_display(s);
 469        break;
 470
 471    /* ASCIIPOS0 to ASCIIPOS7 Registers */
 472    case 0x00418:
 473    case 0x00420:
 474    case 0x00428:
 475    case 0x00430:
 476    case 0x00438:
 477    case 0x00440:
 478    case 0x00448:
 479    case 0x00450:
 480        s->display_text[(saddr - 0x00418) >> 3] = (char) val;
 481        malta_fpga_update_display(s);
 482        break;
 483
 484    /* SOFTRES Register */
 485    case 0x00500:
 486        if (val == 0x42) {
 487            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 488        }
 489        break;
 490
 491    /* BRKRES Register */
 492    case 0x00508:
 493        s->brk = val & 0xff;
 494        break;
 495
 496    /* UART Registers are handled directly by the serial device */
 497
 498    /* GPOUT Register */
 499    case 0x00a00:
 500        s->gpout = val & 0xff;
 501        break;
 502
 503    /* I2COE Register */
 504    case 0x00b08:
 505        s->i2coe = val & 0x03;
 506        break;
 507
 508    /* I2COUT Register */
 509    case 0x00b10:
 510        eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
 511        s->i2cout = val;
 512        break;
 513
 514    /* I2CSEL Register */
 515    case 0x00b18:
 516        s->i2csel = val & 0x01;
 517        break;
 518
 519    default:
 520        qemu_log_mask(LOG_GUEST_ERROR,
 521                      "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
 522                      addr);
 523        break;
 524    }
 525}
 526
 527static const MemoryRegionOps malta_fpga_ops = {
 528    .read = malta_fpga_read,
 529    .write = malta_fpga_write,
 530    .endianness = DEVICE_NATIVE_ENDIAN,
 531};
 532
 533static void malta_fpga_reset(void *opaque)
 534{
 535    MaltaFPGAState *s = opaque;
 536
 537    s->leds   = 0x00;
 538    s->brk    = 0x0a;
 539    s->gpout  = 0x00;
 540    s->i2cin  = 0x3;
 541    s->i2coe  = 0x0;
 542    s->i2cout = 0x3;
 543    s->i2csel = 0x1;
 544
 545    s->display_text[8] = '\0';
 546    snprintf(s->display_text, 9, "        ");
 547}
 548
 549static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
 550{
 551    MaltaFPGAState *s = opaque;
 552
 553    if (event == CHR_EVENT_OPENED && !s->display_inited) {
 554        qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
 555        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 556        qemu_chr_fe_printf(&s->display, "+        +\r\n");
 557        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 558        qemu_chr_fe_printf(&s->display, "\n");
 559        qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
 560        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 561        qemu_chr_fe_printf(&s->display, "+        +\r\n");
 562        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 563        s->display_inited = true;
 564    }
 565}
 566
 567static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
 568         hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
 569{
 570    MaltaFPGAState *s;
 571    Chardev *chr;
 572
 573    s = g_new0(MaltaFPGAState, 1);
 574
 575    memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
 576                          "malta-fpga", 0x100000);
 577    memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
 578                             &s->iomem, 0, 0x900);
 579    memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
 580                             &s->iomem, 0xa00, 0x100000 - 0xa00);
 581
 582    memory_region_add_subregion(address_space, base, &s->iomem_lo);
 583    memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
 584
 585    chr = qemu_chr_new("fpga", "vc:320x200", NULL);
 586    qemu_chr_fe_init(&s->display, chr, NULL);
 587    qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
 588                             malta_fgpa_display_event, NULL, s, NULL, true);
 589
 590    s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
 591                             230400, uart_chr, DEVICE_NATIVE_ENDIAN);
 592
 593    malta_fpga_reset(s);
 594    qemu_register_reset(malta_fpga_reset, s);
 595
 596    return s;
 597}
 598
 599/* Network support */
 600static void network_init(PCIBus *pci_bus)
 601{
 602    int i;
 603
 604    for (i = 0; i < nb_nics; i++) {
 605        NICInfo *nd = &nd_table[i];
 606        const char *default_devaddr = NULL;
 607
 608        if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
 609            /* The malta board has a PCNet card using PCI SLOT 11 */
 610            default_devaddr = "0b";
 611
 612        pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
 613    }
 614}
 615
 616static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
 617                                      uint64_t kernel_entry)
 618{
 619    uint16_t *p;
 620
 621    /* Small bootloader */
 622    p = (uint16_t *)base;
 623
 624#define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
 625#define NM_HI2(VAL) \
 626          (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
 627#define NM_LO(VAL)  ((VAL) & 0xfff)
 628
 629    stw_p(p++, 0x2800); stw_p(p++, 0x001c);
 630                                /* bc to_here */
 631    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 632                                /* nop */
 633    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 634                                /* nop */
 635    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 636                                /* nop */
 637    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 638                                /* nop */
 639    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 640                                /* nop */
 641    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 642                                /* nop */
 643    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 644                                /* nop */
 645
 646    /* to_here: */
 647    if (semihosting_get_argc()) {
 648        /* Preserve a0 content as arguments have been passed    */
 649        stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 650                                /* nop                          */
 651    } else {
 652        stw_p(p++, 0x0080); stw_p(p++, 0x0002);
 653                                /* li a0,2                      */
 654    }
 655
 656    stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));
 657
 658    stw_p(p++, NM_HI2(ENVP_VADDR - 64));
 659                                /* lui sp,%hi(ENVP_VADDR - 64)   */
 660
 661    stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
 662                                /* ori sp,sp,%lo(ENVP_VADDR - 64) */
 663
 664    stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));
 665
 666    stw_p(p++, NM_HI2(ENVP_VADDR));
 667                                /* lui a1,%hi(ENVP_VADDR)        */
 668
 669    stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
 670                                /* ori a1,a1,%lo(ENVP_VADDR)     */
 671
 672    stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));
 673
 674    stw_p(p++, NM_HI2(ENVP_VADDR + 8));
 675                                /* lui a2,%hi(ENVP_VADDR + 8)    */
 676
 677    stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
 678                                /* ori a2,a2,%lo(ENVP_VADDR + 8) */
 679
 680    stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
 681
 682    stw_p(p++, NM_HI2(loaderparams.ram_low_size));
 683                                /* lui a3,%hi(loaderparams.ram_low_size) */
 684
 685    stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
 686                                /* ori a3,a3,%lo(loaderparams.ram_low_size) */
 687
 688    /*
 689     * Load BAR registers as done by YAMON:
 690     *
 691     *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
 692     *  - set up PCI0 MEM0 at 0x10000000, size 0x8000000
 693     *  - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
 694     *
 695     */
 696    stw_p(p++, 0xe040); stw_p(p++, 0x0681);
 697                                /* lui t1, %hi(0xb4000000)      */
 698
 699#ifdef TARGET_WORDS_BIGENDIAN
 700
 701    stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
 702                                /* lui t0, %hi(0xdf000000)      */
 703
 704    /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c)  */
 705    stw_p(p++, 0x8422); stw_p(p++, 0x9068);
 706                                /* sw t0, 0x68(t1)              */
 707
 708    stw_p(p++, 0xe040); stw_p(p++, 0x077d);
 709                                /* lui t1, %hi(0xbbe00000)      */
 710
 711    stw_p(p++, 0xe020); stw_p(p++, 0x0801);
 712                                /* lui t0, %hi(0xc0000000)      */
 713
 714    /* 0x48 corresponds to GT_PCI0IOLD                          */
 715    stw_p(p++, 0x8422); stw_p(p++, 0x9048);
 716                                /* sw t0, 0x48(t1)              */
 717
 718    stw_p(p++, 0xe020); stw_p(p++, 0x0800);
 719                                /* lui t0, %hi(0x40000000)      */
 720
 721    /* 0x50 corresponds to GT_PCI0IOHD                          */
 722    stw_p(p++, 0x8422); stw_p(p++, 0x9050);
 723                                /* sw t0, 0x50(t1)              */
 724
 725    stw_p(p++, 0xe020); stw_p(p++, 0x0001);
 726                                /* lui t0, %hi(0x80000000)      */
 727
 728    /* 0x58 corresponds to GT_PCI0M0LD                          */
 729    stw_p(p++, 0x8422); stw_p(p++, 0x9058);
 730                                /* sw t0, 0x58(t1)              */
 731
 732    stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
 733                                /* lui t0, %hi(0x3f000000)      */
 734
 735    /* 0x60 corresponds to GT_PCI0M0HD                          */
 736    stw_p(p++, 0x8422); stw_p(p++, 0x9060);
 737                                /* sw t0, 0x60(t1)              */
 738
 739    stw_p(p++, 0xe020); stw_p(p++, 0x0821);
 740                                /* lui t0, %hi(0xc1000000)      */
 741
 742    /* 0x80 corresponds to GT_PCI0M1LD                          */
 743    stw_p(p++, 0x8422); stw_p(p++, 0x9080);
 744                                /* sw t0, 0x80(t1)              */
 745
 746    stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
 747                                /* lui t0, %hi(0x5e000000)      */
 748
 749#else
 750
 751    stw_p(p++, 0x0020); stw_p(p++, 0x00df);
 752                                /* addiu[32] t0, $0, 0xdf       */
 753
 754    /* 0x68 corresponds to GT_ISD                               */
 755    stw_p(p++, 0x8422); stw_p(p++, 0x9068);
 756                                /* sw t0, 0x68(t1)              */
 757
 758    /* Use kseg2 remapped address 0x1be00000                    */
 759    stw_p(p++, 0xe040); stw_p(p++, 0x077d);
 760                                /* lui t1, %hi(0xbbe00000)      */
 761
 762    stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
 763                                /* addiu[32] t0, $0, 0xc0       */
 764
 765    /* 0x48 corresponds to GT_PCI0IOLD                          */
 766    stw_p(p++, 0x8422); stw_p(p++, 0x9048);
 767                                /* sw t0, 0x48(t1)              */
 768
 769    stw_p(p++, 0x0020); stw_p(p++, 0x0040);
 770                                /* addiu[32] t0, $0, 0x40       */
 771
 772    /* 0x50 corresponds to GT_PCI0IOHD                          */
 773    stw_p(p++, 0x8422); stw_p(p++, 0x9050);
 774                                /* sw t0, 0x50(t1)              */
 775
 776    stw_p(p++, 0x0020); stw_p(p++, 0x0080);
 777                                /* addiu[32] t0, $0, 0x80       */
 778
 779    /* 0x58 corresponds to GT_PCI0M0LD                          */
 780    stw_p(p++, 0x8422); stw_p(p++, 0x9058);
 781                                /* sw t0, 0x58(t1)              */
 782
 783    stw_p(p++, 0x0020); stw_p(p++, 0x003f);
 784                                /* addiu[32] t0, $0, 0x3f       */
 785
 786    /* 0x60 corresponds to GT_PCI0M0HD                          */
 787    stw_p(p++, 0x8422); stw_p(p++, 0x9060);
 788                                /* sw t0, 0x60(t1)              */
 789
 790    stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
 791                                /* addiu[32] t0, $0, 0xc1       */
 792
 793    /* 0x80 corresponds to GT_PCI0M1LD                          */
 794    stw_p(p++, 0x8422); stw_p(p++, 0x9080);
 795                                /* sw t0, 0x80(t1)              */
 796
 797    stw_p(p++, 0x0020); stw_p(p++, 0x005e);
 798                                /* addiu[32] t0, $0, 0x5e       */
 799
 800#endif
 801
 802    /* 0x88 corresponds to GT_PCI0M1HD                          */
 803    stw_p(p++, 0x8422); stw_p(p++, 0x9088);
 804                                /* sw t0, 0x88(t1)              */
 805
 806    stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
 807
 808    stw_p(p++, NM_HI2(kernel_entry));
 809                                /* lui t9,%hi(kernel_entry)     */
 810
 811    stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
 812                                /* ori t9,t9,%lo(kernel_entry)  */
 813
 814    stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
 815                                /* jalrc   t8                   */
 816}
 817
 818/*
 819 * ROM and pseudo bootloader
 820 *
 821 * The following code implements a very very simple bootloader. It first
 822 * loads the registers a0 to a3 to the values expected by the OS, and
 823 * then jump at the kernel address.
 824 *
 825 * The bootloader should pass the locations of the kernel arguments and
 826 * environment variables tables. Those tables contain the 32-bit address
 827 * of NULL terminated strings. The environment variables table should be
 828 * terminated by a NULL address.
 829 *
 830 * For a simpler implementation, the number of kernel arguments is fixed
 831 * to two (the name of the kernel and the command line), and the two
 832 * tables are actually the same one.
 833 *
 834 * The registers a0 to a3 should contain the following values:
 835 *   a0 - number of kernel arguments
 836 *   a1 - 32-bit address of the kernel arguments table
 837 *   a2 - 32-bit address of the environment variables table
 838 *   a3 - RAM size in bytes
 839 */
 840static void write_bootloader(uint8_t *base, uint64_t run_addr,
 841                             uint64_t kernel_entry)
 842{
 843    uint32_t *p;
 844
 845    /* Small bootloader */
 846    p = (uint32_t *)base;
 847
 848    stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
 849                 ((run_addr + 0x580) & 0x0fffffff) >> 2);
 850    stl_p(p++, 0x00000000);                  /* nop */
 851
 852    /* YAMON service vector */
 853    stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
 854    stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
 855    stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
 856    stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
 857    stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
 858    stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
 859    stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
 860    stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
 861    stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
 862    stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
 863    stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
 864    stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
 865    stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
 866
 867
 868    /* Second part of the bootloader */
 869    p = (uint32_t *) (base + 0x580);
 870
 871    if (semihosting_get_argc()) {
 872        /* Preserve a0 content as arguments have been passed */
 873        stl_p(p++, 0x00000000);              /* nop */
 874    } else {
 875        stl_p(p++, 0x24040002);              /* addiu a0, zero, 2 */
 876    }
 877
 878    /* lui sp, high(ENVP_VADDR) */
 879    stl_p(p++, 0x3c1d0000 | (((ENVP_VADDR - 64) >> 16) & 0xffff));
 880    /* ori sp, sp, low(ENVP_VADDR) */
 881    stl_p(p++, 0x37bd0000 | ((ENVP_VADDR - 64) & 0xffff));
 882    /* lui a1, high(ENVP_VADDR) */
 883    stl_p(p++, 0x3c050000 | ((ENVP_VADDR >> 16) & 0xffff));
 884    /* ori a1, a1, low(ENVP_VADDR) */
 885    stl_p(p++, 0x34a50000 | (ENVP_VADDR & 0xffff));
 886    /* lui a2, high(ENVP_VADDR + 8) */
 887    stl_p(p++, 0x3c060000 | (((ENVP_VADDR + 8) >> 16) & 0xffff));
 888    /* ori a2, a2, low(ENVP_VADDR + 8) */
 889    stl_p(p++, 0x34c60000 | ((ENVP_VADDR + 8) & 0xffff));
 890    /* lui a3, high(ram_low_size) */
 891    stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
 892    /* ori a3, a3, low(ram_low_size) */
 893    stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
 894
 895    /* Load BAR registers as done by YAMON */
 896    stl_p(p++, 0x3c09b400);                  /* lui t1, 0xb400 */
 897
 898#ifdef TARGET_WORDS_BIGENDIAN
 899    stl_p(p++, 0x3c08df00);                  /* lui t0, 0xdf00 */
 900#else
 901    stl_p(p++, 0x340800df);                  /* ori t0, r0, 0x00df */
 902#endif
 903    stl_p(p++, 0xad280068);                  /* sw t0, 0x0068(t1) */
 904
 905    stl_p(p++, 0x3c09bbe0);                  /* lui t1, 0xbbe0 */
 906
 907#ifdef TARGET_WORDS_BIGENDIAN
 908    stl_p(p++, 0x3c08c000);                  /* lui t0, 0xc000 */
 909#else
 910    stl_p(p++, 0x340800c0);                  /* ori t0, r0, 0x00c0 */
 911#endif
 912    stl_p(p++, 0xad280048);                  /* sw t0, 0x0048(t1) */
 913#ifdef TARGET_WORDS_BIGENDIAN
 914    stl_p(p++, 0x3c084000);                  /* lui t0, 0x4000 */
 915#else
 916    stl_p(p++, 0x34080040);                  /* ori t0, r0, 0x0040 */
 917#endif
 918    stl_p(p++, 0xad280050);                  /* sw t0, 0x0050(t1) */
 919
 920#ifdef TARGET_WORDS_BIGENDIAN
 921    stl_p(p++, 0x3c088000);                  /* lui t0, 0x8000 */
 922#else
 923    stl_p(p++, 0x34080080);                  /* ori t0, r0, 0x0080 */
 924#endif
 925    stl_p(p++, 0xad280058);                  /* sw t0, 0x0058(t1) */
 926#ifdef TARGET_WORDS_BIGENDIAN
 927    stl_p(p++, 0x3c083f00);                  /* lui t0, 0x3f00 */
 928#else
 929    stl_p(p++, 0x3408003f);                  /* ori t0, r0, 0x003f */
 930#endif
 931    stl_p(p++, 0xad280060);                  /* sw t0, 0x0060(t1) */
 932
 933#ifdef TARGET_WORDS_BIGENDIAN
 934    stl_p(p++, 0x3c08c100);                  /* lui t0, 0xc100 */
 935#else
 936    stl_p(p++, 0x340800c1);                  /* ori t0, r0, 0x00c1 */
 937#endif
 938    stl_p(p++, 0xad280080);                  /* sw t0, 0x0080(t1) */
 939#ifdef TARGET_WORDS_BIGENDIAN
 940    stl_p(p++, 0x3c085e00);                  /* lui t0, 0x5e00 */
 941#else
 942    stl_p(p++, 0x3408005e);                  /* ori t0, r0, 0x005e */
 943#endif
 944    stl_p(p++, 0xad280088);                  /* sw t0, 0x0088(t1) */
 945
 946    /* Jump to kernel code */
 947    stl_p(p++, 0x3c1f0000 |
 948          ((kernel_entry >> 16) & 0xffff));  /* lui ra, high(kernel_entry) */
 949    stl_p(p++, 0x37ff0000 |
 950          (kernel_entry & 0xffff));          /* ori ra, ra, low(kernel_entry) */
 951    stl_p(p++, 0x03e00009);                  /* jalr ra */
 952    stl_p(p++, 0x00000000);                  /* nop */
 953
 954    /* YAMON subroutines */
 955    p = (uint32_t *) (base + 0x800);
 956    stl_p(p++, 0x03e00009);                  /* jalr ra */
 957    stl_p(p++, 0x24020000);                  /* li v0,0 */
 958    /* 808 YAMON print */
 959    stl_p(p++, 0x03e06821);                  /* move t5,ra */
 960    stl_p(p++, 0x00805821);                  /* move t3,a0 */
 961    stl_p(p++, 0x00a05021);                  /* move t2,a1 */
 962    stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
 963    stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
 964    stl_p(p++, 0x10800005);                  /* beqz a0,834 */
 965    stl_p(p++, 0x00000000);                  /* nop */
 966    stl_p(p++, 0x0ff0021c);                  /* jal 870 */
 967    stl_p(p++, 0x00000000);                  /* nop */
 968    stl_p(p++, 0x1000fff9);                  /* b 814 */
 969    stl_p(p++, 0x00000000);                  /* nop */
 970    stl_p(p++, 0x01a00009);                  /* jalr t5 */
 971    stl_p(p++, 0x01602021);                  /* move a0,t3 */
 972    /* 0x83c YAMON print_count */
 973    stl_p(p++, 0x03e06821);                  /* move t5,ra */
 974    stl_p(p++, 0x00805821);                  /* move t3,a0 */
 975    stl_p(p++, 0x00a05021);                  /* move t2,a1 */
 976    stl_p(p++, 0x00c06021);                  /* move t4,a2 */
 977    stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
 978    stl_p(p++, 0x0ff0021c);                  /* jal 870 */
 979    stl_p(p++, 0x00000000);                  /* nop */
 980    stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
 981    stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
 982    stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
 983    stl_p(p++, 0x00000000);                  /* nop */
 984    stl_p(p++, 0x01a00009);                  /* jalr t5 */
 985    stl_p(p++, 0x01602021);                  /* move a0,t3 */
 986    /* 0x870 */
 987    stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
 988    stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
 989    stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
 990    stl_p(p++, 0x00000000);                  /* nop */
 991    stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
 992    stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
 993    stl_p(p++, 0x00000000);                  /* nop */
 994    stl_p(p++, 0x03e00009);                  /* jalr ra */
 995    stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
 996
 997}
 998
 999static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
1000                                        const char *string, ...)
1001{
1002    va_list ap;
1003    uint32_t table_addr;
1004
1005    if (index >= ENVP_NB_ENTRIES) {
1006        return;
1007    }
1008
1009    if (string == NULL) {
1010        prom_buf[index] = 0;
1011        return;
1012    }
1013
1014    table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1015    prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
1016
1017    va_start(ap, string);
1018    vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1019    va_end(ap);
1020}
1021
1022/* Kernel */
1023static uint64_t load_kernel(void)
1024{
1025    uint64_t kernel_entry, kernel_high, initrd_size;
1026    long kernel_size;
1027    ram_addr_t initrd_offset;
1028    int big_endian;
1029    uint32_t *prom_buf;
1030    long prom_size;
1031    int prom_index = 0;
1032    uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1033
1034#ifdef TARGET_WORDS_BIGENDIAN
1035    big_endian = 1;
1036#else
1037    big_endian = 0;
1038#endif
1039
1040    kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1041                           cpu_mips_kseg0_to_phys, NULL,
1042                           &kernel_entry, NULL,
1043                           &kernel_high, NULL, big_endian, EM_MIPS,
1044                           1, 0);
1045    if (kernel_size < 0) {
1046        error_report("could not load kernel '%s': %s",
1047                     loaderparams.kernel_filename,
1048                     load_elf_strerror(kernel_size));
1049        exit(1);
1050    }
1051
1052    /* Check where the kernel has been linked */
1053    if (kernel_entry & 0x80000000ll) {
1054        if (kvm_enabled()) {
1055            error_report("KVM guest kernels must be linked in useg. "
1056                         "Did you forget to enable CONFIG_KVM_GUEST?");
1057            exit(1);
1058        }
1059
1060        xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1061    } else {
1062        /* if kernel entry is in useg it is probably a KVM T&E kernel */
1063        mips_um_ksegs_enable();
1064
1065        xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1066    }
1067
1068    /* load initrd */
1069    initrd_size = 0;
1070    initrd_offset = 0;
1071    if (loaderparams.initrd_filename) {
1072        initrd_size = get_image_size(loaderparams.initrd_filename);
1073        if (initrd_size > 0) {
1074            /*
1075             * The kernel allocates the bootmap memory in the low memory after
1076             * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
1077             * pages.
1078             */
1079            initrd_offset = ROUND_UP(loaderparams.ram_low_size
1080                                     - (initrd_size + 128 * KiB),
1081                                     INITRD_PAGE_SIZE);
1082            if (kernel_high >= initrd_offset) {
1083                error_report("memory too small for initial ram disk '%s'",
1084                             loaderparams.initrd_filename);
1085                exit(1);
1086            }
1087            initrd_size = load_image_targphys(loaderparams.initrd_filename,
1088                                              initrd_offset,
1089                                              loaderparams.ram_size - initrd_offset);
1090        }
1091        if (initrd_size == (target_ulong) -1) {
1092            error_report("could not load initial ram disk '%s'",
1093                         loaderparams.initrd_filename);
1094            exit(1);
1095        }
1096    }
1097
1098    /* Setup prom parameters. */
1099    prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1100    prom_buf = g_malloc(prom_size);
1101
1102    prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1103    if (initrd_size > 0) {
1104        prom_set(prom_buf, prom_index++,
1105                 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1106                 xlate_to_kseg0(NULL, initrd_offset),
1107                 initrd_size, loaderparams.kernel_cmdline);
1108    } else {
1109        prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1110    }
1111
1112    prom_set(prom_buf, prom_index++, "memsize");
1113    prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1114
1115    prom_set(prom_buf, prom_index++, "ememsize");
1116    prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1117
1118    prom_set(prom_buf, prom_index++, "modetty0");
1119    prom_set(prom_buf, prom_index++, "38400n8r");
1120    prom_set(prom_buf, prom_index++, NULL);
1121
1122    rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
1123
1124    g_free(prom_buf);
1125    return kernel_entry;
1126}
1127
1128static void malta_mips_config(MIPSCPU *cpu)
1129{
1130    MachineState *ms = MACHINE(qdev_get_machine());
1131    unsigned int smp_cpus = ms->smp.cpus;
1132    CPUMIPSState *env = &cpu->env;
1133    CPUState *cs = CPU(cpu);
1134
1135    if (ase_mt_available(env)) {
1136        env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1137                                           CP0MVPC0_PTC, 8,
1138                                           smp_cpus * cs->nr_threads - 1);
1139        env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1140                                           CP0MVPC0_PVPE, 4, smp_cpus - 1);
1141    }
1142}
1143
1144static void main_cpu_reset(void *opaque)
1145{
1146    MIPSCPU *cpu = opaque;
1147    CPUMIPSState *env = &cpu->env;
1148
1149    cpu_reset(CPU(cpu));
1150
1151    /*
1152     * The bootloader does not need to be rewritten as it is located in a
1153     * read only location. The kernel location and the arguments table
1154     * location does not change.
1155     */
1156    if (loaderparams.kernel_filename) {
1157        env->CP0_Status &= ~(1 << CP0St_ERL);
1158    }
1159
1160    malta_mips_config(cpu);
1161
1162    if (kvm_enabled()) {
1163        /* Start running from the bootloader we wrote to end of RAM */
1164        env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1165    }
1166}
1167
1168static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1169                                   qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1170{
1171    CPUMIPSState *env;
1172    MIPSCPU *cpu;
1173    int i;
1174
1175    for (i = 0; i < ms->smp.cpus; i++) {
1176        cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1177
1178        /* Init internal devices */
1179        cpu_mips_irq_init_cpu(cpu);
1180        cpu_mips_clock_init(cpu);
1181        qemu_register_reset(main_cpu_reset, cpu);
1182    }
1183
1184    cpu = MIPS_CPU(first_cpu);
1185    env = &cpu->env;
1186    *i8259_irq = env->irq[2];
1187    *cbus_irq = env->irq[4];
1188}
1189
1190static void create_cps(MachineState *ms, MaltaState *s,
1191                       qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1192{
1193    object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1194    object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1195                            &error_fatal);
1196    object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1197                            &error_fatal);
1198    qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1199    sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1200
1201    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1202
1203    *i8259_irq = get_cps_irq(&s->cps, 3);
1204    *cbus_irq = NULL;
1205}
1206
1207static void mips_create_cpu(MachineState *ms, MaltaState *s,
1208                            qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1209{
1210    if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1211        create_cps(ms, s, cbus_irq, i8259_irq);
1212    } else {
1213        create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1214    }
1215}
1216
1217static
1218void mips_malta_init(MachineState *machine)
1219{
1220    ram_addr_t ram_size = machine->ram_size;
1221    ram_addr_t ram_low_size;
1222    const char *kernel_filename = machine->kernel_filename;
1223    const char *kernel_cmdline = machine->kernel_cmdline;
1224    const char *initrd_filename = machine->initrd_filename;
1225    char *filename;
1226    PFlashCFI01 *fl;
1227    MemoryRegion *system_memory = get_system_memory();
1228    MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1229    MemoryRegion *ram_low_postio;
1230    MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1231    const size_t smbus_eeprom_size = 8 * 256;
1232    uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1233    uint64_t kernel_entry, bootloader_run_addr;
1234    PCIBus *pci_bus;
1235    ISABus *isa_bus;
1236    qemu_irq cbus_irq, i8259_irq;
1237    I2CBus *smbus;
1238    DriveInfo *dinfo;
1239    int fl_idx = 0;
1240    int be;
1241    MaltaState *s;
1242    DeviceState *dev;
1243
1244    s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1245    sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1246
1247    /* create CPU */
1248    mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1249
1250    /* allocate RAM */
1251    if (ram_size > 2 * GiB) {
1252        error_report("Too much memory for this machine: %" PRId64 "MB,"
1253                     " maximum 2048MB", ram_size / MiB);
1254        exit(1);
1255    }
1256
1257    /* register RAM at high address where it is undisturbed by IO */
1258    memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1259
1260    /* alias for pre IO hole access */
1261    memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1262                             machine->ram, 0, MIN(ram_size, 256 * MiB));
1263    memory_region_add_subregion(system_memory, 0, ram_low_preio);
1264
1265    /* alias for post IO hole access, if there is enough RAM */
1266    if (ram_size > 512 * MiB) {
1267        ram_low_postio = g_new(MemoryRegion, 1);
1268        memory_region_init_alias(ram_low_postio, NULL,
1269                                 "mips_malta_low_postio.ram",
1270                                 machine->ram, 512 * MiB,
1271                                 ram_size - 512 * MiB);
1272        memory_region_add_subregion(system_memory, 512 * MiB,
1273                                    ram_low_postio);
1274    }
1275
1276#ifdef TARGET_WORDS_BIGENDIAN
1277    be = 1;
1278#else
1279    be = 0;
1280#endif
1281
1282    /* FPGA */
1283
1284    /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1285    malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1286
1287    /* Load firmware in flash / BIOS. */
1288    dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1289    fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1290                               FLASH_SIZE,
1291                               dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1292                               65536,
1293                               4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1294    bios = pflash_cfi01_get_memory(fl);
1295    fl_idx++;
1296    if (kernel_filename) {
1297        ram_low_size = MIN(ram_size, 256 * MiB);
1298        /* For KVM we reserve 1MB of RAM for running bootloader */
1299        if (kvm_enabled()) {
1300            ram_low_size -= 0x100000;
1301            bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
1302        } else {
1303            bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1304        }
1305
1306        /* Write a small bootloader to the flash location. */
1307        loaderparams.ram_size = ram_size;
1308        loaderparams.ram_low_size = ram_low_size;
1309        loaderparams.kernel_filename = kernel_filename;
1310        loaderparams.kernel_cmdline = kernel_cmdline;
1311        loaderparams.initrd_filename = initrd_filename;
1312        kernel_entry = load_kernel();
1313
1314        if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1315            write_bootloader(memory_region_get_ram_ptr(bios),
1316                             bootloader_run_addr, kernel_entry);
1317        } else {
1318            write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1319                                      bootloader_run_addr, kernel_entry);
1320        }
1321        if (kvm_enabled()) {
1322            /* Write the bootloader code @ the end of RAM, 1MB reserved */
1323            write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1324                                    ram_low_size,
1325                             bootloader_run_addr, kernel_entry);
1326        }
1327    } else {
1328        target_long bios_size = FLASH_SIZE;
1329        /* The flash region isn't executable from a KVM guest */
1330        if (kvm_enabled()) {
1331            error_report("KVM enabled but no -kernel argument was specified. "
1332                         "Booting from flash is not supported with KVM.");
1333            exit(1);
1334        }
1335        /* Load firmware from flash. */
1336        if (!dinfo) {
1337            /* Load a BIOS image. */
1338            filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1339                                      machine->firmware ?: BIOS_FILENAME);
1340            if (filename) {
1341                bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1342                                                BIOS_SIZE);
1343                g_free(filename);
1344            } else {
1345                bios_size = -1;
1346            }
1347            if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1348                machine->firmware && !qtest_enabled()) {
1349                error_report("Could not load MIPS bios '%s'", machine->firmware);
1350                exit(1);
1351            }
1352        }
1353        /*
1354         * In little endian mode the 32bit words in the bios are swapped,
1355         * a neat trick which allows bi-endian firmware.
1356         */
1357#ifndef TARGET_WORDS_BIGENDIAN
1358        {
1359            uint32_t *end, *addr;
1360            const size_t swapsize = MIN(bios_size, 0x3e0000);
1361            addr = rom_ptr(FLASH_ADDRESS, swapsize);
1362            if (!addr) {
1363                addr = memory_region_get_ram_ptr(bios);
1364            }
1365            end = (void *)addr + swapsize;
1366            while (addr < end) {
1367                bswap32s(addr);
1368                addr++;
1369            }
1370        }
1371#endif
1372    }
1373
1374    /*
1375     * Map the BIOS at a 2nd physical location, as on the real board.
1376     * Copy it so that we can patch in the MIPS revision, which cannot be
1377     * handled by an overlapping region as the resulting ROM code subpage
1378     * regions are not executable.
1379     */
1380    memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1381                           &error_fatal);
1382    if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1383                  FLASH_ADDRESS, BIOS_SIZE)) {
1384        memcpy(memory_region_get_ram_ptr(bios_copy),
1385               memory_region_get_ram_ptr(bios), BIOS_SIZE);
1386    }
1387    memory_region_set_readonly(bios_copy, true);
1388    memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1389
1390    /* Board ID = 0x420 (Malta Board with CoreLV) */
1391    stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1392
1393    /* Northbridge */
1394    pci_bus = gt64120_register(s->i8259);
1395    /*
1396     * The whole address space decoded by the GT-64120A doesn't generate
1397     * exception when accessing invalid memory. Create an empty slot to
1398     * emulate this feature.
1399     */
1400    empty_slot_init("GT64120", 0, 0x20000000);
1401
1402    /* Southbridge */
1403    dev = piix4_create(pci_bus, &isa_bus, &smbus);
1404
1405    /* Interrupt controller */
1406    qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1407    for (int i = 0; i < ISA_NUM_IRQS; i++) {
1408        s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
1409    }
1410
1411    /* generate SPD EEPROM data */
1412    generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1413    generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1414    smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1415    g_free(smbus_eeprom_buf);
1416
1417    /* Super I/O: SMS FDC37M817 */
1418    isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1419
1420    /* Network card */
1421    network_init(pci_bus);
1422
1423    /* Optional PCI video card */
1424    pci_vga_init(pci_bus);
1425}
1426
1427static void mips_malta_instance_init(Object *obj)
1428{
1429    MaltaState *s = MIPS_MALTA(obj);
1430
1431    s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1432    clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1433}
1434
1435static const TypeInfo mips_malta_device = {
1436    .name          = TYPE_MIPS_MALTA,
1437    .parent        = TYPE_SYS_BUS_DEVICE,
1438    .instance_size = sizeof(MaltaState),
1439    .instance_init = mips_malta_instance_init,
1440};
1441
1442static void mips_malta_machine_init(MachineClass *mc)
1443{
1444    mc->desc = "MIPS Malta Core LV";
1445    mc->init = mips_malta_init;
1446    mc->block_default_type = IF_IDE;
1447    mc->max_cpus = 16;
1448    mc->is_default = true;
1449#ifdef TARGET_MIPS64
1450    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1451#else
1452    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1453#endif
1454    mc->default_ram_id = "mips_malta.ram";
1455}
1456
1457DEFINE_MACHINE("malta", mips_malta_machine_init)
1458
1459static void mips_malta_register_types(void)
1460{
1461    type_register_static(&mips_malta_device);
1462}
1463
1464type_init(mips_malta_register_types)
1465