qemu/hw/misc/omap_gpmc.c
<<
>>
Prefs
   1/*
   2 * TI OMAP general purpose memory controller emulation.
   3 *
   4 * Copyright (C) 2007-2009 Nokia Corporation
   5 * Original code written by Andrzej Zaborowski <andrew@openedhand.com>
   6 * Enhancements for OMAP3 and NAND support written by Juha Riihimäki
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License as
  10 * published by the Free Software Foundation; either version 2 or
  11 * (at your option) any later version of the License.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "hw/irq.h"
  24#include "hw/block/flash.h"
  25#include "hw/arm/omap.h"
  26#include "exec/memory.h"
  27#include "exec/address-spaces.h"
  28
  29/* General-Purpose Memory Controller */
  30struct omap_gpmc_s {
  31    qemu_irq irq;
  32    qemu_irq drq;
  33    MemoryRegion iomem;
  34    int accept_256;
  35
  36    uint8_t revision;
  37    uint8_t sysconfig;
  38    uint16_t irqst;
  39    uint16_t irqen;
  40    uint16_t lastirq;
  41    uint16_t timeout;
  42    uint16_t config;
  43    struct omap_gpmc_cs_file_s {
  44        uint32_t config[7];
  45        MemoryRegion *iomem;
  46        MemoryRegion container;
  47        MemoryRegion nandiomem;
  48        DeviceState *dev;
  49    } cs_file[8];
  50    int ecc_cs;
  51    int ecc_ptr;
  52    uint32_t ecc_cfg;
  53    ECCState ecc[9];
  54    struct prefetch {
  55        uint32_t config1; /* GPMC_PREFETCH_CONFIG1 */
  56        uint32_t transfercount; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */
  57        int startengine; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
  58        int fifopointer; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
  59        int count; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
  60        MemoryRegion iomem;
  61        uint8_t fifo[64];
  62    } prefetch;
  63};
  64
  65#define OMAP_GPMC_8BIT 0
  66#define OMAP_GPMC_16BIT 1
  67#define OMAP_GPMC_NOR 0
  68#define OMAP_GPMC_NAND 2
  69
  70static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s *f)
  71{
  72    return (f->config[0] >> 10) & 3;
  73}
  74
  75static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s *f)
  76{
  77    /* devsize field is really 2 bits but we ignore the high
  78     * bit to ensure consistent behaviour if the guest sets
  79     * it (values 2 and 3 are reserved in the TRM)
  80     */
  81    return (f->config[0] >> 12) & 1;
  82}
  83
  84/* Extract the chip-select value from the prefetch config1 register */
  85static int prefetch_cs(uint32_t config1)
  86{
  87    return (config1 >> 24) & 7;
  88}
  89
  90static int prefetch_threshold(uint32_t config1)
  91{
  92    return (config1 >> 8) & 0x7f;
  93}
  94
  95static void omap_gpmc_int_update(struct omap_gpmc_s *s)
  96{
  97    /* The TRM is a bit unclear, but it seems to say that
  98     * the TERMINALCOUNTSTATUS bit is set only on the
  99     * transition when the prefetch engine goes from
 100     * active to inactive, whereas the FIFOEVENTSTATUS
 101     * bit is held high as long as the fifo has at
 102     * least THRESHOLD bytes available.
 103     * So we do the latter here, but TERMINALCOUNTSTATUS
 104     * is set elsewhere.
 105     */
 106    if (s->prefetch.fifopointer >= prefetch_threshold(s->prefetch.config1)) {
 107        s->irqst |= 1;
 108    }
 109    if ((s->irqen & s->irqst) != s->lastirq) {
 110        s->lastirq = s->irqen & s->irqst;
 111        qemu_set_irq(s->irq, s->lastirq);
 112    }
 113}
 114
 115static void omap_gpmc_dma_update(struct omap_gpmc_s *s, int value)
 116{
 117    if (s->prefetch.config1 & 4) {
 118        qemu_set_irq(s->drq, value);
 119    }
 120}
 121
 122/* Access functions for when a NAND-like device is mapped into memory:
 123 * all addresses in the region behave like accesses to the relevant
 124 * GPMC_NAND_DATA_i register (which is actually implemented to call these)
 125 */
 126static uint64_t omap_nand_read(void *opaque, hwaddr addr,
 127                               unsigned size)
 128{
 129    struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
 130    uint64_t v;
 131    nand_setpins(f->dev, 0, 0, 0, 1, 0);
 132    switch (omap_gpmc_devsize(f)) {
 133    case OMAP_GPMC_8BIT:
 134        v = nand_getio(f->dev);
 135        if (size == 1) {
 136            return v;
 137        }
 138        v |= (nand_getio(f->dev) << 8);
 139        if (size == 2) {
 140            return v;
 141        }
 142        v |= (nand_getio(f->dev) << 16);
 143        v |= (nand_getio(f->dev) << 24);
 144        return v;
 145    case OMAP_GPMC_16BIT:
 146        v = nand_getio(f->dev);
 147        if (size == 1) {
 148            /* 8 bit read from 16 bit device : probably a guest bug */
 149            return v & 0xff;
 150        }
 151        if (size == 2) {
 152            return v;
 153        }
 154        v |= (nand_getio(f->dev) << 16);
 155        return v;
 156    default:
 157        abort();
 158    }
 159}
 160
 161static void omap_nand_setio(DeviceState *dev, uint64_t value,
 162                            int nandsize, int size)
 163{
 164    /* Write the specified value to the NAND device, respecting
 165     * both size of the NAND device and size of the write access.
 166     */
 167    switch (nandsize) {
 168    case OMAP_GPMC_8BIT:
 169        switch (size) {
 170        case 1:
 171            nand_setio(dev, value & 0xff);
 172            break;
 173        case 2:
 174            nand_setio(dev, value & 0xff);
 175            nand_setio(dev, (value >> 8) & 0xff);
 176            break;
 177        case 4:
 178        default:
 179            nand_setio(dev, value & 0xff);
 180            nand_setio(dev, (value >> 8) & 0xff);
 181            nand_setio(dev, (value >> 16) & 0xff);
 182            nand_setio(dev, (value >> 24) & 0xff);
 183            break;
 184        }
 185        break;
 186    case OMAP_GPMC_16BIT:
 187        switch (size) {
 188        case 1:
 189            /* writing to a 16bit device with 8bit access is probably a guest
 190             * bug; pass the value through anyway.
 191             */
 192        case 2:
 193            nand_setio(dev, value & 0xffff);
 194            break;
 195        case 4:
 196        default:
 197            nand_setio(dev, value & 0xffff);
 198            nand_setio(dev, (value >> 16) & 0xffff);
 199            break;
 200        }
 201        break;
 202    }
 203}
 204
 205static void omap_nand_write(void *opaque, hwaddr addr,
 206                            uint64_t value, unsigned size)
 207{
 208    struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
 209    nand_setpins(f->dev, 0, 0, 0, 1, 0);
 210    omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
 211}
 212
 213static const MemoryRegionOps omap_nand_ops = {
 214    .read = omap_nand_read,
 215    .write = omap_nand_write,
 216    .endianness = DEVICE_NATIVE_ENDIAN,
 217};
 218
 219static void fill_prefetch_fifo(struct omap_gpmc_s *s)
 220{
 221    /* Fill the prefetch FIFO by reading data from NAND.
 222     * We do this synchronously, unlike the hardware which
 223     * will do this asynchronously. We refill when the
 224     * FIFO has THRESHOLD bytes free, and we always refill
 225     * as much data as possible starting at the top end
 226     * of the FIFO.
 227     * (We have to refill at THRESHOLD rather than waiting
 228     * for the FIFO to empty to allow for the case where
 229     * the FIFO size isn't an exact multiple of THRESHOLD
 230     * and we're doing DMA transfers.)
 231     * This means we never need to handle wrap-around in
 232     * the fifo-reading code, and the next byte of data
 233     * to read is always fifo[63 - fifopointer].
 234     */
 235    int fptr;
 236    int cs = prefetch_cs(s->prefetch.config1);
 237    int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
 238    int bytes;
 239    /* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
 240     * and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
 241     * Instead believe the bit that says it is always a byte count.
 242     */
 243    bytes = 64 - s->prefetch.fifopointer;
 244    if (bytes > s->prefetch.count) {
 245        bytes = s->prefetch.count;
 246    }
 247    if (is16bit) {
 248        bytes &= ~1;
 249    }
 250
 251    s->prefetch.count -= bytes;
 252    s->prefetch.fifopointer += bytes;
 253    fptr = 64 - s->prefetch.fifopointer;
 254    /* Move the existing data in the FIFO so it sits just
 255     * before what we're about to read in
 256     */
 257    while (fptr < (64 - bytes)) {
 258        s->prefetch.fifo[fptr] = s->prefetch.fifo[fptr + bytes];
 259        fptr++;
 260    }
 261    while (fptr < 64) {
 262        if (is16bit) {
 263            uint32_t v = omap_nand_read(&s->cs_file[cs], 0, 2);
 264            s->prefetch.fifo[fptr++] = v & 0xff;
 265            s->prefetch.fifo[fptr++] = (v >> 8) & 0xff;
 266        } else {
 267            s->prefetch.fifo[fptr++] = omap_nand_read(&s->cs_file[cs], 0, 1);
 268        }
 269    }
 270    if (s->prefetch.startengine && (s->prefetch.count == 0)) {
 271        /* This was the final transfer: raise TERMINALCOUNTSTATUS */
 272        s->irqst |= 2;
 273        s->prefetch.startengine = 0;
 274    }
 275    /* If there are any bytes in the FIFO at this point then
 276     * we must raise a DMA request (either this is a final part
 277     * transfer, or we filled the FIFO in which case we certainly
 278     * have THRESHOLD bytes available)
 279     */
 280    if (s->prefetch.fifopointer != 0) {
 281        omap_gpmc_dma_update(s, 1);
 282    }
 283    omap_gpmc_int_update(s);
 284}
 285
 286/* Access functions for a NAND-like device when the prefetch/postwrite
 287 * engine is enabled -- all addresses in the region behave alike:
 288 * data is read or written to the FIFO.
 289 */
 290static uint64_t omap_gpmc_prefetch_read(void *opaque, hwaddr addr,
 291                                        unsigned size)
 292{
 293    struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
 294    uint32_t data;
 295    if (s->prefetch.config1 & 1) {
 296        /* The TRM doesn't define the behaviour if you read from the
 297         * FIFO when the prefetch engine is in write mode. We choose
 298         * to always return zero.
 299         */
 300        return 0;
 301    }
 302    /* Note that trying to read an empty fifo repeats the last byte */
 303    if (s->prefetch.fifopointer) {
 304        s->prefetch.fifopointer--;
 305    }
 306    data = s->prefetch.fifo[63 - s->prefetch.fifopointer];
 307    if (s->prefetch.fifopointer ==
 308        (64 - prefetch_threshold(s->prefetch.config1))) {
 309        /* We've drained THRESHOLD bytes now. So deassert the
 310         * DMA request, then refill the FIFO (which will probably
 311         * assert it again.)
 312         */
 313        omap_gpmc_dma_update(s, 0);
 314        fill_prefetch_fifo(s);
 315    }
 316    omap_gpmc_int_update(s);
 317    return data;
 318}
 319
 320static void omap_gpmc_prefetch_write(void *opaque, hwaddr addr,
 321                                     uint64_t value, unsigned size)
 322{
 323    struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
 324    int cs = prefetch_cs(s->prefetch.config1);
 325    if ((s->prefetch.config1 & 1) == 0) {
 326        /* The TRM doesn't define the behaviour of writing to the
 327         * FIFO when the prefetch engine is in read mode. We
 328         * choose to ignore the write.
 329         */
 330        return;
 331    }
 332    if (s->prefetch.count == 0) {
 333        /* The TRM doesn't define the behaviour of writing to the
 334         * FIFO if the transfer is complete. We choose to ignore.
 335         */
 336        return;
 337    }
 338    /* The only reason we do any data buffering in postwrite
 339     * mode is if we are talking to a 16 bit NAND device, in
 340     * which case we need to buffer the first byte of the
 341     * 16 bit word until the other byte arrives.
 342     */
 343    int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
 344    if (is16bit) {
 345        /* fifopointer alternates between 64 (waiting for first
 346         * byte of word) and 63 (waiting for second byte)
 347         */
 348        if (s->prefetch.fifopointer == 64) {
 349            s->prefetch.fifo[0] = value;
 350            s->prefetch.fifopointer--;
 351        } else {
 352            value = (value << 8) | s->prefetch.fifo[0];
 353            omap_nand_write(&s->cs_file[cs], 0, value, 2);
 354            s->prefetch.count--;
 355            s->prefetch.fifopointer = 64;
 356        }
 357    } else {
 358        /* Just write the byte : fifopointer remains 64 at all times */
 359        omap_nand_write(&s->cs_file[cs], 0, value, 1);
 360        s->prefetch.count--;
 361    }
 362    if (s->prefetch.count == 0) {
 363        /* Final transfer: raise TERMINALCOUNTSTATUS */
 364        s->irqst |= 2;
 365        s->prefetch.startengine = 0;
 366    }
 367    omap_gpmc_int_update(s);
 368}
 369
 370static const MemoryRegionOps omap_prefetch_ops = {
 371    .read = omap_gpmc_prefetch_read,
 372    .write = omap_gpmc_prefetch_write,
 373    .endianness = DEVICE_NATIVE_ENDIAN,
 374    .impl.min_access_size = 1,
 375    .impl.max_access_size = 1,
 376};
 377
 378static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs)
 379{
 380    /* Return the MemoryRegion* to map/unmap for this chipselect */
 381    struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
 382    if (omap_gpmc_devtype(f) == OMAP_GPMC_NOR) {
 383        return f->iomem;
 384    }
 385    if ((s->prefetch.config1 & 0x80) &&
 386        (prefetch_cs(s->prefetch.config1) == cs)) {
 387        /* The prefetch engine is enabled for this CS: map the FIFO */
 388        return &s->prefetch.iomem;
 389    }
 390    return &f->nandiomem;
 391}
 392
 393static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs)
 394{
 395    struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
 396    uint32_t mask = (f->config[6] >> 8) & 0xf;
 397    uint32_t base = f->config[6] & 0x3f;
 398    uint32_t size;
 399
 400    if (!f->iomem && !f->dev) {
 401        return;
 402    }
 403
 404    if (!(f->config[6] & (1 << 6))) {
 405        /* Do nothing unless CSVALID */
 406        return;
 407    }
 408
 409    /* TODO: check for overlapping regions and report access errors */
 410    if (mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf
 411         && !(s->accept_256 && !mask)) {
 412        fprintf(stderr, "%s: invalid chip-select mask address (0x%x)\n",
 413                 __func__, mask);
 414    }
 415
 416    base <<= 24;
 417    size = (0x0fffffff & ~(mask << 24)) + 1;
 418    /* TODO: rather than setting the size of the mapping (which should be
 419     * constant), the mask should cause wrapping of the address space, so
 420     * that the same memory becomes accessible at every <i>size</i> bytes
 421     * starting from <i>base</i>.  */
 422    memory_region_init(&f->container, NULL, "omap-gpmc-file", size);
 423    memory_region_add_subregion(&f->container, 0,
 424                                omap_gpmc_cs_memregion(s, cs));
 425    memory_region_add_subregion(get_system_memory(), base,
 426                                &f->container);
 427}
 428
 429static void omap_gpmc_cs_unmap(struct omap_gpmc_s *s, int cs)
 430{
 431    struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
 432    if (!(f->config[6] & (1 << 6))) {
 433        /* Do nothing unless CSVALID */
 434        return;
 435    }
 436    if (!f->iomem && !f->dev) {
 437        return;
 438    }
 439    memory_region_del_subregion(get_system_memory(), &f->container);
 440    memory_region_del_subregion(&f->container, omap_gpmc_cs_memregion(s, cs));
 441    object_unparent(OBJECT(&f->container));
 442}
 443
 444void omap_gpmc_reset(struct omap_gpmc_s *s)
 445{
 446    int i;
 447
 448    s->sysconfig = 0;
 449    s->irqst = 0;
 450    s->irqen = 0;
 451    omap_gpmc_int_update(s);
 452    for (i = 0; i < 8; i++) {
 453        /* This has to happen before we change any of the config
 454         * used to determine which memory regions are mapped or unmapped.
 455         */
 456        omap_gpmc_cs_unmap(s, i);
 457    }
 458    s->timeout = 0;
 459    s->config = 0xa00;
 460    s->prefetch.config1 = 0x00004000;
 461    s->prefetch.transfercount = 0x00000000;
 462    s->prefetch.startengine = 0;
 463    s->prefetch.fifopointer = 0;
 464    s->prefetch.count = 0;
 465    for (i = 0; i < 8; i ++) {
 466        s->cs_file[i].config[1] = 0x101001;
 467        s->cs_file[i].config[2] = 0x020201;
 468        s->cs_file[i].config[3] = 0x10031003;
 469        s->cs_file[i].config[4] = 0x10f1111;
 470        s->cs_file[i].config[5] = 0;
 471        s->cs_file[i].config[6] = 0xf00;
 472        /* In theory we could probe attached devices for some CFG1
 473         * bits here, but we just retain them across resets as they
 474         * were set initially by omap_gpmc_attach().
 475         */
 476        if (i == 0) {
 477            s->cs_file[i].config[0] &= 0x00433e00;
 478            s->cs_file[i].config[6] |= 1 << 6; /* CSVALID */
 479            omap_gpmc_cs_map(s, i);
 480        } else {
 481            s->cs_file[i].config[0] &= 0x00403c00;
 482        }
 483    }
 484    s->ecc_cs = 0;
 485    s->ecc_ptr = 0;
 486    s->ecc_cfg = 0x3fcff000;
 487    for (i = 0; i < 9; i ++)
 488        ecc_reset(&s->ecc[i]);
 489}
 490
 491static int gpmc_wordaccess_only(hwaddr addr)
 492{
 493    /* Return true if the register offset is to a register that
 494     * only permits word width accesses.
 495     * Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
 496     * for any chipselect.
 497     */
 498    if (addr >= 0x60 && addr <= 0x1d4) {
 499        int cs = (addr - 0x60) / 0x30;
 500        addr -= cs * 0x30;
 501        if (addr >= 0x7c && addr < 0x88) {
 502            /* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
 503            return 0;
 504        }
 505    }
 506    return 1;
 507}
 508
 509static uint64_t omap_gpmc_read(void *opaque, hwaddr addr,
 510                               unsigned size)
 511{
 512    struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
 513    int cs;
 514    struct omap_gpmc_cs_file_s *f;
 515
 516    if (size != 4 && gpmc_wordaccess_only(addr)) {
 517        return omap_badwidth_read32(opaque, addr);
 518    }
 519
 520    switch (addr) {
 521    case 0x000: /* GPMC_REVISION */
 522        return s->revision;
 523
 524    case 0x010: /* GPMC_SYSCONFIG */
 525        return s->sysconfig;
 526
 527    case 0x014: /* GPMC_SYSSTATUS */
 528        return 1;                                               /* RESETDONE */
 529
 530    case 0x018: /* GPMC_IRQSTATUS */
 531        return s->irqst;
 532
 533    case 0x01c: /* GPMC_IRQENABLE */
 534        return s->irqen;
 535
 536    case 0x040: /* GPMC_TIMEOUT_CONTROL */
 537        return s->timeout;
 538
 539    case 0x044: /* GPMC_ERR_ADDRESS */
 540    case 0x048: /* GPMC_ERR_TYPE */
 541        return 0;
 542
 543    case 0x050: /* GPMC_CONFIG */
 544        return s->config;
 545
 546    case 0x054: /* GPMC_STATUS */
 547        return 0x001;
 548
 549    case 0x060 ... 0x1d4:
 550        cs = (addr - 0x060) / 0x30;
 551        addr -= cs * 0x30;
 552        f = s->cs_file + cs;
 553        switch (addr) {
 554        case 0x60:      /* GPMC_CONFIG1 */
 555            return f->config[0];
 556        case 0x64:      /* GPMC_CONFIG2 */
 557            return f->config[1];
 558        case 0x68:      /* GPMC_CONFIG3 */
 559            return f->config[2];
 560        case 0x6c:      /* GPMC_CONFIG4 */
 561            return f->config[3];
 562        case 0x70:      /* GPMC_CONFIG5 */
 563            return f->config[4];
 564        case 0x74:      /* GPMC_CONFIG6 */
 565            return f->config[5];
 566        case 0x78:      /* GPMC_CONFIG7 */
 567            return f->config[6];
 568        case 0x84 ... 0x87: /* GPMC_NAND_DATA */
 569            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
 570                return omap_nand_read(f, 0, size);
 571            }
 572            return 0;
 573        }
 574        break;
 575
 576    case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
 577        return s->prefetch.config1;
 578    case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
 579        return s->prefetch.transfercount;
 580    case 0x1ec: /* GPMC_PREFETCH_CONTROL */
 581        return s->prefetch.startengine;
 582    case 0x1f0: /* GPMC_PREFETCH_STATUS */
 583        /* NB: The OMAP3 TRM is inconsistent about whether the GPMC
 584         * FIFOTHRESHOLDSTATUS bit should be set when
 585         * FIFOPOINTER > FIFOTHRESHOLD or when it is >= FIFOTHRESHOLD.
 586         * Apparently the underlying functional spec from which the TRM was
 587         * created states that the behaviour is ">=", and this also
 588         * makes more conceptual sense.
 589         */
 590        return (s->prefetch.fifopointer << 24) |
 591                ((s->prefetch.fifopointer >=
 592                  ((s->prefetch.config1 >> 8) & 0x7f) ? 1 : 0) << 16) |
 593                s->prefetch.count;
 594
 595    case 0x1f4: /* GPMC_ECC_CONFIG */
 596        return s->ecc_cs;
 597    case 0x1f8: /* GPMC_ECC_CONTROL */
 598        return s->ecc_ptr;
 599    case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
 600        return s->ecc_cfg;
 601    case 0x200 ... 0x220:       /* GPMC_ECC_RESULT */
 602        cs = (addr & 0x1f) >> 2;
 603        /* TODO: check correctness */
 604        return
 605                ((s->ecc[cs].cp    &  0x07) <<  0) |
 606                ((s->ecc[cs].cp    &  0x38) << 13) |
 607                ((s->ecc[cs].lp[0] & 0x1ff) <<  3) |
 608                ((s->ecc[cs].lp[1] & 0x1ff) << 19);
 609
 610    case 0x230: /* GPMC_TESTMODE_CTRL */
 611        return 0;
 612    case 0x234: /* GPMC_PSA_LSB */
 613    case 0x238: /* GPMC_PSA_MSB */
 614        return 0x00000000;
 615    }
 616
 617    OMAP_BAD_REG(addr);
 618    return 0;
 619}
 620
 621static void omap_gpmc_write(void *opaque, hwaddr addr,
 622                            uint64_t value, unsigned size)
 623{
 624    struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
 625    int cs;
 626    struct omap_gpmc_cs_file_s *f;
 627
 628    if (size != 4 && gpmc_wordaccess_only(addr)) {
 629        omap_badwidth_write32(opaque, addr, value);
 630        return;
 631    }
 632
 633    switch (addr) {
 634    case 0x000: /* GPMC_REVISION */
 635    case 0x014: /* GPMC_SYSSTATUS */
 636    case 0x054: /* GPMC_STATUS */
 637    case 0x1f0: /* GPMC_PREFETCH_STATUS */
 638    case 0x200 ... 0x220:       /* GPMC_ECC_RESULT */
 639    case 0x234: /* GPMC_PSA_LSB */
 640    case 0x238: /* GPMC_PSA_MSB */
 641        OMAP_RO_REG(addr);
 642        break;
 643
 644    case 0x010: /* GPMC_SYSCONFIG */
 645        if ((value >> 3) == 0x3)
 646            fprintf(stderr, "%s: bad SDRAM idle mode %"PRIi64"\n",
 647                            __func__, value >> 3);
 648        if (value & 2)
 649            omap_gpmc_reset(s);
 650        s->sysconfig = value & 0x19;
 651        break;
 652
 653    case 0x018: /* GPMC_IRQSTATUS */
 654        s->irqst &= ~value;
 655        omap_gpmc_int_update(s);
 656        break;
 657
 658    case 0x01c: /* GPMC_IRQENABLE */
 659        s->irqen = value & 0xf03;
 660        omap_gpmc_int_update(s);
 661        break;
 662
 663    case 0x040: /* GPMC_TIMEOUT_CONTROL */
 664        s->timeout = value & 0x1ff1;
 665        break;
 666
 667    case 0x044: /* GPMC_ERR_ADDRESS */
 668    case 0x048: /* GPMC_ERR_TYPE */
 669        break;
 670
 671    case 0x050: /* GPMC_CONFIG */
 672        s->config = value & 0xf13;
 673        break;
 674
 675    case 0x060 ... 0x1d4:
 676        cs = (addr - 0x060) / 0x30;
 677        addr -= cs * 0x30;
 678        f = s->cs_file + cs;
 679        switch (addr) {
 680        case 0x60:      /* GPMC_CONFIG1 */
 681            f->config[0] = value & 0xffef3e13;
 682            break;
 683        case 0x64:      /* GPMC_CONFIG2 */
 684            f->config[1] = value & 0x001f1f8f;
 685            break;
 686        case 0x68:      /* GPMC_CONFIG3 */
 687            f->config[2] = value & 0x001f1f8f;
 688            break;
 689        case 0x6c:      /* GPMC_CONFIG4 */
 690            f->config[3] = value & 0x1f8f1f8f;
 691            break;
 692        case 0x70:      /* GPMC_CONFIG5 */
 693            f->config[4] = value & 0x0f1f1f1f;
 694            break;
 695        case 0x74:      /* GPMC_CONFIG6 */
 696            f->config[5] = value & 0x00000fcf;
 697            break;
 698        case 0x78:      /* GPMC_CONFIG7 */
 699            if ((f->config[6] ^ value) & 0xf7f) {
 700                omap_gpmc_cs_unmap(s, cs);
 701                f->config[6] = value & 0x00000f7f;
 702                omap_gpmc_cs_map(s, cs);
 703            }
 704            break;
 705        case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
 706            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
 707                nand_setpins(f->dev, 1, 0, 0, 1, 0); /* CLE */
 708                omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
 709            }
 710            break;
 711        case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
 712            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
 713                nand_setpins(f->dev, 0, 1, 0, 1, 0); /* ALE */
 714                omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
 715            }
 716            break;
 717        case 0x84 ... 0x87: /* GPMC_NAND_DATA */
 718            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
 719                omap_nand_write(f, 0, value, size);
 720            }
 721            break;
 722        default:
 723            goto bad_reg;
 724        }
 725        break;
 726
 727    case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
 728        if (!s->prefetch.startengine) {
 729            uint32_t newconfig1 = value & 0x7f8f7fbf;
 730            uint32_t changed;
 731            changed = newconfig1 ^ s->prefetch.config1;
 732            if (changed & (0x80 | 0x7000000)) {
 733                /* Turning the engine on or off, or mapping it somewhere else.
 734                 * cs_map() and cs_unmap() check the prefetch config and
 735                 * overall CSVALID bits, so it is sufficient to unmap-and-map
 736                 * both the old cs and the new one. Note that we adhere to
 737                 * the "unmap/change config/map" order (and not unmap twice
 738                 * if newcs == oldcs), otherwise we'll try to delete the wrong
 739                 * memory region.
 740                 */
 741                int oldcs = prefetch_cs(s->prefetch.config1);
 742                int newcs = prefetch_cs(newconfig1);
 743                omap_gpmc_cs_unmap(s, oldcs);
 744                if (oldcs != newcs) {
 745                    omap_gpmc_cs_unmap(s, newcs);
 746                }
 747                s->prefetch.config1 = newconfig1;
 748                omap_gpmc_cs_map(s, oldcs);
 749                if (oldcs != newcs) {
 750                    omap_gpmc_cs_map(s, newcs);
 751                }
 752            } else {
 753                s->prefetch.config1 = newconfig1;
 754            }
 755        }
 756        break;
 757
 758    case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
 759        if (!s->prefetch.startengine) {
 760            s->prefetch.transfercount = value & 0x3fff;
 761        }
 762        break;
 763
 764    case 0x1ec: /* GPMC_PREFETCH_CONTROL */
 765        if (s->prefetch.startengine != (value & 1)) {
 766            s->prefetch.startengine = value & 1;
 767            if (s->prefetch.startengine) {
 768                /* Prefetch engine start */
 769                s->prefetch.count = s->prefetch.transfercount;
 770                if (s->prefetch.config1 & 1) {
 771                    /* Write */
 772                    s->prefetch.fifopointer = 64;
 773                } else {
 774                    /* Read */
 775                    s->prefetch.fifopointer = 0;
 776                    fill_prefetch_fifo(s);
 777                }
 778            } else {
 779                /* Prefetch engine forcibly stopped. The TRM
 780                 * doesn't define the behaviour if you do this.
 781                 * We clear the prefetch count, which means that
 782                 * we permit no more writes, and don't read any
 783                 * more data from NAND. The CPU can still drain
 784                 * the FIFO of unread data.
 785                 */
 786                s->prefetch.count = 0;
 787            }
 788            omap_gpmc_int_update(s);
 789        }
 790        break;
 791
 792    case 0x1f4: /* GPMC_ECC_CONFIG */
 793        s->ecc_cs = 0x8f;
 794        break;
 795    case 0x1f8: /* GPMC_ECC_CONTROL */
 796        if (value & (1 << 8))
 797            for (cs = 0; cs < 9; cs ++)
 798                ecc_reset(&s->ecc[cs]);
 799        s->ecc_ptr = value & 0xf;
 800        if (s->ecc_ptr == 0 || s->ecc_ptr > 9) {
 801            s->ecc_ptr = 0;
 802            s->ecc_cs &= ~1;
 803        }
 804        break;
 805    case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
 806        s->ecc_cfg = value & 0x3fcff1ff;
 807        break;
 808    case 0x230: /* GPMC_TESTMODE_CTRL */
 809        if (value & 7)
 810            fprintf(stderr, "%s: test mode enable attempt\n", __func__);
 811        break;
 812
 813    default:
 814    bad_reg:
 815        OMAP_BAD_REG(addr);
 816        return;
 817    }
 818}
 819
 820static const MemoryRegionOps omap_gpmc_ops = {
 821    .read = omap_gpmc_read,
 822    .write = omap_gpmc_write,
 823    .endianness = DEVICE_NATIVE_ENDIAN,
 824};
 825
 826struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
 827                                   hwaddr base,
 828                                   qemu_irq irq, qemu_irq drq)
 829{
 830    int cs;
 831    struct omap_gpmc_s *s = g_new0(struct omap_gpmc_s, 1);
 832
 833    memory_region_init_io(&s->iomem, NULL, &omap_gpmc_ops, s, "omap-gpmc", 0x1000);
 834    memory_region_add_subregion(get_system_memory(), base, &s->iomem);
 835
 836    s->irq = irq;
 837    s->drq = drq;
 838    s->accept_256 = cpu_is_omap3630(mpu);
 839    s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20;
 840    s->lastirq = 0;
 841    omap_gpmc_reset(s);
 842
 843    /* We have to register a different IO memory handler for each
 844     * chip select region in case a NAND device is mapped there. We
 845     * make the region the worst-case size of 256MB and rely on the
 846     * container memory region in cs_map to chop it down to the actual
 847     * guest-requested size.
 848     */
 849    for (cs = 0; cs < 8; cs++) {
 850        memory_region_init_io(&s->cs_file[cs].nandiomem, NULL,
 851                              &omap_nand_ops,
 852                              &s->cs_file[cs],
 853                              "omap-nand",
 854                              256 * 1024 * 1024);
 855    }
 856
 857    memory_region_init_io(&s->prefetch.iomem, NULL, &omap_prefetch_ops, s,
 858                          "omap-gpmc-prefetch", 256 * 1024 * 1024);
 859    return s;
 860}
 861
 862void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem)
 863{
 864    struct omap_gpmc_cs_file_s *f;
 865    assert(iomem);
 866
 867    if (cs < 0 || cs >= 8) {
 868        fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
 869        exit(-1);
 870    }
 871    f = &s->cs_file[cs];
 872
 873    omap_gpmc_cs_unmap(s, cs);
 874    f->config[0] &= ~(0xf << 10);
 875    f->iomem = iomem;
 876    omap_gpmc_cs_map(s, cs);
 877}
 878
 879void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand)
 880{
 881    struct omap_gpmc_cs_file_s *f;
 882    assert(nand);
 883
 884    if (cs < 0 || cs >= 8) {
 885        fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
 886        exit(-1);
 887    }
 888    f = &s->cs_file[cs];
 889
 890    omap_gpmc_cs_unmap(s, cs);
 891    f->config[0] &= ~(0xf << 10);
 892    f->config[0] |= (OMAP_GPMC_NAND << 10);
 893    f->dev = nand;
 894    if (nand_getbuswidth(f->dev) == 16) {
 895        f->config[0] |= OMAP_GPMC_16BIT << 12;
 896    }
 897    omap_gpmc_cs_map(s, cs);
 898}
 899