qemu/hw/misc/zynq_slcr.c
<<
>>
Prefs
   1/*
   2 * Status and system control registers for Xilinx Zynq Platform
   3 *
   4 * Copyright (c) 2011 Michal Simek <monstr@monstr.eu>
   5 * Copyright (c) 2012 PetaLogix Pty Ltd.
   6 * Based on hw/arm_sysctl.c, written by Paul Brook
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License
  10 * as published by the Free Software Foundation; either version
  11 * 2 of the License, or (at your option) any later version.
  12 *
  13 * You should have received a copy of the GNU General Public License along
  14 * with this program; if not, see <http://www.gnu.org/licenses/>.
  15 */
  16
  17#include "qemu/osdep.h"
  18#include "qemu/timer.h"
  19#include "sysemu/runstate.h"
  20#include "hw/sysbus.h"
  21#include "migration/vmstate.h"
  22#include "qemu/log.h"
  23#include "qemu/module.h"
  24#include "hw/registerfields.h"
  25#include "hw/qdev-clock.h"
  26#include "qom/object.h"
  27
  28#ifndef ZYNQ_SLCR_ERR_DEBUG
  29#define ZYNQ_SLCR_ERR_DEBUG 0
  30#endif
  31
  32#define DB_PRINT(...) do { \
  33        if (ZYNQ_SLCR_ERR_DEBUG) { \
  34            fprintf(stderr,  ": %s: ", __func__); \
  35            fprintf(stderr, ## __VA_ARGS__); \
  36        } \
  37    } while (0)
  38
  39#define XILINX_LOCK_KEY 0x767b
  40#define XILINX_UNLOCK_KEY 0xdf0d
  41
  42REG32(SCL, 0x000)
  43REG32(LOCK, 0x004)
  44REG32(UNLOCK, 0x008)
  45REG32(LOCKSTA, 0x00c)
  46
  47REG32(ARM_PLL_CTRL, 0x100)
  48REG32(DDR_PLL_CTRL, 0x104)
  49REG32(IO_PLL_CTRL, 0x108)
  50/* fields for [ARM|DDR|IO]_PLL_CTRL registers */
  51    FIELD(xxx_PLL_CTRL, PLL_RESET, 0, 1)
  52    FIELD(xxx_PLL_CTRL, PLL_PWRDWN, 1, 1)
  53    FIELD(xxx_PLL_CTRL, PLL_BYPASS_QUAL, 3, 1)
  54    FIELD(xxx_PLL_CTRL, PLL_BYPASS_FORCE, 4, 1)
  55    FIELD(xxx_PLL_CTRL, PLL_FPDIV, 12, 7)
  56REG32(PLL_STATUS, 0x10c)
  57REG32(ARM_PLL_CFG, 0x110)
  58REG32(DDR_PLL_CFG, 0x114)
  59REG32(IO_PLL_CFG, 0x118)
  60
  61REG32(ARM_CLK_CTRL, 0x120)
  62REG32(DDR_CLK_CTRL, 0x124)
  63REG32(DCI_CLK_CTRL, 0x128)
  64REG32(APER_CLK_CTRL, 0x12c)
  65REG32(USB0_CLK_CTRL, 0x130)
  66REG32(USB1_CLK_CTRL, 0x134)
  67REG32(GEM0_RCLK_CTRL, 0x138)
  68REG32(GEM1_RCLK_CTRL, 0x13c)
  69REG32(GEM0_CLK_CTRL, 0x140)
  70REG32(GEM1_CLK_CTRL, 0x144)
  71REG32(SMC_CLK_CTRL, 0x148)
  72REG32(LQSPI_CLK_CTRL, 0x14c)
  73REG32(SDIO_CLK_CTRL, 0x150)
  74REG32(UART_CLK_CTRL, 0x154)
  75    FIELD(UART_CLK_CTRL, CLKACT0, 0, 1)
  76    FIELD(UART_CLK_CTRL, CLKACT1, 1, 1)
  77    FIELD(UART_CLK_CTRL, SRCSEL,  4, 2)
  78    FIELD(UART_CLK_CTRL, DIVISOR, 8, 6)
  79REG32(SPI_CLK_CTRL, 0x158)
  80REG32(CAN_CLK_CTRL, 0x15c)
  81REG32(CAN_MIOCLK_CTRL, 0x160)
  82REG32(DBG_CLK_CTRL, 0x164)
  83REG32(PCAP_CLK_CTRL, 0x168)
  84REG32(TOPSW_CLK_CTRL, 0x16c)
  85
  86#define FPGA_CTRL_REGS(n, start) \
  87    REG32(FPGA ## n ## _CLK_CTRL, (start)) \
  88    REG32(FPGA ## n ## _THR_CTRL, (start) + 0x4)\
  89    REG32(FPGA ## n ## _THR_CNT,  (start) + 0x8)\
  90    REG32(FPGA ## n ## _THR_STA,  (start) + 0xc)
  91FPGA_CTRL_REGS(0, 0x170)
  92FPGA_CTRL_REGS(1, 0x180)
  93FPGA_CTRL_REGS(2, 0x190)
  94FPGA_CTRL_REGS(3, 0x1a0)
  95
  96REG32(BANDGAP_TRIP, 0x1b8)
  97REG32(PLL_PREDIVISOR, 0x1c0)
  98REG32(CLK_621_TRUE, 0x1c4)
  99
 100REG32(PSS_RST_CTRL, 0x200)
 101    FIELD(PSS_RST_CTRL, SOFT_RST, 0, 1)
 102REG32(DDR_RST_CTRL, 0x204)
 103REG32(TOPSW_RESET_CTRL, 0x208)
 104REG32(DMAC_RST_CTRL, 0x20c)
 105REG32(USB_RST_CTRL, 0x210)
 106REG32(GEM_RST_CTRL, 0x214)
 107REG32(SDIO_RST_CTRL, 0x218)
 108REG32(SPI_RST_CTRL, 0x21c)
 109REG32(CAN_RST_CTRL, 0x220)
 110REG32(I2C_RST_CTRL, 0x224)
 111REG32(UART_RST_CTRL, 0x228)
 112REG32(GPIO_RST_CTRL, 0x22c)
 113REG32(LQSPI_RST_CTRL, 0x230)
 114REG32(SMC_RST_CTRL, 0x234)
 115REG32(OCM_RST_CTRL, 0x238)
 116REG32(FPGA_RST_CTRL, 0x240)
 117REG32(A9_CPU_RST_CTRL, 0x244)
 118
 119REG32(RS_AWDT_CTRL, 0x24c)
 120REG32(RST_REASON, 0x250)
 121
 122REG32(REBOOT_STATUS, 0x258)
 123REG32(BOOT_MODE, 0x25c)
 124
 125REG32(APU_CTRL, 0x300)
 126REG32(WDT_CLK_SEL, 0x304)
 127
 128REG32(TZ_DMA_NS, 0x440)
 129REG32(TZ_DMA_IRQ_NS, 0x444)
 130REG32(TZ_DMA_PERIPH_NS, 0x448)
 131
 132REG32(PSS_IDCODE, 0x530)
 133
 134REG32(DDR_URGENT, 0x600)
 135REG32(DDR_CAL_START, 0x60c)
 136REG32(DDR_REF_START, 0x614)
 137REG32(DDR_CMD_STA, 0x618)
 138REG32(DDR_URGENT_SEL, 0x61c)
 139REG32(DDR_DFI_STATUS, 0x620)
 140
 141REG32(MIO, 0x700)
 142#define MIO_LENGTH 54
 143
 144REG32(MIO_LOOPBACK, 0x804)
 145REG32(MIO_MST_TRI0, 0x808)
 146REG32(MIO_MST_TRI1, 0x80c)
 147
 148REG32(SD0_WP_CD_SEL, 0x830)
 149REG32(SD1_WP_CD_SEL, 0x834)
 150
 151REG32(LVL_SHFTR_EN, 0x900)
 152REG32(OCM_CFG, 0x910)
 153
 154REG32(CPU_RAM, 0xa00)
 155
 156REG32(IOU, 0xa30)
 157
 158REG32(DMAC_RAM, 0xa50)
 159
 160REG32(AFI0, 0xa60)
 161REG32(AFI1, 0xa6c)
 162REG32(AFI2, 0xa78)
 163REG32(AFI3, 0xa84)
 164#define AFI_LENGTH 3
 165
 166REG32(OCM, 0xa90)
 167
 168REG32(DEVCI_RAM, 0xaa0)
 169
 170REG32(CSG_RAM, 0xab0)
 171
 172REG32(GPIOB_CTRL, 0xb00)
 173REG32(GPIOB_CFG_CMOS18, 0xb04)
 174REG32(GPIOB_CFG_CMOS25, 0xb08)
 175REG32(GPIOB_CFG_CMOS33, 0xb0c)
 176REG32(GPIOB_CFG_HSTL, 0xb14)
 177REG32(GPIOB_DRVR_BIAS_CTRL, 0xb18)
 178
 179REG32(DDRIOB, 0xb40)
 180#define DDRIOB_LENGTH 14
 181
 182#define ZYNQ_SLCR_MMIO_SIZE     0x1000
 183#define ZYNQ_SLCR_NUM_REGS      (ZYNQ_SLCR_MMIO_SIZE / 4)
 184
 185#define TYPE_ZYNQ_SLCR "xilinx-zynq_slcr"
 186OBJECT_DECLARE_SIMPLE_TYPE(ZynqSLCRState, ZYNQ_SLCR)
 187
 188struct ZynqSLCRState {
 189    SysBusDevice parent_obj;
 190
 191    MemoryRegion iomem;
 192
 193    uint32_t regs[ZYNQ_SLCR_NUM_REGS];
 194
 195    Clock *ps_clk;
 196    Clock *uart0_ref_clk;
 197    Clock *uart1_ref_clk;
 198};
 199
 200/*
 201 * return the output frequency of ARM/DDR/IO pll
 202 * using input frequency and PLL_CTRL register
 203 */
 204static uint64_t zynq_slcr_compute_pll(uint64_t input, uint32_t ctrl_reg)
 205{
 206    uint32_t mult = ((ctrl_reg & R_xxx_PLL_CTRL_PLL_FPDIV_MASK) >>
 207            R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT);
 208
 209    /* first, check if pll is bypassed */
 210    if (ctrl_reg & R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK) {
 211        return input;
 212    }
 213
 214    /* is pll disabled ? */
 215    if (ctrl_reg & (R_xxx_PLL_CTRL_PLL_RESET_MASK |
 216                    R_xxx_PLL_CTRL_PLL_PWRDWN_MASK)) {
 217        return 0;
 218    }
 219
 220    /* Consider zero feedback as maximum divide ratio possible */
 221    if (!mult) {
 222        mult = 1 << R_xxx_PLL_CTRL_PLL_FPDIV_LENGTH;
 223    }
 224
 225    /* frequency multiplier -> period division */
 226    return input / mult;
 227}
 228
 229/*
 230 * return the output period of a clock given:
 231 * + the periods in an array corresponding to input mux selector
 232 * + the register xxx_CLK_CTRL value
 233 * + enable bit index in ctrl register
 234 *
 235 * This function makes the assumption that the ctrl_reg value is organized as
 236 * follows:
 237 * + bits[13:8]  clock frequency divisor
 238 * + bits[5:4]   clock mux selector (index in array)
 239 * + bits[index] clock enable
 240 */
 241static uint64_t zynq_slcr_compute_clock(const uint64_t periods[],
 242                                        uint32_t ctrl_reg,
 243                                        unsigned index)
 244{
 245    uint32_t srcsel = extract32(ctrl_reg, 4, 2); /* bits [5:4] */
 246    uint32_t divisor = extract32(ctrl_reg, 8, 6); /* bits [13:8] */
 247
 248    /* first, check if clock is disabled */
 249    if (((ctrl_reg >> index) & 1u) == 0) {
 250        return 0;
 251    }
 252
 253    /*
 254     * according to the Zynq technical ref. manual UG585 v1.12.2 in
 255     * Clocks chapter, section 25.10.1 page 705:
 256     * "The 6-bit divider provides a divide range of 1 to 63"
 257     * We follow here what is implemented in linux kernel and consider
 258     * the 0 value as a bypass (no division).
 259     */
 260    /* frequency divisor -> period multiplication */
 261    return periods[srcsel] * (divisor ? divisor : 1u);
 262}
 263
 264/*
 265 * macro helper around zynq_slcr_compute_clock to avoid repeating
 266 * the register name.
 267 */
 268#define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \
 269    zynq_slcr_compute_clock((plls), (state)->regs[reg], \
 270                            reg ## _ ## enable_field ## _SHIFT)
 271
 272static void zynq_slcr_compute_clocks_internal(ZynqSLCRState *s, uint64_t ps_clk)
 273{
 274    uint64_t io_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_IO_PLL_CTRL]);
 275    uint64_t arm_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_ARM_PLL_CTRL]);
 276    uint64_t ddr_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_DDR_PLL_CTRL]);
 277
 278    uint64_t uart_mux[4] = {io_pll, io_pll, arm_pll, ddr_pll};
 279
 280    /* compute uartX reference clocks */
 281    clock_set(s->uart0_ref_clk,
 282              ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT0));
 283    clock_set(s->uart1_ref_clk,
 284              ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT1));
 285}
 286
 287/**
 288 * Compute and set the ouputs clocks periods.
 289 * But do not propagate them further. Connected clocks
 290 * will not receive any updates (See zynq_slcr_compute_clocks())
 291 */
 292static void zynq_slcr_compute_clocks(ZynqSLCRState *s)
 293{
 294    uint64_t ps_clk = clock_get(s->ps_clk);
 295
 296    /* consider outputs clocks are disabled while in reset */
 297    if (device_is_in_reset(DEVICE(s))) {
 298        ps_clk = 0;
 299    }
 300
 301    zynq_slcr_compute_clocks_internal(s, ps_clk);
 302}
 303
 304/**
 305 * Propagate the outputs clocks.
 306 * zynq_slcr_compute_clocks() should have been called before
 307 * to configure them.
 308 */
 309static void zynq_slcr_propagate_clocks(ZynqSLCRState *s)
 310{
 311    clock_propagate(s->uart0_ref_clk);
 312    clock_propagate(s->uart1_ref_clk);
 313}
 314
 315static void zynq_slcr_ps_clk_callback(void *opaque, ClockEvent event)
 316{
 317    ZynqSLCRState *s = (ZynqSLCRState *) opaque;
 318
 319    zynq_slcr_compute_clocks(s);
 320    zynq_slcr_propagate_clocks(s);
 321}
 322
 323static void zynq_slcr_reset_init(Object *obj, ResetType type)
 324{
 325    ZynqSLCRState *s = ZYNQ_SLCR(obj);
 326    int i;
 327
 328    DB_PRINT("RESET\n");
 329
 330    s->regs[R_LOCKSTA] = 1;
 331    /* 0x100 - 0x11C */
 332    s->regs[R_ARM_PLL_CTRL]   = 0x0001A008;
 333    s->regs[R_DDR_PLL_CTRL]   = 0x0001A008;
 334    s->regs[R_IO_PLL_CTRL]    = 0x0001A008;
 335    s->regs[R_PLL_STATUS]     = 0x0000003F;
 336    s->regs[R_ARM_PLL_CFG]    = 0x00014000;
 337    s->regs[R_DDR_PLL_CFG]    = 0x00014000;
 338    s->regs[R_IO_PLL_CFG]     = 0x00014000;
 339
 340    /* 0x120 - 0x16C */
 341    s->regs[R_ARM_CLK_CTRL]   = 0x1F000400;
 342    s->regs[R_DDR_CLK_CTRL]   = 0x18400003;
 343    s->regs[R_DCI_CLK_CTRL]   = 0x01E03201;
 344    s->regs[R_APER_CLK_CTRL]  = 0x01FFCCCD;
 345    s->regs[R_USB0_CLK_CTRL]  = s->regs[R_USB1_CLK_CTRL]  = 0x00101941;
 346    s->regs[R_GEM0_RCLK_CTRL] = s->regs[R_GEM1_RCLK_CTRL] = 0x00000001;
 347    s->regs[R_GEM0_CLK_CTRL]  = s->regs[R_GEM1_CLK_CTRL]  = 0x00003C01;
 348    s->regs[R_SMC_CLK_CTRL]   = 0x00003C01;
 349    s->regs[R_LQSPI_CLK_CTRL] = 0x00002821;
 350    s->regs[R_SDIO_CLK_CTRL]  = 0x00001E03;
 351    s->regs[R_UART_CLK_CTRL]  = 0x00003F03;
 352    s->regs[R_SPI_CLK_CTRL]   = 0x00003F03;
 353    s->regs[R_CAN_CLK_CTRL]   = 0x00501903;
 354    s->regs[R_DBG_CLK_CTRL]   = 0x00000F03;
 355    s->regs[R_PCAP_CLK_CTRL]  = 0x00000F01;
 356
 357    /* 0x170 - 0x1AC */
 358    s->regs[R_FPGA0_CLK_CTRL] = s->regs[R_FPGA1_CLK_CTRL]
 359                              = s->regs[R_FPGA2_CLK_CTRL]
 360                              = s->regs[R_FPGA3_CLK_CTRL] = 0x00101800;
 361    s->regs[R_FPGA0_THR_STA] = s->regs[R_FPGA1_THR_STA]
 362                             = s->regs[R_FPGA2_THR_STA]
 363                             = s->regs[R_FPGA3_THR_STA] = 0x00010000;
 364
 365    /* 0x1B0 - 0x1D8 */
 366    s->regs[R_BANDGAP_TRIP]   = 0x0000001F;
 367    s->regs[R_PLL_PREDIVISOR] = 0x00000001;
 368    s->regs[R_CLK_621_TRUE]   = 0x00000001;
 369
 370    /* 0x200 - 0x25C */
 371    s->regs[R_FPGA_RST_CTRL]  = 0x01F33F0F;
 372    s->regs[R_RST_REASON]     = 0x00000040;
 373
 374    s->regs[R_BOOT_MODE]      = 0x00000001;
 375
 376    /* 0x700 - 0x7D4 */
 377    for (i = 0; i < 54; i++) {
 378        s->regs[R_MIO + i] = 0x00001601;
 379    }
 380    for (i = 2; i <= 8; i++) {
 381        s->regs[R_MIO + i] = 0x00000601;
 382    }
 383
 384    s->regs[R_MIO_MST_TRI0] = s->regs[R_MIO_MST_TRI1] = 0xFFFFFFFF;
 385
 386    s->regs[R_CPU_RAM + 0] = s->regs[R_CPU_RAM + 1] = s->regs[R_CPU_RAM + 3]
 387                           = s->regs[R_CPU_RAM + 4] = s->regs[R_CPU_RAM + 7]
 388                           = 0x00010101;
 389    s->regs[R_CPU_RAM + 2] = s->regs[R_CPU_RAM + 5] = 0x01010101;
 390    s->regs[R_CPU_RAM + 6] = 0x00000001;
 391
 392    s->regs[R_IOU + 0] = s->regs[R_IOU + 1] = s->regs[R_IOU + 2]
 393                       = s->regs[R_IOU + 3] = 0x09090909;
 394    s->regs[R_IOU + 4] = s->regs[R_IOU + 5] = 0x00090909;
 395    s->regs[R_IOU + 6] = 0x00000909;
 396
 397    s->regs[R_DMAC_RAM] = 0x00000009;
 398
 399    s->regs[R_AFI0 + 0] = s->regs[R_AFI0 + 1] = 0x09090909;
 400    s->regs[R_AFI1 + 0] = s->regs[R_AFI1 + 1] = 0x09090909;
 401    s->regs[R_AFI2 + 0] = s->regs[R_AFI2 + 1] = 0x09090909;
 402    s->regs[R_AFI3 + 0] = s->regs[R_AFI3 + 1] = 0x09090909;
 403    s->regs[R_AFI0 + 2] = s->regs[R_AFI1 + 2] = s->regs[R_AFI2 + 2]
 404                        = s->regs[R_AFI3 + 2] = 0x00000909;
 405
 406    s->regs[R_OCM + 0] = 0x01010101;
 407    s->regs[R_OCM + 1] = s->regs[R_OCM + 2] = 0x09090909;
 408
 409    s->regs[R_DEVCI_RAM] = 0x00000909;
 410    s->regs[R_CSG_RAM]   = 0x00000001;
 411
 412    s->regs[R_DDRIOB + 0] = s->regs[R_DDRIOB + 1] = s->regs[R_DDRIOB + 2]
 413                          = s->regs[R_DDRIOB + 3] = 0x00000e00;
 414    s->regs[R_DDRIOB + 4] = s->regs[R_DDRIOB + 5] = s->regs[R_DDRIOB + 6]
 415                          = 0x00000e00;
 416    s->regs[R_DDRIOB + 12] = 0x00000021;
 417}
 418
 419static void zynq_slcr_reset_hold(Object *obj)
 420{
 421    ZynqSLCRState *s = ZYNQ_SLCR(obj);
 422
 423    /* will disable all output clocks */
 424    zynq_slcr_compute_clocks_internal(s, 0);
 425    zynq_slcr_propagate_clocks(s);
 426}
 427
 428static void zynq_slcr_reset_exit(Object *obj)
 429{
 430    ZynqSLCRState *s = ZYNQ_SLCR(obj);
 431
 432    /* will compute output clocks according to ps_clk and registers */
 433    zynq_slcr_compute_clocks_internal(s, clock_get(s->ps_clk));
 434    zynq_slcr_propagate_clocks(s);
 435}
 436
 437static bool zynq_slcr_check_offset(hwaddr offset, bool rnw)
 438{
 439    switch (offset) {
 440    case R_LOCK:
 441    case R_UNLOCK:
 442    case R_DDR_CAL_START:
 443    case R_DDR_REF_START:
 444        return !rnw; /* Write only */
 445    case R_LOCKSTA:
 446    case R_FPGA0_THR_STA:
 447    case R_FPGA1_THR_STA:
 448    case R_FPGA2_THR_STA:
 449    case R_FPGA3_THR_STA:
 450    case R_BOOT_MODE:
 451    case R_PSS_IDCODE:
 452    case R_DDR_CMD_STA:
 453    case R_DDR_DFI_STATUS:
 454    case R_PLL_STATUS:
 455        return rnw;/* read only */
 456    case R_SCL:
 457    case R_ARM_PLL_CTRL ... R_IO_PLL_CTRL:
 458    case R_ARM_PLL_CFG ... R_IO_PLL_CFG:
 459    case R_ARM_CLK_CTRL ... R_TOPSW_CLK_CTRL:
 460    case R_FPGA0_CLK_CTRL ... R_FPGA0_THR_CNT:
 461    case R_FPGA1_CLK_CTRL ... R_FPGA1_THR_CNT:
 462    case R_FPGA2_CLK_CTRL ... R_FPGA2_THR_CNT:
 463    case R_FPGA3_CLK_CTRL ... R_FPGA3_THR_CNT:
 464    case R_BANDGAP_TRIP:
 465    case R_PLL_PREDIVISOR:
 466    case R_CLK_621_TRUE:
 467    case R_PSS_RST_CTRL ... R_A9_CPU_RST_CTRL:
 468    case R_RS_AWDT_CTRL:
 469    case R_RST_REASON:
 470    case R_REBOOT_STATUS:
 471    case R_APU_CTRL:
 472    case R_WDT_CLK_SEL:
 473    case R_TZ_DMA_NS ... R_TZ_DMA_PERIPH_NS:
 474    case R_DDR_URGENT:
 475    case R_DDR_URGENT_SEL:
 476    case R_MIO ... R_MIO + MIO_LENGTH - 1:
 477    case R_MIO_LOOPBACK ... R_MIO_MST_TRI1:
 478    case R_SD0_WP_CD_SEL:
 479    case R_SD1_WP_CD_SEL:
 480    case R_LVL_SHFTR_EN:
 481    case R_OCM_CFG:
 482    case R_CPU_RAM:
 483    case R_IOU:
 484    case R_DMAC_RAM:
 485    case R_AFI0 ... R_AFI3 + AFI_LENGTH - 1:
 486    case R_OCM:
 487    case R_DEVCI_RAM:
 488    case R_CSG_RAM:
 489    case R_GPIOB_CTRL ... R_GPIOB_CFG_CMOS33:
 490    case R_GPIOB_CFG_HSTL:
 491    case R_GPIOB_DRVR_BIAS_CTRL:
 492    case R_DDRIOB ... R_DDRIOB + DDRIOB_LENGTH - 1:
 493        return true;
 494    default:
 495        return false;
 496    }
 497}
 498
 499static uint64_t zynq_slcr_read(void *opaque, hwaddr offset,
 500    unsigned size)
 501{
 502    ZynqSLCRState *s = opaque;
 503    offset /= 4;
 504    uint32_t ret = s->regs[offset];
 505
 506    if (!zynq_slcr_check_offset(offset, true)) {
 507        qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid read access to "
 508                      " addr %" HWADDR_PRIx "\n", offset * 4);
 509    }
 510
 511    DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx32 "\n", offset * 4, ret);
 512    return ret;
 513}
 514
 515static void zynq_slcr_write(void *opaque, hwaddr offset,
 516                          uint64_t val, unsigned size)
 517{
 518    ZynqSLCRState *s = (ZynqSLCRState *)opaque;
 519    offset /= 4;
 520
 521    DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx64 "\n", offset * 4, val);
 522
 523    if (!zynq_slcr_check_offset(offset, false)) {
 524        qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid write access to "
 525                      "addr %" HWADDR_PRIx "\n", offset * 4);
 526        return;
 527    }
 528
 529    switch (offset) {
 530    case R_SCL:
 531        s->regs[R_SCL] = val & 0x1;
 532        return;
 533    case R_LOCK:
 534        if ((val & 0xFFFF) == XILINX_LOCK_KEY) {
 535            DB_PRINT("XILINX LOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
 536                (unsigned)val & 0xFFFF);
 537            s->regs[R_LOCKSTA] = 1;
 538        } else {
 539            DB_PRINT("WRONG XILINX LOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
 540                (int)offset, (unsigned)val & 0xFFFF);
 541        }
 542        return;
 543    case R_UNLOCK:
 544        if ((val & 0xFFFF) == XILINX_UNLOCK_KEY) {
 545            DB_PRINT("XILINX UNLOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
 546                (unsigned)val & 0xFFFF);
 547            s->regs[R_LOCKSTA] = 0;
 548        } else {
 549            DB_PRINT("WRONG XILINX UNLOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
 550                (int)offset, (unsigned)val & 0xFFFF);
 551        }
 552        return;
 553    }
 554
 555    if (s->regs[R_LOCKSTA]) {
 556        qemu_log_mask(LOG_GUEST_ERROR,
 557                      "SCLR registers are locked. Unlock them first\n");
 558        return;
 559    }
 560    s->regs[offset] = val;
 561
 562    switch (offset) {
 563    case R_PSS_RST_CTRL:
 564        if (FIELD_EX32(val, PSS_RST_CTRL, SOFT_RST)) {
 565            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 566        }
 567        break;
 568    case R_IO_PLL_CTRL:
 569    case R_ARM_PLL_CTRL:
 570    case R_DDR_PLL_CTRL:
 571    case R_UART_CLK_CTRL:
 572        zynq_slcr_compute_clocks(s);
 573        zynq_slcr_propagate_clocks(s);
 574        break;
 575    }
 576}
 577
 578static const MemoryRegionOps slcr_ops = {
 579    .read = zynq_slcr_read,
 580    .write = zynq_slcr_write,
 581    .endianness = DEVICE_NATIVE_ENDIAN,
 582};
 583
 584static const ClockPortInitArray zynq_slcr_clocks = {
 585    QDEV_CLOCK_IN(ZynqSLCRState, ps_clk, zynq_slcr_ps_clk_callback, ClockUpdate),
 586    QDEV_CLOCK_OUT(ZynqSLCRState, uart0_ref_clk),
 587    QDEV_CLOCK_OUT(ZynqSLCRState, uart1_ref_clk),
 588    QDEV_CLOCK_END
 589};
 590
 591static void zynq_slcr_init(Object *obj)
 592{
 593    ZynqSLCRState *s = ZYNQ_SLCR(obj);
 594
 595    memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr",
 596                          ZYNQ_SLCR_MMIO_SIZE);
 597    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
 598
 599    qdev_init_clocks(DEVICE(obj), zynq_slcr_clocks);
 600}
 601
 602static const VMStateDescription vmstate_zynq_slcr = {
 603    .name = "zynq_slcr",
 604    .version_id = 3,
 605    .minimum_version_id = 2,
 606    .fields = (VMStateField[]) {
 607        VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS),
 608        VMSTATE_CLOCK_V(ps_clk, ZynqSLCRState, 3),
 609        VMSTATE_END_OF_LIST()
 610    }
 611};
 612
 613static void zynq_slcr_class_init(ObjectClass *klass, void *data)
 614{
 615    DeviceClass *dc = DEVICE_CLASS(klass);
 616    ResettableClass *rc = RESETTABLE_CLASS(klass);
 617
 618    dc->vmsd = &vmstate_zynq_slcr;
 619    rc->phases.enter = zynq_slcr_reset_init;
 620    rc->phases.hold  = zynq_slcr_reset_hold;
 621    rc->phases.exit  = zynq_slcr_reset_exit;
 622}
 623
 624static const TypeInfo zynq_slcr_info = {
 625    .class_init = zynq_slcr_class_init,
 626    .name  = TYPE_ZYNQ_SLCR,
 627    .parent = TYPE_SYS_BUS_DEVICE,
 628    .instance_size  = sizeof(ZynqSLCRState),
 629    .instance_init = zynq_slcr_init,
 630};
 631
 632static void zynq_slcr_register_types(void)
 633{
 634    type_register_static(&zynq_slcr_info);
 635}
 636
 637type_init(zynq_slcr_register_types)
 638