qemu/hw/net/imx_fec.c
<<
>>
Prefs
   1/*
   2 * i.MX Fast Ethernet Controller emulation.
   3 *
   4 * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
   5 *
   6 * Based on Coldfire Fast Ethernet Controller emulation.
   7 *
   8 * Copyright (c) 2007 CodeSourcery.
   9 *
  10 *  This program is free software; you can redistribute it and/or modify it
  11 *  under the terms of the GNU General Public License as published by the
  12 *  Free Software Foundation; either version 2 of the License, or
  13 *  (at your option) any later version.
  14 *
  15 *  This program is distributed in the hope that it will be useful, but WITHOUT
  16 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  17 *  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  18 *  for more details.
  19 *
  20 *  You should have received a copy of the GNU General Public License along
  21 *  with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "hw/irq.h"
  26#include "hw/net/imx_fec.h"
  27#include "hw/qdev-properties.h"
  28#include "migration/vmstate.h"
  29#include "sysemu/dma.h"
  30#include "qemu/log.h"
  31#include "qemu/module.h"
  32#include "net/checksum.h"
  33#include "net/eth.h"
  34#include "trace.h"
  35
  36/* For crc32 */
  37#include <zlib.h>
  38
  39#define IMX_MAX_DESC    1024
  40
  41static const char *imx_default_reg_name(IMXFECState *s, uint32_t index)
  42{
  43    static char tmp[20];
  44    sprintf(tmp, "index %d", index);
  45    return tmp;
  46}
  47
  48static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index)
  49{
  50    switch (index) {
  51    case ENET_FRBR:
  52        return "FRBR";
  53    case ENET_FRSR:
  54        return "FRSR";
  55    case ENET_MIIGSK_CFGR:
  56        return "MIIGSK_CFGR";
  57    case ENET_MIIGSK_ENR:
  58        return "MIIGSK_ENR";
  59    default:
  60        return imx_default_reg_name(s, index);
  61    }
  62}
  63
  64static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index)
  65{
  66    switch (index) {
  67    case ENET_RSFL:
  68        return "RSFL";
  69    case ENET_RSEM:
  70        return "RSEM";
  71    case ENET_RAEM:
  72        return "RAEM";
  73    case ENET_RAFL:
  74        return "RAFL";
  75    case ENET_TSEM:
  76        return "TSEM";
  77    case ENET_TAEM:
  78        return "TAEM";
  79    case ENET_TAFL:
  80        return "TAFL";
  81    case ENET_TIPG:
  82        return "TIPG";
  83    case ENET_FTRL:
  84        return "FTRL";
  85    case ENET_TACC:
  86        return "TACC";
  87    case ENET_RACC:
  88        return "RACC";
  89    case ENET_ATCR:
  90        return "ATCR";
  91    case ENET_ATVR:
  92        return "ATVR";
  93    case ENET_ATOFF:
  94        return "ATOFF";
  95    case ENET_ATPER:
  96        return "ATPER";
  97    case ENET_ATCOR:
  98        return "ATCOR";
  99    case ENET_ATINC:
 100        return "ATINC";
 101    case ENET_ATSTMP:
 102        return "ATSTMP";
 103    case ENET_TGSR:
 104        return "TGSR";
 105    case ENET_TCSR0:
 106        return "TCSR0";
 107    case ENET_TCCR0:
 108        return "TCCR0";
 109    case ENET_TCSR1:
 110        return "TCSR1";
 111    case ENET_TCCR1:
 112        return "TCCR1";
 113    case ENET_TCSR2:
 114        return "TCSR2";
 115    case ENET_TCCR2:
 116        return "TCCR2";
 117    case ENET_TCSR3:
 118        return "TCSR3";
 119    case ENET_TCCR3:
 120        return "TCCR3";
 121    default:
 122        return imx_default_reg_name(s, index);
 123    }
 124}
 125
 126static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index)
 127{
 128    switch (index) {
 129    case ENET_EIR:
 130        return "EIR";
 131    case ENET_EIMR:
 132        return "EIMR";
 133    case ENET_RDAR:
 134        return "RDAR";
 135    case ENET_TDAR:
 136        return "TDAR";
 137    case ENET_ECR:
 138        return "ECR";
 139    case ENET_MMFR:
 140        return "MMFR";
 141    case ENET_MSCR:
 142        return "MSCR";
 143    case ENET_MIBC:
 144        return "MIBC";
 145    case ENET_RCR:
 146        return "RCR";
 147    case ENET_TCR:
 148        return "TCR";
 149    case ENET_PALR:
 150        return "PALR";
 151    case ENET_PAUR:
 152        return "PAUR";
 153    case ENET_OPD:
 154        return "OPD";
 155    case ENET_IAUR:
 156        return "IAUR";
 157    case ENET_IALR:
 158        return "IALR";
 159    case ENET_GAUR:
 160        return "GAUR";
 161    case ENET_GALR:
 162        return "GALR";
 163    case ENET_TFWR:
 164        return "TFWR";
 165    case ENET_RDSR:
 166        return "RDSR";
 167    case ENET_TDSR:
 168        return "TDSR";
 169    case ENET_MRBR:
 170        return "MRBR";
 171    default:
 172        if (s->is_fec) {
 173            return imx_fec_reg_name(s, index);
 174        } else {
 175            return imx_enet_reg_name(s, index);
 176        }
 177    }
 178}
 179
 180/*
 181 * Versions of this device with more than one TX descriptor save the
 182 * 2nd and 3rd descriptors in a subsection, to maintain migration
 183 * compatibility with previous versions of the device that only
 184 * supported a single descriptor.
 185 */
 186static bool imx_eth_is_multi_tx_ring(void *opaque)
 187{
 188    IMXFECState *s = IMX_FEC(opaque);
 189
 190    return s->tx_ring_num > 1;
 191}
 192
 193static const VMStateDescription vmstate_imx_eth_txdescs = {
 194    .name = "imx.fec/txdescs",
 195    .version_id = 1,
 196    .minimum_version_id = 1,
 197    .needed = imx_eth_is_multi_tx_ring,
 198    .fields = (VMStateField[]) {
 199         VMSTATE_UINT32(tx_descriptor[1], IMXFECState),
 200         VMSTATE_UINT32(tx_descriptor[2], IMXFECState),
 201         VMSTATE_END_OF_LIST()
 202    }
 203};
 204
 205static const VMStateDescription vmstate_imx_eth = {
 206    .name = TYPE_IMX_FEC,
 207    .version_id = 2,
 208    .minimum_version_id = 2,
 209    .fields = (VMStateField[]) {
 210        VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX),
 211        VMSTATE_UINT32(rx_descriptor, IMXFECState),
 212        VMSTATE_UINT32(tx_descriptor[0], IMXFECState),
 213        VMSTATE_UINT32(phy_status, IMXFECState),
 214        VMSTATE_UINT32(phy_control, IMXFECState),
 215        VMSTATE_UINT32(phy_advertise, IMXFECState),
 216        VMSTATE_UINT32(phy_int, IMXFECState),
 217        VMSTATE_UINT32(phy_int_mask, IMXFECState),
 218        VMSTATE_END_OF_LIST()
 219    },
 220    .subsections = (const VMStateDescription * []) {
 221        &vmstate_imx_eth_txdescs,
 222        NULL
 223    },
 224};
 225
 226#define PHY_INT_ENERGYON            (1 << 7)
 227#define PHY_INT_AUTONEG_COMPLETE    (1 << 6)
 228#define PHY_INT_FAULT               (1 << 5)
 229#define PHY_INT_DOWN                (1 << 4)
 230#define PHY_INT_AUTONEG_LP          (1 << 3)
 231#define PHY_INT_PARFAULT            (1 << 2)
 232#define PHY_INT_AUTONEG_PAGE        (1 << 1)
 233
 234static void imx_eth_update(IMXFECState *s);
 235
 236/*
 237 * The MII phy could raise a GPIO to the processor which in turn
 238 * could be handled as an interrpt by the OS.
 239 * For now we don't handle any GPIO/interrupt line, so the OS will
 240 * have to poll for the PHY status.
 241 */
 242static void imx_phy_update_irq(IMXFECState *s)
 243{
 244    imx_eth_update(s);
 245}
 246
 247static void imx_phy_update_link(IMXFECState *s)
 248{
 249    /* Autonegotiation status mirrors link status.  */
 250    if (qemu_get_queue(s->nic)->link_down) {
 251        trace_imx_phy_update_link("down");
 252        s->phy_status &= ~0x0024;
 253        s->phy_int |= PHY_INT_DOWN;
 254    } else {
 255        trace_imx_phy_update_link("up");
 256        s->phy_status |= 0x0024;
 257        s->phy_int |= PHY_INT_ENERGYON;
 258        s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
 259    }
 260    imx_phy_update_irq(s);
 261}
 262
 263static void imx_eth_set_link(NetClientState *nc)
 264{
 265    imx_phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc)));
 266}
 267
 268static void imx_phy_reset(IMXFECState *s)
 269{
 270    trace_imx_phy_reset();
 271
 272    s->phy_status = 0x7809;
 273    s->phy_control = 0x3000;
 274    s->phy_advertise = 0x01e1;
 275    s->phy_int_mask = 0;
 276    s->phy_int = 0;
 277    imx_phy_update_link(s);
 278}
 279
 280static uint32_t imx_phy_read(IMXFECState *s, int reg)
 281{
 282    uint32_t val;
 283    uint32_t phy = reg / 32;
 284
 285    if (phy != s->phy_num) {
 286        trace_imx_phy_read_num(phy, s->phy_num);
 287        return 0xffff;
 288    }
 289
 290    reg %= 32;
 291
 292    switch (reg) {
 293    case 0:     /* Basic Control */
 294        val = s->phy_control;
 295        break;
 296    case 1:     /* Basic Status */
 297        val = s->phy_status;
 298        break;
 299    case 2:     /* ID1 */
 300        val = 0x0007;
 301        break;
 302    case 3:     /* ID2 */
 303        val = 0xc0d1;
 304        break;
 305    case 4:     /* Auto-neg advertisement */
 306        val = s->phy_advertise;
 307        break;
 308    case 5:     /* Auto-neg Link Partner Ability */
 309        val = 0x0f71;
 310        break;
 311    case 6:     /* Auto-neg Expansion */
 312        val = 1;
 313        break;
 314    case 29:    /* Interrupt source.  */
 315        val = s->phy_int;
 316        s->phy_int = 0;
 317        imx_phy_update_irq(s);
 318        break;
 319    case 30:    /* Interrupt mask */
 320        val = s->phy_int_mask;
 321        break;
 322    case 17:
 323    case 18:
 324    case 27:
 325    case 31:
 326        qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n",
 327                      TYPE_IMX_FEC, __func__, reg);
 328        val = 0;
 329        break;
 330    default:
 331        qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
 332                      TYPE_IMX_FEC, __func__, reg);
 333        val = 0;
 334        break;
 335    }
 336
 337    trace_imx_phy_read(val, phy, reg);
 338
 339    return val;
 340}
 341
 342static void imx_phy_write(IMXFECState *s, int reg, uint32_t val)
 343{
 344    uint32_t phy = reg / 32;
 345
 346    if (phy != s->phy_num) {
 347        trace_imx_phy_write_num(phy, s->phy_num);
 348        return;
 349    }
 350
 351    reg %= 32;
 352
 353    trace_imx_phy_write(val, phy, reg);
 354
 355    switch (reg) {
 356    case 0:     /* Basic Control */
 357        if (val & 0x8000) {
 358            imx_phy_reset(s);
 359        } else {
 360            s->phy_control = val & 0x7980;
 361            /* Complete autonegotiation immediately.  */
 362            if (val & 0x1000) {
 363                s->phy_status |= 0x0020;
 364            }
 365        }
 366        break;
 367    case 4:     /* Auto-neg advertisement */
 368        s->phy_advertise = (val & 0x2d7f) | 0x80;
 369        break;
 370    case 30:    /* Interrupt mask */
 371        s->phy_int_mask = val & 0xff;
 372        imx_phy_update_irq(s);
 373        break;
 374    case 17:
 375    case 18:
 376    case 27:
 377    case 31:
 378        qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n",
 379                      TYPE_IMX_FEC, __func__, reg);
 380        break;
 381    default:
 382        qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
 383                      TYPE_IMX_FEC, __func__, reg);
 384        break;
 385    }
 386}
 387
 388static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr)
 389{
 390    dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
 391
 392    trace_imx_fec_read_bd(addr, bd->flags, bd->length, bd->data);
 393}
 394
 395static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr)
 396{
 397    dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
 398}
 399
 400static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr)
 401{
 402    dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
 403
 404    trace_imx_enet_read_bd(addr, bd->flags, bd->length, bd->data,
 405                   bd->option, bd->status);
 406}
 407
 408static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr)
 409{
 410    dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
 411}
 412
 413static void imx_eth_update(IMXFECState *s)
 414{
 415    /*
 416     * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER
 417     * interrupts swapped. This worked with older versions of Linux (4.14
 418     * and older) since Linux associated both interrupt lines with Ethernet
 419     * MAC interrupts. Specifically,
 420     * - Linux 4.15 and later have separate interrupt handlers for the MAC and
 421     *   timer interrupts. Those versions of Linux fail with versions of QEMU
 422     *   with swapped interrupt assignments.
 423     * - In linux 4.14, both interrupt lines were registered with the Ethernet
 424     *   MAC interrupt handler. As a result, all versions of qemu happen to
 425     *   work, though that is accidental.
 426     * - In Linux 4.9 and older, the timer interrupt was registered directly
 427     *   with the Ethernet MAC interrupt handler. The MAC interrupt was
 428     *   redirected to a GPIO interrupt to work around erratum ERR006687.
 429     *   This was implemented using the SOC's IOMUX block. In qemu, this GPIO
 430     *   interrupt never fired since IOMUX is currently not supported in qemu.
 431     *   Linux instead received MAC interrupts on the timer interrupt.
 432     *   As a result, qemu versions with the swapped interrupt assignment work,
 433     *   albeit accidentally, but qemu versions with the correct interrupt
 434     *   assignment fail.
 435     *
 436     * To ensure that all versions of Linux work, generate ENET_INT_MAC
 437     * interrrupts on both interrupt lines. This should be changed if and when
 438     * qemu supports IOMUX.
 439     */
 440    if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] &
 441        (ENET_INT_MAC | ENET_INT_TS_TIMER)) {
 442        qemu_set_irq(s->irq[1], 1);
 443    } else {
 444        qemu_set_irq(s->irq[1], 0);
 445    }
 446
 447    if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) {
 448        qemu_set_irq(s->irq[0], 1);
 449    } else {
 450        qemu_set_irq(s->irq[0], 0);
 451    }
 452}
 453
 454static void imx_fec_do_tx(IMXFECState *s)
 455{
 456    int frame_size = 0, descnt = 0;
 457    uint8_t *ptr = s->frame;
 458    uint32_t addr = s->tx_descriptor[0];
 459
 460    while (descnt++ < IMX_MAX_DESC) {
 461        IMXFECBufDesc bd;
 462        int len;
 463
 464        imx_fec_read_bd(&bd, addr);
 465        if ((bd.flags & ENET_BD_R) == 0) {
 466
 467            /* Run out of descriptors to transmit.  */
 468            trace_imx_eth_tx_bd_busy();
 469
 470            break;
 471        }
 472        len = bd.length;
 473        if (frame_size + len > ENET_MAX_FRAME_SIZE) {
 474            len = ENET_MAX_FRAME_SIZE - frame_size;
 475            s->regs[ENET_EIR] |= ENET_INT_BABT;
 476        }
 477        dma_memory_read(&address_space_memory, bd.data, ptr, len);
 478        ptr += len;
 479        frame_size += len;
 480        if (bd.flags & ENET_BD_L) {
 481            /* Last buffer in frame.  */
 482            qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
 483            ptr = s->frame;
 484            frame_size = 0;
 485            s->regs[ENET_EIR] |= ENET_INT_TXF;
 486        }
 487        s->regs[ENET_EIR] |= ENET_INT_TXB;
 488        bd.flags &= ~ENET_BD_R;
 489        /* Write back the modified descriptor.  */
 490        imx_fec_write_bd(&bd, addr);
 491        /* Advance to the next descriptor.  */
 492        if ((bd.flags & ENET_BD_W) != 0) {
 493            addr = s->regs[ENET_TDSR];
 494        } else {
 495            addr += sizeof(bd);
 496        }
 497    }
 498
 499    s->tx_descriptor[0] = addr;
 500
 501    imx_eth_update(s);
 502}
 503
 504static void imx_enet_do_tx(IMXFECState *s, uint32_t index)
 505{
 506    int frame_size = 0, descnt = 0;
 507
 508    uint8_t *ptr = s->frame;
 509    uint32_t addr, int_txb, int_txf, tdsr;
 510    size_t ring;
 511
 512    switch (index) {
 513    case ENET_TDAR:
 514        ring    = 0;
 515        int_txb = ENET_INT_TXB;
 516        int_txf = ENET_INT_TXF;
 517        tdsr    = ENET_TDSR;
 518        break;
 519    case ENET_TDAR1:
 520        ring    = 1;
 521        int_txb = ENET_INT_TXB1;
 522        int_txf = ENET_INT_TXF1;
 523        tdsr    = ENET_TDSR1;
 524        break;
 525    case ENET_TDAR2:
 526        ring    = 2;
 527        int_txb = ENET_INT_TXB2;
 528        int_txf = ENET_INT_TXF2;
 529        tdsr    = ENET_TDSR2;
 530        break;
 531    default:
 532        qemu_log_mask(LOG_GUEST_ERROR,
 533                      "%s: bogus value for index %x\n",
 534                      __func__, index);
 535        abort();
 536        break;
 537    }
 538
 539    addr = s->tx_descriptor[ring];
 540
 541    while (descnt++ < IMX_MAX_DESC) {
 542        IMXENETBufDesc bd;
 543        int len;
 544
 545        imx_enet_read_bd(&bd, addr);
 546        if ((bd.flags & ENET_BD_R) == 0) {
 547            /* Run out of descriptors to transmit.  */
 548
 549            trace_imx_eth_tx_bd_busy();
 550
 551            break;
 552        }
 553        len = bd.length;
 554        if (frame_size + len > ENET_MAX_FRAME_SIZE) {
 555            len = ENET_MAX_FRAME_SIZE - frame_size;
 556            s->regs[ENET_EIR] |= ENET_INT_BABT;
 557        }
 558        dma_memory_read(&address_space_memory, bd.data, ptr, len);
 559        ptr += len;
 560        frame_size += len;
 561        if (bd.flags & ENET_BD_L) {
 562            int csum = 0;
 563
 564            if (bd.option & ENET_BD_PINS) {
 565                csum |= (CSUM_TCP | CSUM_UDP);
 566            }
 567            if (bd.option & ENET_BD_IINS) {
 568                csum |= CSUM_IP;
 569            }
 570            if (csum) {
 571                net_checksum_calculate(s->frame, frame_size, csum);
 572            }
 573
 574            /* Last buffer in frame.  */
 575
 576            qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
 577            ptr = s->frame;
 578
 579            frame_size = 0;
 580            if (bd.option & ENET_BD_TX_INT) {
 581                s->regs[ENET_EIR] |= int_txf;
 582            }
 583            /* Indicate that we've updated the last buffer descriptor. */
 584            bd.last_buffer = ENET_BD_BDU;
 585        }
 586        if (bd.option & ENET_BD_TX_INT) {
 587            s->regs[ENET_EIR] |= int_txb;
 588        }
 589        bd.flags &= ~ENET_BD_R;
 590        /* Write back the modified descriptor.  */
 591        imx_enet_write_bd(&bd, addr);
 592        /* Advance to the next descriptor.  */
 593        if ((bd.flags & ENET_BD_W) != 0) {
 594            addr = s->regs[tdsr];
 595        } else {
 596            addr += sizeof(bd);
 597        }
 598    }
 599
 600    s->tx_descriptor[ring] = addr;
 601
 602    imx_eth_update(s);
 603}
 604
 605static void imx_eth_do_tx(IMXFECState *s, uint32_t index)
 606{
 607    if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
 608        imx_enet_do_tx(s, index);
 609    } else {
 610        imx_fec_do_tx(s);
 611    }
 612}
 613
 614static void imx_eth_enable_rx(IMXFECState *s, bool flush)
 615{
 616    IMXFECBufDesc bd;
 617
 618    imx_fec_read_bd(&bd, s->rx_descriptor);
 619
 620    s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0;
 621
 622    if (!s->regs[ENET_RDAR]) {
 623        trace_imx_eth_rx_bd_full();
 624    } else if (flush) {
 625        qemu_flush_queued_packets(qemu_get_queue(s->nic));
 626    }
 627}
 628
 629static void imx_eth_reset(DeviceState *d)
 630{
 631    IMXFECState *s = IMX_FEC(d);
 632
 633    /* Reset the Device */
 634    memset(s->regs, 0, sizeof(s->regs));
 635    s->regs[ENET_ECR]   = 0xf0000000;
 636    s->regs[ENET_MIBC]  = 0xc0000000;
 637    s->regs[ENET_RCR]   = 0x05ee0001;
 638    s->regs[ENET_OPD]   = 0x00010000;
 639
 640    s->regs[ENET_PALR]  = (s->conf.macaddr.a[0] << 24)
 641                          | (s->conf.macaddr.a[1] << 16)
 642                          | (s->conf.macaddr.a[2] << 8)
 643                          | s->conf.macaddr.a[3];
 644    s->regs[ENET_PAUR]  = (s->conf.macaddr.a[4] << 24)
 645                          | (s->conf.macaddr.a[5] << 16)
 646                          | 0x8808;
 647
 648    if (s->is_fec) {
 649        s->regs[ENET_FRBR]  = 0x00000600;
 650        s->regs[ENET_FRSR]  = 0x00000500;
 651        s->regs[ENET_MIIGSK_ENR]  = 0x00000006;
 652    } else {
 653        s->regs[ENET_RAEM]  = 0x00000004;
 654        s->regs[ENET_RAFL]  = 0x00000004;
 655        s->regs[ENET_TAEM]  = 0x00000004;
 656        s->regs[ENET_TAFL]  = 0x00000008;
 657        s->regs[ENET_TIPG]  = 0x0000000c;
 658        s->regs[ENET_FTRL]  = 0x000007ff;
 659        s->regs[ENET_ATPER] = 0x3b9aca00;
 660    }
 661
 662    s->rx_descriptor = 0;
 663    memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor));
 664
 665    /* We also reset the PHY */
 666    imx_phy_reset(s);
 667}
 668
 669static uint32_t imx_default_read(IMXFECState *s, uint32_t index)
 670{
 671    qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
 672                  PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
 673    return 0;
 674}
 675
 676static uint32_t imx_fec_read(IMXFECState *s, uint32_t index)
 677{
 678    switch (index) {
 679    case ENET_FRBR:
 680    case ENET_FRSR:
 681    case ENET_MIIGSK_CFGR:
 682    case ENET_MIIGSK_ENR:
 683        return s->regs[index];
 684    default:
 685        return imx_default_read(s, index);
 686    }
 687}
 688
 689static uint32_t imx_enet_read(IMXFECState *s, uint32_t index)
 690{
 691    switch (index) {
 692    case ENET_RSFL:
 693    case ENET_RSEM:
 694    case ENET_RAEM:
 695    case ENET_RAFL:
 696    case ENET_TSEM:
 697    case ENET_TAEM:
 698    case ENET_TAFL:
 699    case ENET_TIPG:
 700    case ENET_FTRL:
 701    case ENET_TACC:
 702    case ENET_RACC:
 703    case ENET_ATCR:
 704    case ENET_ATVR:
 705    case ENET_ATOFF:
 706    case ENET_ATPER:
 707    case ENET_ATCOR:
 708    case ENET_ATINC:
 709    case ENET_ATSTMP:
 710    case ENET_TGSR:
 711    case ENET_TCSR0:
 712    case ENET_TCCR0:
 713    case ENET_TCSR1:
 714    case ENET_TCCR1:
 715    case ENET_TCSR2:
 716    case ENET_TCCR2:
 717    case ENET_TCSR3:
 718    case ENET_TCCR3:
 719        return s->regs[index];
 720    default:
 721        return imx_default_read(s, index);
 722    }
 723}
 724
 725static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size)
 726{
 727    uint32_t value = 0;
 728    IMXFECState *s = IMX_FEC(opaque);
 729    uint32_t index = offset >> 2;
 730
 731    switch (index) {
 732    case ENET_EIR:
 733    case ENET_EIMR:
 734    case ENET_RDAR:
 735    case ENET_TDAR:
 736    case ENET_ECR:
 737    case ENET_MMFR:
 738    case ENET_MSCR:
 739    case ENET_MIBC:
 740    case ENET_RCR:
 741    case ENET_TCR:
 742    case ENET_PALR:
 743    case ENET_PAUR:
 744    case ENET_OPD:
 745    case ENET_IAUR:
 746    case ENET_IALR:
 747    case ENET_GAUR:
 748    case ENET_GALR:
 749    case ENET_TFWR:
 750    case ENET_RDSR:
 751    case ENET_TDSR:
 752    case ENET_MRBR:
 753        value = s->regs[index];
 754        break;
 755    default:
 756        if (s->is_fec) {
 757            value = imx_fec_read(s, index);
 758        } else {
 759            value = imx_enet_read(s, index);
 760        }
 761        break;
 762    }
 763
 764    trace_imx_eth_read(index, imx_eth_reg_name(s, index), value);
 765
 766    return value;
 767}
 768
 769static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value)
 770{
 771    qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%"
 772                  PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
 773    return;
 774}
 775
 776static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value)
 777{
 778    switch (index) {
 779    case ENET_FRBR:
 780        /* FRBR is read only */
 781        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n",
 782                      TYPE_IMX_FEC, __func__);
 783        break;
 784    case ENET_FRSR:
 785        s->regs[index] = (value & 0x000003fc) | 0x00000400;
 786        break;
 787    case ENET_MIIGSK_CFGR:
 788        s->regs[index] = value & 0x00000053;
 789        break;
 790    case ENET_MIIGSK_ENR:
 791        s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0;
 792        break;
 793    default:
 794        imx_default_write(s, index, value);
 795        break;
 796    }
 797}
 798
 799static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value)
 800{
 801    switch (index) {
 802    case ENET_RSFL:
 803    case ENET_RSEM:
 804    case ENET_RAEM:
 805    case ENET_RAFL:
 806    case ENET_TSEM:
 807    case ENET_TAEM:
 808    case ENET_TAFL:
 809        s->regs[index] = value & 0x000001ff;
 810        break;
 811    case ENET_TIPG:
 812        s->regs[index] = value & 0x0000001f;
 813        break;
 814    case ENET_FTRL:
 815        s->regs[index] = value & 0x00003fff;
 816        break;
 817    case ENET_TACC:
 818        s->regs[index] = value & 0x00000019;
 819        break;
 820    case ENET_RACC:
 821        s->regs[index] = value & 0x000000C7;
 822        break;
 823    case ENET_ATCR:
 824        s->regs[index] = value & 0x00002a9d;
 825        break;
 826    case ENET_ATVR:
 827    case ENET_ATOFF:
 828    case ENET_ATPER:
 829        s->regs[index] = value;
 830        break;
 831    case ENET_ATSTMP:
 832        /* ATSTMP is read only */
 833        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n",
 834                      TYPE_IMX_FEC, __func__);
 835        break;
 836    case ENET_ATCOR:
 837        s->regs[index] = value & 0x7fffffff;
 838        break;
 839    case ENET_ATINC:
 840        s->regs[index] = value & 0x00007f7f;
 841        break;
 842    case ENET_TGSR:
 843        /* implement clear timer flag */
 844        s->regs[index] &= ~(value & 0x0000000f); /* all bits W1C */
 845        break;
 846    case ENET_TCSR0:
 847    case ENET_TCSR1:
 848    case ENET_TCSR2:
 849    case ENET_TCSR3:
 850        s->regs[index] &= ~(value & 0x00000080); /* W1C bits */
 851        s->regs[index] &= ~0x0000007d; /* writable fields */
 852        s->regs[index] |= (value & 0x0000007d);
 853        break;
 854    case ENET_TCCR0:
 855    case ENET_TCCR1:
 856    case ENET_TCCR2:
 857    case ENET_TCCR3:
 858        s->regs[index] = value;
 859        break;
 860    default:
 861        imx_default_write(s, index, value);
 862        break;
 863    }
 864}
 865
 866static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value,
 867                           unsigned size)
 868{
 869    IMXFECState *s = IMX_FEC(opaque);
 870    const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s);
 871    uint32_t index = offset >> 2;
 872
 873    trace_imx_eth_write(index, imx_eth_reg_name(s, index), value);
 874
 875    switch (index) {
 876    case ENET_EIR:
 877        s->regs[index] &= ~value;
 878        break;
 879    case ENET_EIMR:
 880        s->regs[index] = value;
 881        break;
 882    case ENET_RDAR:
 883        if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
 884            if (!s->regs[index]) {
 885                imx_eth_enable_rx(s, true);
 886            }
 887        } else {
 888            s->regs[index] = 0;
 889        }
 890        break;
 891    case ENET_TDAR1:
 892    case ENET_TDAR2:
 893        if (unlikely(single_tx_ring)) {
 894            qemu_log_mask(LOG_GUEST_ERROR,
 895                          "[%s]%s: trying to access TDAR2 or TDAR1\n",
 896                          TYPE_IMX_FEC, __func__);
 897            return;
 898        }
 899        /* fall through */
 900    case ENET_TDAR:
 901        if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
 902            s->regs[index] = ENET_TDAR_TDAR;
 903            imx_eth_do_tx(s, index);
 904        }
 905        s->regs[index] = 0;
 906        break;
 907    case ENET_ECR:
 908        if (value & ENET_ECR_RESET) {
 909            return imx_eth_reset(DEVICE(s));
 910        }
 911        s->regs[index] = value;
 912        if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) {
 913            s->regs[ENET_RDAR] = 0;
 914            s->rx_descriptor = s->regs[ENET_RDSR];
 915            s->regs[ENET_TDAR]  = 0;
 916            s->regs[ENET_TDAR1] = 0;
 917            s->regs[ENET_TDAR2] = 0;
 918            s->tx_descriptor[0] = s->regs[ENET_TDSR];
 919            s->tx_descriptor[1] = s->regs[ENET_TDSR1];
 920            s->tx_descriptor[2] = s->regs[ENET_TDSR2];
 921        }
 922        break;
 923    case ENET_MMFR:
 924        s->regs[index] = value;
 925        if (extract32(value, 29, 1)) {
 926            /* This is a read operation */
 927            s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16,
 928                                           imx_phy_read(s,
 929                                                       extract32(value,
 930                                                                 18, 10)));
 931        } else {
 932            /* This is a write operation */
 933            imx_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16));
 934        }
 935        /* raise the interrupt as the PHY operation is done */
 936        s->regs[ENET_EIR] |= ENET_INT_MII;
 937        break;
 938    case ENET_MSCR:
 939        s->regs[index] = value & 0xfe;
 940        break;
 941    case ENET_MIBC:
 942        /* TODO: Implement MIB.  */
 943        s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0;
 944        break;
 945    case ENET_RCR:
 946        s->regs[index] = value & 0x07ff003f;
 947        /* TODO: Implement LOOP mode.  */
 948        break;
 949    case ENET_TCR:
 950        /* We transmit immediately, so raise GRA immediately.  */
 951        s->regs[index] = value;
 952        if (value & 1) {
 953            s->regs[ENET_EIR] |= ENET_INT_GRA;
 954        }
 955        break;
 956    case ENET_PALR:
 957        s->regs[index] = value;
 958        s->conf.macaddr.a[0] = value >> 24;
 959        s->conf.macaddr.a[1] = value >> 16;
 960        s->conf.macaddr.a[2] = value >> 8;
 961        s->conf.macaddr.a[3] = value;
 962        break;
 963    case ENET_PAUR:
 964        s->regs[index] = (value | 0x0000ffff) & 0xffff8808;
 965        s->conf.macaddr.a[4] = value >> 24;
 966        s->conf.macaddr.a[5] = value >> 16;
 967        break;
 968    case ENET_OPD:
 969        s->regs[index] = (value & 0x0000ffff) | 0x00010000;
 970        break;
 971    case ENET_IAUR:
 972    case ENET_IALR:
 973    case ENET_GAUR:
 974    case ENET_GALR:
 975        /* TODO: implement MAC hash filtering.  */
 976        break;
 977    case ENET_TFWR:
 978        if (s->is_fec) {
 979            s->regs[index] = value & 0x3;
 980        } else {
 981            s->regs[index] = value & 0x13f;
 982        }
 983        break;
 984    case ENET_RDSR:
 985        if (s->is_fec) {
 986            s->regs[index] = value & ~3;
 987        } else {
 988            s->regs[index] = value & ~7;
 989        }
 990        s->rx_descriptor = s->regs[index];
 991        break;
 992    case ENET_TDSR:
 993        if (s->is_fec) {
 994            s->regs[index] = value & ~3;
 995        } else {
 996            s->regs[index] = value & ~7;
 997        }
 998        s->tx_descriptor[0] = s->regs[index];
 999        break;
1000    case ENET_TDSR1:
1001        if (unlikely(single_tx_ring)) {
1002            qemu_log_mask(LOG_GUEST_ERROR,
1003                          "[%s]%s: trying to access TDSR1\n",
1004                          TYPE_IMX_FEC, __func__);
1005            return;
1006        }
1007
1008        s->regs[index] = value & ~7;
1009        s->tx_descriptor[1] = s->regs[index];
1010        break;
1011    case ENET_TDSR2:
1012        if (unlikely(single_tx_ring)) {
1013            qemu_log_mask(LOG_GUEST_ERROR,
1014                          "[%s]%s: trying to access TDSR2\n",
1015                          TYPE_IMX_FEC, __func__);
1016            return;
1017        }
1018
1019        s->regs[index] = value & ~7;
1020        s->tx_descriptor[2] = s->regs[index];
1021        break;
1022    case ENET_MRBR:
1023        s->regs[index] = value & 0x00003ff0;
1024        break;
1025    default:
1026        if (s->is_fec) {
1027            imx_fec_write(s, index, value);
1028        } else {
1029            imx_enet_write(s, index, value);
1030        }
1031        return;
1032    }
1033
1034    imx_eth_update(s);
1035}
1036
1037static bool imx_eth_can_receive(NetClientState *nc)
1038{
1039    IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1040
1041    return !!s->regs[ENET_RDAR];
1042}
1043
1044static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
1045                               size_t len)
1046{
1047    IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1048    IMXFECBufDesc bd;
1049    uint32_t flags = 0;
1050    uint32_t addr;
1051    uint32_t crc;
1052    uint32_t buf_addr;
1053    uint8_t *crc_ptr;
1054    unsigned int buf_len;
1055    size_t size = len;
1056
1057    trace_imx_fec_receive(size);
1058
1059    if (!s->regs[ENET_RDAR]) {
1060        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1061                      TYPE_IMX_FEC, __func__);
1062        return 0;
1063    }
1064
1065    /* 4 bytes for the CRC.  */
1066    size += 4;
1067    crc = cpu_to_be32(crc32(~0, buf, size));
1068    crc_ptr = (uint8_t *) &crc;
1069
1070    /* Huge frames are truncated.  */
1071    if (size > ENET_MAX_FRAME_SIZE) {
1072        size = ENET_MAX_FRAME_SIZE;
1073        flags |= ENET_BD_TR | ENET_BD_LG;
1074    }
1075
1076    /* Frames larger than the user limit just set error flags.  */
1077    if (size > (s->regs[ENET_RCR] >> 16)) {
1078        flags |= ENET_BD_LG;
1079    }
1080
1081    addr = s->rx_descriptor;
1082    while (size > 0) {
1083        imx_fec_read_bd(&bd, addr);
1084        if ((bd.flags & ENET_BD_E) == 0) {
1085            /* No descriptors available.  Bail out.  */
1086            /*
1087             * FIXME: This is wrong. We should probably either
1088             * save the remainder for when more RX buffers are
1089             * available, or flag an error.
1090             */
1091            qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1092                          TYPE_IMX_FEC, __func__);
1093            break;
1094        }
1095        buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR];
1096        bd.length = buf_len;
1097        size -= buf_len;
1098
1099        trace_imx_fec_receive_len(addr, bd.length);
1100
1101        /* The last 4 bytes are the CRC.  */
1102        if (size < 4) {
1103            buf_len += size - 4;
1104        }
1105        buf_addr = bd.data;
1106        dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1107        buf += buf_len;
1108        if (size < 4) {
1109            dma_memory_write(&address_space_memory, buf_addr + buf_len,
1110                             crc_ptr, 4 - size);
1111            crc_ptr += 4 - size;
1112        }
1113        bd.flags &= ~ENET_BD_E;
1114        if (size == 0) {
1115            /* Last buffer in frame.  */
1116            bd.flags |= flags | ENET_BD_L;
1117
1118            trace_imx_fec_receive_last(bd.flags);
1119
1120            s->regs[ENET_EIR] |= ENET_INT_RXF;
1121        } else {
1122            s->regs[ENET_EIR] |= ENET_INT_RXB;
1123        }
1124        imx_fec_write_bd(&bd, addr);
1125        /* Advance to the next descriptor.  */
1126        if ((bd.flags & ENET_BD_W) != 0) {
1127            addr = s->regs[ENET_RDSR];
1128        } else {
1129            addr += sizeof(bd);
1130        }
1131    }
1132    s->rx_descriptor = addr;
1133    imx_eth_enable_rx(s, false);
1134    imx_eth_update(s);
1135    return len;
1136}
1137
1138static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf,
1139                                size_t len)
1140{
1141    IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1142    IMXENETBufDesc bd;
1143    uint32_t flags = 0;
1144    uint32_t addr;
1145    uint32_t crc;
1146    uint32_t buf_addr;
1147    uint8_t *crc_ptr;
1148    unsigned int buf_len;
1149    size_t size = len;
1150    bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16;
1151
1152    trace_imx_enet_receive(size);
1153
1154    if (!s->regs[ENET_RDAR]) {
1155        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1156                      TYPE_IMX_FEC, __func__);
1157        return 0;
1158    }
1159
1160    /* 4 bytes for the CRC.  */
1161    size += 4;
1162    crc = cpu_to_be32(crc32(~0, buf, size));
1163    crc_ptr = (uint8_t *) &crc;
1164
1165    if (shift16) {
1166        size += 2;
1167    }
1168
1169    /* Huge frames are truncated. */
1170    if (size > s->regs[ENET_FTRL]) {
1171        size = s->regs[ENET_FTRL];
1172        flags |= ENET_BD_TR | ENET_BD_LG;
1173    }
1174
1175    /* Frames larger than the user limit just set error flags.  */
1176    if (size > (s->regs[ENET_RCR] >> 16)) {
1177        flags |= ENET_BD_LG;
1178    }
1179
1180    addr = s->rx_descriptor;
1181    while (size > 0) {
1182        imx_enet_read_bd(&bd, addr);
1183        if ((bd.flags & ENET_BD_E) == 0) {
1184            /* No descriptors available.  Bail out.  */
1185            /*
1186             * FIXME: This is wrong. We should probably either
1187             * save the remainder for when more RX buffers are
1188             * available, or flag an error.
1189             */
1190            qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1191                          TYPE_IMX_FEC, __func__);
1192            break;
1193        }
1194        buf_len = MIN(size, s->regs[ENET_MRBR]);
1195        bd.length = buf_len;
1196        size -= buf_len;
1197
1198        trace_imx_enet_receive_len(addr, bd.length);
1199
1200        /* The last 4 bytes are the CRC.  */
1201        if (size < 4) {
1202            buf_len += size - 4;
1203        }
1204        buf_addr = bd.data;
1205
1206        if (shift16) {
1207            /*
1208             * If SHIFT16 bit of ENETx_RACC register is set we need to
1209             * align the payload to 4-byte boundary.
1210             */
1211            const uint8_t zeros[2] = { 0 };
1212
1213            dma_memory_write(&address_space_memory, buf_addr,
1214                             zeros, sizeof(zeros));
1215
1216            buf_addr += sizeof(zeros);
1217            buf_len  -= sizeof(zeros);
1218
1219            /* We only do this once per Ethernet frame */
1220            shift16 = false;
1221        }
1222
1223        dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1224        buf += buf_len;
1225        if (size < 4) {
1226            dma_memory_write(&address_space_memory, buf_addr + buf_len,
1227                             crc_ptr, 4 - size);
1228            crc_ptr += 4 - size;
1229        }
1230        bd.flags &= ~ENET_BD_E;
1231        if (size == 0) {
1232            /* Last buffer in frame.  */
1233            bd.flags |= flags | ENET_BD_L;
1234
1235            trace_imx_enet_receive_last(bd.flags);
1236
1237            /* Indicate that we've updated the last buffer descriptor. */
1238            bd.last_buffer = ENET_BD_BDU;
1239            if (bd.option & ENET_BD_RX_INT) {
1240                s->regs[ENET_EIR] |= ENET_INT_RXF;
1241            }
1242        } else {
1243            if (bd.option & ENET_BD_RX_INT) {
1244                s->regs[ENET_EIR] |= ENET_INT_RXB;
1245            }
1246        }
1247        imx_enet_write_bd(&bd, addr);
1248        /* Advance to the next descriptor.  */
1249        if ((bd.flags & ENET_BD_W) != 0) {
1250            addr = s->regs[ENET_RDSR];
1251        } else {
1252            addr += sizeof(bd);
1253        }
1254    }
1255    s->rx_descriptor = addr;
1256    imx_eth_enable_rx(s, false);
1257    imx_eth_update(s);
1258    return len;
1259}
1260
1261static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf,
1262                                size_t len)
1263{
1264    IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1265
1266    if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
1267        return imx_enet_receive(nc, buf, len);
1268    } else {
1269        return imx_fec_receive(nc, buf, len);
1270    }
1271}
1272
1273static const MemoryRegionOps imx_eth_ops = {
1274    .read                  = imx_eth_read,
1275    .write                 = imx_eth_write,
1276    .valid.min_access_size = 4,
1277    .valid.max_access_size = 4,
1278    .endianness            = DEVICE_NATIVE_ENDIAN,
1279};
1280
1281static void imx_eth_cleanup(NetClientState *nc)
1282{
1283    IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1284
1285    s->nic = NULL;
1286}
1287
1288static NetClientInfo imx_eth_net_info = {
1289    .type                = NET_CLIENT_DRIVER_NIC,
1290    .size                = sizeof(NICState),
1291    .can_receive         = imx_eth_can_receive,
1292    .receive             = imx_eth_receive,
1293    .cleanup             = imx_eth_cleanup,
1294    .link_status_changed = imx_eth_set_link,
1295};
1296
1297
1298static void imx_eth_realize(DeviceState *dev, Error **errp)
1299{
1300    IMXFECState *s = IMX_FEC(dev);
1301    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1302
1303    memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s,
1304                          TYPE_IMX_FEC, FSL_IMX25_FEC_SIZE);
1305    sysbus_init_mmio(sbd, &s->iomem);
1306    sysbus_init_irq(sbd, &s->irq[0]);
1307    sysbus_init_irq(sbd, &s->irq[1]);
1308
1309    qemu_macaddr_default_if_unset(&s->conf.macaddr);
1310
1311    s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf,
1312                          object_get_typename(OBJECT(dev)),
1313                          dev->id, s);
1314
1315    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1316}
1317
1318static Property imx_eth_properties[] = {
1319    DEFINE_NIC_PROPERTIES(IMXFECState, conf),
1320    DEFINE_PROP_UINT32("tx-ring-num", IMXFECState, tx_ring_num, 1),
1321    DEFINE_PROP_UINT32("phy-num", IMXFECState, phy_num, 0),
1322    DEFINE_PROP_END_OF_LIST(),
1323};
1324
1325static void imx_eth_class_init(ObjectClass *klass, void *data)
1326{
1327    DeviceClass *dc = DEVICE_CLASS(klass);
1328
1329    dc->vmsd    = &vmstate_imx_eth;
1330    dc->reset   = imx_eth_reset;
1331    device_class_set_props(dc, imx_eth_properties);
1332    dc->realize = imx_eth_realize;
1333    dc->desc    = "i.MX FEC/ENET Ethernet Controller";
1334}
1335
1336static void imx_fec_init(Object *obj)
1337{
1338    IMXFECState *s = IMX_FEC(obj);
1339
1340    s->is_fec = true;
1341}
1342
1343static void imx_enet_init(Object *obj)
1344{
1345    IMXFECState *s = IMX_FEC(obj);
1346
1347    s->is_fec = false;
1348}
1349
1350static const TypeInfo imx_fec_info = {
1351    .name          = TYPE_IMX_FEC,
1352    .parent        = TYPE_SYS_BUS_DEVICE,
1353    .instance_size = sizeof(IMXFECState),
1354    .instance_init = imx_fec_init,
1355    .class_init    = imx_eth_class_init,
1356};
1357
1358static const TypeInfo imx_enet_info = {
1359    .name          = TYPE_IMX_ENET,
1360    .parent        = TYPE_IMX_FEC,
1361    .instance_init = imx_enet_init,
1362};
1363
1364static void imx_eth_register_types(void)
1365{
1366    type_register_static(&imx_fec_info);
1367    type_register_static(&imx_enet_info);
1368}
1369
1370type_init(imx_eth_register_types)
1371