qemu/hw/net/mcf_fec.c
<<
>>
Prefs
   1/*
   2 * ColdFire Fast Ethernet Controller emulation.
   3 *
   4 * Copyright (c) 2007 CodeSourcery.
   5 *
   6 * This code is licensed under the GPL
   7 */
   8
   9#include "qemu/osdep.h"
  10#include "qemu/log.h"
  11#include "hw/irq.h"
  12#include "net/net.h"
  13#include "qemu/module.h"
  14#include "hw/m68k/mcf.h"
  15#include "hw/m68k/mcf_fec.h"
  16#include "hw/net/mii.h"
  17#include "hw/qdev-properties.h"
  18#include "hw/sysbus.h"
  19/* For crc32 */
  20#include <zlib.h>
  21
  22//#define DEBUG_FEC 1
  23
  24#ifdef DEBUG_FEC
  25#define DPRINTF(fmt, ...) \
  26do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
  27#else
  28#define DPRINTF(fmt, ...) do {} while(0)
  29#endif
  30
  31#define FEC_MAX_DESC 1024
  32#define FEC_MAX_FRAME_SIZE 2032
  33#define FEC_MIB_SIZE 64
  34
  35struct mcf_fec_state {
  36    SysBusDevice parent_obj;
  37
  38    MemoryRegion iomem;
  39    qemu_irq irq[FEC_NUM_IRQ];
  40    NICState *nic;
  41    NICConf conf;
  42    uint32_t irq_state;
  43    uint32_t eir;
  44    uint32_t eimr;
  45    int rx_enabled;
  46    uint32_t rx_descriptor;
  47    uint32_t tx_descriptor;
  48    uint32_t ecr;
  49    uint32_t mmfr;
  50    uint32_t mscr;
  51    uint32_t rcr;
  52    uint32_t tcr;
  53    uint32_t tfwr;
  54    uint32_t rfsr;
  55    uint32_t erdsr;
  56    uint32_t etdsr;
  57    uint32_t emrbr;
  58    uint32_t mib[FEC_MIB_SIZE];
  59};
  60
  61#define FEC_INT_HB   0x80000000
  62#define FEC_INT_BABR 0x40000000
  63#define FEC_INT_BABT 0x20000000
  64#define FEC_INT_GRA  0x10000000
  65#define FEC_INT_TXF  0x08000000
  66#define FEC_INT_TXB  0x04000000
  67#define FEC_INT_RXF  0x02000000
  68#define FEC_INT_RXB  0x01000000
  69#define FEC_INT_MII  0x00800000
  70#define FEC_INT_EB   0x00400000
  71#define FEC_INT_LC   0x00200000
  72#define FEC_INT_RL   0x00100000
  73#define FEC_INT_UN   0x00080000
  74
  75#define FEC_EN      2
  76#define FEC_RESET   1
  77
  78/* Map interrupt flags onto IRQ lines.  */
  79static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
  80    FEC_INT_TXF,
  81    FEC_INT_TXB,
  82    FEC_INT_UN,
  83    FEC_INT_RL,
  84    FEC_INT_RXF,
  85    FEC_INT_RXB,
  86    FEC_INT_MII,
  87    FEC_INT_LC,
  88    FEC_INT_HB,
  89    FEC_INT_GRA,
  90    FEC_INT_EB,
  91    FEC_INT_BABT,
  92    FEC_INT_BABR
  93};
  94
  95/* Buffer Descriptor.  */
  96typedef struct {
  97    uint16_t flags;
  98    uint16_t length;
  99    uint32_t data;
 100} mcf_fec_bd;
 101
 102#define FEC_BD_R    0x8000
 103#define FEC_BD_E    0x8000
 104#define FEC_BD_O1   0x4000
 105#define FEC_BD_W    0x2000
 106#define FEC_BD_O2   0x1000
 107#define FEC_BD_L    0x0800
 108#define FEC_BD_TC   0x0400
 109#define FEC_BD_ABC  0x0200
 110#define FEC_BD_M    0x0100
 111#define FEC_BD_BC   0x0080
 112#define FEC_BD_MC   0x0040
 113#define FEC_BD_LG   0x0020
 114#define FEC_BD_NO   0x0010
 115#define FEC_BD_CR   0x0004
 116#define FEC_BD_OV   0x0002
 117#define FEC_BD_TR   0x0001
 118
 119#define MIB_RMON_T_DROP         0
 120#define MIB_RMON_T_PACKETS      1
 121#define MIB_RMON_T_BC_PKT       2
 122#define MIB_RMON_T_MC_PKT       3
 123#define MIB_RMON_T_CRC_ALIGN    4
 124#define MIB_RMON_T_UNDERSIZE    5
 125#define MIB_RMON_T_OVERSIZE     6
 126#define MIB_RMON_T_FRAG         7
 127#define MIB_RMON_T_JAB          8
 128#define MIB_RMON_T_COL          9
 129#define MIB_RMON_T_P64          10
 130#define MIB_RMON_T_P65TO127     11
 131#define MIB_RMON_T_P128TO255    12
 132#define MIB_RMON_T_P256TO511    13
 133#define MIB_RMON_T_P512TO1023   14
 134#define MIB_RMON_T_P1024TO2047  15
 135#define MIB_RMON_T_P_GTE2048    16
 136#define MIB_RMON_T_OCTETS       17
 137#define MIB_IEEE_T_DROP         18
 138#define MIB_IEEE_T_FRAME_OK     19
 139#define MIB_IEEE_T_1COL         20
 140#define MIB_IEEE_T_MCOL         21
 141#define MIB_IEEE_T_DEF          22
 142#define MIB_IEEE_T_LCOL         23
 143#define MIB_IEEE_T_EXCOL        24
 144#define MIB_IEEE_T_MACERR       25
 145#define MIB_IEEE_T_CSERR        26
 146#define MIB_IEEE_T_SQE          27
 147#define MIB_IEEE_T_FDXFC        28
 148#define MIB_IEEE_T_OCTETS_OK    29
 149
 150#define MIB_RMON_R_DROP         32
 151#define MIB_RMON_R_PACKETS      33
 152#define MIB_RMON_R_BC_PKT       34
 153#define MIB_RMON_R_MC_PKT       35
 154#define MIB_RMON_R_CRC_ALIGN    36
 155#define MIB_RMON_R_UNDERSIZE    37
 156#define MIB_RMON_R_OVERSIZE     38
 157#define MIB_RMON_R_FRAG         39
 158#define MIB_RMON_R_JAB          40
 159#define MIB_RMON_R_RESVD_0      41
 160#define MIB_RMON_R_P64          42
 161#define MIB_RMON_R_P65TO127     43
 162#define MIB_RMON_R_P128TO255    44
 163#define MIB_RMON_R_P256TO511    45
 164#define MIB_RMON_R_P512TO1023   46
 165#define MIB_RMON_R_P1024TO2047  47
 166#define MIB_RMON_R_P_GTE2048    48
 167#define MIB_RMON_R_OCTETS       49
 168#define MIB_IEEE_R_DROP         50
 169#define MIB_IEEE_R_FRAME_OK     51
 170#define MIB_IEEE_R_CRC          52
 171#define MIB_IEEE_R_ALIGN        53
 172#define MIB_IEEE_R_MACERR       54
 173#define MIB_IEEE_R_FDXFC        55
 174#define MIB_IEEE_R_OCTETS_OK    56
 175
 176static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
 177{
 178    cpu_physical_memory_read(addr, bd, sizeof(*bd));
 179    be16_to_cpus(&bd->flags);
 180    be16_to_cpus(&bd->length);
 181    be32_to_cpus(&bd->data);
 182}
 183
 184static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
 185{
 186    mcf_fec_bd tmp;
 187    tmp.flags = cpu_to_be16(bd->flags);
 188    tmp.length = cpu_to_be16(bd->length);
 189    tmp.data = cpu_to_be32(bd->data);
 190    cpu_physical_memory_write(addr, &tmp, sizeof(tmp));
 191}
 192
 193static void mcf_fec_update(mcf_fec_state *s)
 194{
 195    uint32_t active;
 196    uint32_t changed;
 197    uint32_t mask;
 198    int i;
 199
 200    active = s->eir & s->eimr;
 201    changed = active ^s->irq_state;
 202    for (i = 0; i < FEC_NUM_IRQ; i++) {
 203        mask = mcf_fec_irq_map[i];
 204        if (changed & mask) {
 205            DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
 206            qemu_set_irq(s->irq[i], (active & mask) != 0);
 207        }
 208    }
 209    s->irq_state = active;
 210}
 211
 212static void mcf_fec_tx_stats(mcf_fec_state *s, int size)
 213{
 214    s->mib[MIB_RMON_T_PACKETS]++;
 215    s->mib[MIB_RMON_T_OCTETS] += size;
 216    if (size < 64) {
 217        s->mib[MIB_RMON_T_FRAG]++;
 218    } else if (size == 64) {
 219        s->mib[MIB_RMON_T_P64]++;
 220    } else if (size < 128) {
 221        s->mib[MIB_RMON_T_P65TO127]++;
 222    } else if (size < 256) {
 223        s->mib[MIB_RMON_T_P128TO255]++;
 224    } else if (size < 512) {
 225        s->mib[MIB_RMON_T_P256TO511]++;
 226    } else if (size < 1024) {
 227        s->mib[MIB_RMON_T_P512TO1023]++;
 228    } else if (size < 2048) {
 229        s->mib[MIB_RMON_T_P1024TO2047]++;
 230    } else {
 231        s->mib[MIB_RMON_T_P_GTE2048]++;
 232    }
 233    s->mib[MIB_IEEE_T_FRAME_OK]++;
 234    s->mib[MIB_IEEE_T_OCTETS_OK] += size;
 235}
 236
 237static void mcf_fec_do_tx(mcf_fec_state *s)
 238{
 239    uint32_t addr;
 240    mcf_fec_bd bd;
 241    int frame_size;
 242    int len, descnt = 0;
 243    uint8_t frame[FEC_MAX_FRAME_SIZE];
 244    uint8_t *ptr;
 245
 246    DPRINTF("do_tx\n");
 247    ptr = frame;
 248    frame_size = 0;
 249    addr = s->tx_descriptor;
 250    while (descnt++ < FEC_MAX_DESC) {
 251        mcf_fec_read_bd(&bd, addr);
 252        DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
 253                addr, bd.flags, bd.length, bd.data);
 254        if ((bd.flags & FEC_BD_R) == 0) {
 255            /* Run out of descriptors to transmit.  */
 256            break;
 257        }
 258        len = bd.length;
 259        if (frame_size + len > FEC_MAX_FRAME_SIZE) {
 260            len = FEC_MAX_FRAME_SIZE - frame_size;
 261            s->eir |= FEC_INT_BABT;
 262        }
 263        cpu_physical_memory_read(bd.data, ptr, len);
 264        ptr += len;
 265        frame_size += len;
 266        if (bd.flags & FEC_BD_L) {
 267            /* Last buffer in frame.  */
 268            DPRINTF("Sending packet\n");
 269            qemu_send_packet(qemu_get_queue(s->nic), frame, frame_size);
 270            mcf_fec_tx_stats(s, frame_size);
 271            ptr = frame;
 272            frame_size = 0;
 273            s->eir |= FEC_INT_TXF;
 274        }
 275        s->eir |= FEC_INT_TXB;
 276        bd.flags &= ~FEC_BD_R;
 277        /* Write back the modified descriptor.  */
 278        mcf_fec_write_bd(&bd, addr);
 279        /* Advance to the next descriptor.  */
 280        if ((bd.flags & FEC_BD_W) != 0) {
 281            addr = s->etdsr;
 282        } else {
 283            addr += 8;
 284        }
 285    }
 286    s->tx_descriptor = addr;
 287}
 288
 289static void mcf_fec_enable_rx(mcf_fec_state *s)
 290{
 291    NetClientState *nc = qemu_get_queue(s->nic);
 292    mcf_fec_bd bd;
 293
 294    mcf_fec_read_bd(&bd, s->rx_descriptor);
 295    s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
 296    if (s->rx_enabled) {
 297        qemu_flush_queued_packets(nc);
 298    }
 299}
 300
 301static void mcf_fec_reset(DeviceState *dev)
 302{
 303    mcf_fec_state *s = MCF_FEC_NET(dev);
 304
 305    s->eir = 0;
 306    s->eimr = 0;
 307    s->rx_enabled = 0;
 308    s->ecr = 0;
 309    s->mscr = 0;
 310    s->rcr = 0x05ee0001;
 311    s->tcr = 0;
 312    s->tfwr = 0;
 313    s->rfsr = 0x500;
 314}
 315
 316#define MMFR_WRITE_OP   (1 << 28)
 317#define MMFR_READ_OP    (2 << 28)
 318#define MMFR_PHYADDR(v) (((v) >> 23) & 0x1f)
 319#define MMFR_REGNUM(v)  (((v) >> 18) & 0x1f)
 320
 321static uint64_t mcf_fec_read_mdio(mcf_fec_state *s)
 322{
 323    uint64_t v;
 324
 325    if (s->mmfr & MMFR_WRITE_OP)
 326        return s->mmfr;
 327    if (MMFR_PHYADDR(s->mmfr) != 1)
 328        return s->mmfr |= 0xffff;
 329
 330    switch (MMFR_REGNUM(s->mmfr)) {
 331    case MII_BMCR:
 332        v = MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_FD;
 333        break;
 334    case MII_BMSR:
 335        v = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
 336            MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AN_COMP |
 337            MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
 338        break;
 339    case MII_PHYID1:
 340        v = DP83848_PHYID1;
 341        break;
 342    case MII_PHYID2:
 343        v = DP83848_PHYID2;
 344        break;
 345    case MII_ANAR:
 346        v = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
 347            MII_ANAR_10 | MII_ANAR_CSMACD;
 348        break;
 349    case MII_ANLPAR:
 350        v = MII_ANLPAR_ACK | MII_ANLPAR_TXFD | MII_ANLPAR_TX |
 351            MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD;
 352        break;
 353    default:
 354        v = 0xffff;
 355        break;
 356    }
 357    s->mmfr = (s->mmfr & ~0xffff) | v;
 358    return s->mmfr;
 359}
 360
 361static uint64_t mcf_fec_read(void *opaque, hwaddr addr,
 362                             unsigned size)
 363{
 364    mcf_fec_state *s = (mcf_fec_state *)opaque;
 365    switch (addr & 0x3ff) {
 366    case 0x004: return s->eir;
 367    case 0x008: return s->eimr;
 368    case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
 369    case 0x014: return 0; /* TDAR */
 370    case 0x024: return s->ecr;
 371    case 0x040: return mcf_fec_read_mdio(s);
 372    case 0x044: return s->mscr;
 373    case 0x064: return 0; /* MIBC */
 374    case 0x084: return s->rcr;
 375    case 0x0c4: return s->tcr;
 376    case 0x0e4: /* PALR */
 377        return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16)
 378              | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3];
 379        break;
 380    case 0x0e8: /* PAUR */
 381        return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808;
 382    case 0x0ec: return 0x10000; /* OPD */
 383    case 0x118: return 0;
 384    case 0x11c: return 0;
 385    case 0x120: return 0;
 386    case 0x124: return 0;
 387    case 0x144: return s->tfwr;
 388    case 0x14c: return 0x600;
 389    case 0x150: return s->rfsr;
 390    case 0x180: return s->erdsr;
 391    case 0x184: return s->etdsr;
 392    case 0x188: return s->emrbr;
 393    case 0x200 ... 0x2e0: return s->mib[(addr & 0x1ff) / 4];
 394    default:
 395        qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address 0x%" HWADDR_PRIX "\n",
 396                      __func__, addr);
 397        return 0;
 398    }
 399}
 400
 401static void mcf_fec_write(void *opaque, hwaddr addr,
 402                          uint64_t value, unsigned size)
 403{
 404    mcf_fec_state *s = (mcf_fec_state *)opaque;
 405    switch (addr & 0x3ff) {
 406    case 0x004:
 407        s->eir &= ~value;
 408        break;
 409    case 0x008:
 410        s->eimr = value;
 411        break;
 412    case 0x010: /* RDAR */
 413        if ((s->ecr & FEC_EN) && !s->rx_enabled) {
 414            DPRINTF("RX enable\n");
 415            mcf_fec_enable_rx(s);
 416        }
 417        break;
 418    case 0x014: /* TDAR */
 419        if (s->ecr & FEC_EN) {
 420            mcf_fec_do_tx(s);
 421        }
 422        break;
 423    case 0x024:
 424        s->ecr = value;
 425        if (value & FEC_RESET) {
 426            DPRINTF("Reset\n");
 427            mcf_fec_reset(opaque);
 428        }
 429        if ((s->ecr & FEC_EN) == 0) {
 430            s->rx_enabled = 0;
 431        }
 432        break;
 433    case 0x040:
 434        s->mmfr = value;
 435        s->eir |= FEC_INT_MII;
 436        break;
 437    case 0x044:
 438        s->mscr = value & 0xfe;
 439        break;
 440    case 0x064:
 441        /* TODO: Implement MIB.  */
 442        break;
 443    case 0x084:
 444        s->rcr = value & 0x07ff003f;
 445        /* TODO: Implement LOOP mode.  */
 446        break;
 447    case 0x0c4: /* TCR */
 448        /* We transmit immediately, so raise GRA immediately.  */
 449        s->tcr = value;
 450        if (value & 1)
 451            s->eir |= FEC_INT_GRA;
 452        break;
 453    case 0x0e4: /* PALR */
 454        s->conf.macaddr.a[0] = value >> 24;
 455        s->conf.macaddr.a[1] = value >> 16;
 456        s->conf.macaddr.a[2] = value >> 8;
 457        s->conf.macaddr.a[3] = value;
 458        break;
 459    case 0x0e8: /* PAUR */
 460        s->conf.macaddr.a[4] = value >> 24;
 461        s->conf.macaddr.a[5] = value >> 16;
 462        break;
 463    case 0x0ec:
 464        /* OPD */
 465        break;
 466    case 0x118:
 467    case 0x11c:
 468    case 0x120:
 469    case 0x124:
 470        /* TODO: implement MAC hash filtering.  */
 471        break;
 472    case 0x144:
 473        s->tfwr = value & 3;
 474        break;
 475    case 0x14c:
 476        /* FRBR writes ignored.  */
 477        break;
 478    case 0x150:
 479        s->rfsr = (value & 0x3fc) | 0x400;
 480        break;
 481    case 0x180:
 482        s->erdsr = value & ~3;
 483        s->rx_descriptor = s->erdsr;
 484        break;
 485    case 0x184:
 486        s->etdsr = value & ~3;
 487        s->tx_descriptor = s->etdsr;
 488        break;
 489    case 0x188:
 490        s->emrbr = value > 0 ? value & 0x7F0 : 0x7F0;
 491        break;
 492    case 0x200 ... 0x2e0:
 493        s->mib[(addr & 0x1ff) / 4] = value;
 494        break;
 495    default:
 496        qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address 0x%" HWADDR_PRIX "\n",
 497                      __func__, addr);
 498        return;
 499    }
 500    mcf_fec_update(s);
 501}
 502
 503static void mcf_fec_rx_stats(mcf_fec_state *s, int size)
 504{
 505    s->mib[MIB_RMON_R_PACKETS]++;
 506    s->mib[MIB_RMON_R_OCTETS] += size;
 507    if (size < 64) {
 508        s->mib[MIB_RMON_R_FRAG]++;
 509    } else if (size == 64) {
 510        s->mib[MIB_RMON_R_P64]++;
 511    } else if (size < 128) {
 512        s->mib[MIB_RMON_R_P65TO127]++;
 513    } else if (size < 256) {
 514        s->mib[MIB_RMON_R_P128TO255]++;
 515    } else if (size < 512) {
 516        s->mib[MIB_RMON_R_P256TO511]++;
 517    } else if (size < 1024) {
 518        s->mib[MIB_RMON_R_P512TO1023]++;
 519    } else if (size < 2048) {
 520        s->mib[MIB_RMON_R_P1024TO2047]++;
 521    } else {
 522        s->mib[MIB_RMON_R_P_GTE2048]++;
 523    }
 524    s->mib[MIB_IEEE_R_FRAME_OK]++;
 525    s->mib[MIB_IEEE_R_OCTETS_OK] += size;
 526}
 527
 528static int mcf_fec_have_receive_space(mcf_fec_state *s, size_t want)
 529{
 530    mcf_fec_bd bd;
 531    uint32_t addr;
 532
 533    /* Walk descriptor list to determine if we have enough buffer */
 534    addr = s->rx_descriptor;
 535    while (want > 0) {
 536        mcf_fec_read_bd(&bd, addr);
 537        if ((bd.flags & FEC_BD_E) == 0) {
 538            return 0;
 539        }
 540        if (want < s->emrbr) {
 541            return 1;
 542        }
 543        want -= s->emrbr;
 544        /* Advance to the next descriptor.  */
 545        if ((bd.flags & FEC_BD_W) != 0) {
 546            addr = s->erdsr;
 547        } else {
 548            addr += 8;
 549        }
 550    }
 551    return 0;
 552}
 553
 554static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size)
 555{
 556    mcf_fec_state *s = qemu_get_nic_opaque(nc);
 557    mcf_fec_bd bd;
 558    uint32_t flags = 0;
 559    uint32_t addr;
 560    uint32_t crc;
 561    uint32_t buf_addr;
 562    uint8_t *crc_ptr;
 563    unsigned int buf_len;
 564    size_t retsize;
 565
 566    DPRINTF("do_rx len %d\n", size);
 567    if (!s->rx_enabled) {
 568        return -1;
 569    }
 570    /* 4 bytes for the CRC.  */
 571    size += 4;
 572    crc = cpu_to_be32(crc32(~0, buf, size));
 573    crc_ptr = (uint8_t *)&crc;
 574    /* Huge frames are truncted.  */
 575    if (size > FEC_MAX_FRAME_SIZE) {
 576        size = FEC_MAX_FRAME_SIZE;
 577        flags |= FEC_BD_TR | FEC_BD_LG;
 578    }
 579    /* Frames larger than the user limit just set error flags.  */
 580    if (size > (s->rcr >> 16)) {
 581        flags |= FEC_BD_LG;
 582    }
 583    /* Check if we have enough space in current descriptors */
 584    if (!mcf_fec_have_receive_space(s, size)) {
 585        return 0;
 586    }
 587    addr = s->rx_descriptor;
 588    retsize = size;
 589    while (size > 0) {
 590        mcf_fec_read_bd(&bd, addr);
 591        buf_len = (size <= s->emrbr) ? size: s->emrbr;
 592        bd.length = buf_len;
 593        size -= buf_len;
 594        DPRINTF("rx_bd %x length %d\n", addr, bd.length);
 595        /* The last 4 bytes are the CRC.  */
 596        if (size < 4)
 597            buf_len += size - 4;
 598        buf_addr = bd.data;
 599        cpu_physical_memory_write(buf_addr, buf, buf_len);
 600        buf += buf_len;
 601        if (size < 4) {
 602            cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
 603            crc_ptr += 4 - size;
 604        }
 605        bd.flags &= ~FEC_BD_E;
 606        if (size == 0) {
 607            /* Last buffer in frame.  */
 608            bd.flags |= flags | FEC_BD_L;
 609            DPRINTF("rx frame flags %04x\n", bd.flags);
 610            s->eir |= FEC_INT_RXF;
 611        } else {
 612            s->eir |= FEC_INT_RXB;
 613        }
 614        mcf_fec_write_bd(&bd, addr);
 615        /* Advance to the next descriptor.  */
 616        if ((bd.flags & FEC_BD_W) != 0) {
 617            addr = s->erdsr;
 618        } else {
 619            addr += 8;
 620        }
 621    }
 622    s->rx_descriptor = addr;
 623    mcf_fec_rx_stats(s, retsize);
 624    mcf_fec_enable_rx(s);
 625    mcf_fec_update(s);
 626    return retsize;
 627}
 628
 629static const MemoryRegionOps mcf_fec_ops = {
 630    .read = mcf_fec_read,
 631    .write = mcf_fec_write,
 632    .endianness = DEVICE_NATIVE_ENDIAN,
 633};
 634
 635static NetClientInfo net_mcf_fec_info = {
 636    .type = NET_CLIENT_DRIVER_NIC,
 637    .size = sizeof(NICState),
 638    .receive = mcf_fec_receive,
 639};
 640
 641static void mcf_fec_realize(DeviceState *dev, Error **errp)
 642{
 643    mcf_fec_state *s = MCF_FEC_NET(dev);
 644
 645    s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf,
 646                          object_get_typename(OBJECT(dev)), dev->id, s);
 647    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
 648}
 649
 650static void mcf_fec_instance_init(Object *obj)
 651{
 652    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 653    mcf_fec_state *s = MCF_FEC_NET(obj);
 654    int i;
 655
 656    memory_region_init_io(&s->iomem, obj, &mcf_fec_ops, s, "fec", 0x400);
 657    sysbus_init_mmio(sbd, &s->iomem);
 658    for (i = 0; i < FEC_NUM_IRQ; i++) {
 659        sysbus_init_irq(sbd, &s->irq[i]);
 660    }
 661}
 662
 663static Property mcf_fec_properties[] = {
 664    DEFINE_NIC_PROPERTIES(mcf_fec_state, conf),
 665    DEFINE_PROP_END_OF_LIST(),
 666};
 667
 668static void mcf_fec_class_init(ObjectClass *oc, void *data)
 669{
 670    DeviceClass *dc = DEVICE_CLASS(oc);
 671
 672    set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
 673    dc->realize = mcf_fec_realize;
 674    dc->desc = "MCF Fast Ethernet Controller network device";
 675    dc->reset = mcf_fec_reset;
 676    device_class_set_props(dc, mcf_fec_properties);
 677}
 678
 679static const TypeInfo mcf_fec_info = {
 680    .name          = TYPE_MCF_FEC_NET,
 681    .parent        = TYPE_SYS_BUS_DEVICE,
 682    .instance_size = sizeof(mcf_fec_state),
 683    .instance_init = mcf_fec_instance_init,
 684    .class_init    = mcf_fec_class_init,
 685};
 686
 687static void mcf_fec_register_types(void)
 688{
 689    type_register_static(&mcf_fec_info);
 690}
 691
 692type_init(mcf_fec_register_types)
 693