qemu/hw/ppc/pnv.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC PowerNV machine model
   3 *
   4 * Copyright (c) 2016, IBM Corporation.
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu-common.h"
  22#include "qemu/datadir.h"
  23#include "qemu/units.h"
  24#include "qemu/cutils.h"
  25#include "qapi/error.h"
  26#include "sysemu/qtest.h"
  27#include "sysemu/sysemu.h"
  28#include "sysemu/numa.h"
  29#include "sysemu/reset.h"
  30#include "sysemu/runstate.h"
  31#include "sysemu/cpus.h"
  32#include "sysemu/device_tree.h"
  33#include "sysemu/hw_accel.h"
  34#include "target/ppc/cpu.h"
  35#include "hw/ppc/fdt.h"
  36#include "hw/ppc/ppc.h"
  37#include "hw/ppc/pnv.h"
  38#include "hw/ppc/pnv_core.h"
  39#include "hw/loader.h"
  40#include "hw/nmi.h"
  41#include "qapi/visitor.h"
  42#include "monitor/monitor.h"
  43#include "hw/intc/intc.h"
  44#include "hw/ipmi/ipmi.h"
  45#include "target/ppc/mmu-hash64.h"
  46#include "hw/pci/msi.h"
  47
  48#include "hw/ppc/xics.h"
  49#include "hw/qdev-properties.h"
  50#include "hw/ppc/pnv_xscom.h"
  51#include "hw/ppc/pnv_pnor.h"
  52
  53#include "hw/isa/isa.h"
  54#include "hw/char/serial.h"
  55#include "hw/rtc/mc146818rtc.h"
  56
  57#include <libfdt.h>
  58
  59#define FDT_MAX_SIZE            (1 * MiB)
  60
  61#define FW_FILE_NAME            "skiboot.lid"
  62#define FW_LOAD_ADDR            0x0
  63#define FW_MAX_SIZE             (16 * MiB)
  64
  65#define KERNEL_LOAD_ADDR        0x20000000
  66#define KERNEL_MAX_SIZE         (128 * MiB)
  67#define INITRD_LOAD_ADDR        0x28000000
  68#define INITRD_MAX_SIZE         (128 * MiB)
  69
  70static const char *pnv_chip_core_typename(const PnvChip *o)
  71{
  72    const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
  73    int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
  74    char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
  75    const char *core_type = object_class_get_name(object_class_by_name(s));
  76    g_free(s);
  77    return core_type;
  78}
  79
  80/*
  81 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
  82 *     4 * 4 sockets * 12 cores * 8 threads = 1536
  83 * Let's make it 2^11
  84 */
  85#define MAX_CPUS                2048
  86
  87/*
  88 * Memory nodes are created by hostboot, one for each range of memory
  89 * that has a different "affinity". In practice, it means one range
  90 * per chip.
  91 */
  92static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
  93{
  94    char *mem_name;
  95    uint64_t mem_reg_property[2];
  96    int off;
  97
  98    mem_reg_property[0] = cpu_to_be64(start);
  99    mem_reg_property[1] = cpu_to_be64(size);
 100
 101    mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
 102    off = fdt_add_subnode(fdt, 0, mem_name);
 103    g_free(mem_name);
 104
 105    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 106    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 107                       sizeof(mem_reg_property))));
 108    _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
 109}
 110
 111static int get_cpus_node(void *fdt)
 112{
 113    int cpus_offset = fdt_path_offset(fdt, "/cpus");
 114
 115    if (cpus_offset < 0) {
 116        cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 117        if (cpus_offset) {
 118            _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 119            _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 120        }
 121    }
 122    _FDT(cpus_offset);
 123    return cpus_offset;
 124}
 125
 126/*
 127 * The PowerNV cores (and threads) need to use real HW ids and not an
 128 * incremental index like it has been done on other platforms. This HW
 129 * id is stored in the CPU PIR, it is used to create cpu nodes in the
 130 * device tree, used in XSCOM to address cores and in interrupt
 131 * servers.
 132 */
 133static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
 134{
 135    PowerPCCPU *cpu = pc->threads[0];
 136    CPUState *cs = CPU(cpu);
 137    DeviceClass *dc = DEVICE_GET_CLASS(cs);
 138    int smt_threads = CPU_CORE(pc)->nr_threads;
 139    CPUPPCState *env = &cpu->env;
 140    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 141    uint32_t servers_prop[smt_threads];
 142    int i;
 143    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 144                       0xffffffff, 0xffffffff};
 145    uint32_t tbfreq = PNV_TIMEBASE_FREQ;
 146    uint32_t cpufreq = 1000000000;
 147    uint32_t page_sizes_prop[64];
 148    size_t page_sizes_prop_size;
 149    const uint8_t pa_features[] = { 24, 0,
 150                                    0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
 151                                    0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 152                                    0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 153                                    0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
 154    int offset;
 155    char *nodename;
 156    int cpus_offset = get_cpus_node(fdt);
 157
 158    nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
 159    offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 160    _FDT(offset);
 161    g_free(nodename);
 162
 163    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
 164
 165    _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
 166    _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
 167    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 168
 169    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 170    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 171                            env->dcache_line_size)));
 172    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 173                            env->dcache_line_size)));
 174    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 175                            env->icache_line_size)));
 176    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 177                            env->icache_line_size)));
 178
 179    if (pcc->l1_dcache_size) {
 180        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 181                               pcc->l1_dcache_size)));
 182    } else {
 183        warn_report("Unknown L1 dcache size for cpu");
 184    }
 185    if (pcc->l1_icache_size) {
 186        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 187                               pcc->l1_icache_size)));
 188    } else {
 189        warn_report("Unknown L1 icache size for cpu");
 190    }
 191
 192    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 193    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 194    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
 195                           cpu->hash64_opts->slb_size)));
 196    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 197    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 198
 199    if (ppc_has_spr(cpu, SPR_PURR)) {
 200        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
 201    }
 202
 203    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
 204        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 205                           segs, sizeof(segs))));
 206    }
 207
 208    /*
 209     * Advertise VMX/VSX (vector extensions) if available
 210     *   0 / no property == no vector extensions
 211     *   1               == VMX / Altivec available
 212     *   2               == VSX available
 213     */
 214    if (env->insns_flags & PPC_ALTIVEC) {
 215        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
 216
 217        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
 218    }
 219
 220    /*
 221     * Advertise DFP (Decimal Floating Point) if available
 222     *   0 / no property == no DFP
 223     *   1               == DFP available
 224     */
 225    if (env->insns_flags2 & PPC2_DFP) {
 226        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 227    }
 228
 229    page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
 230                                                      sizeof(page_sizes_prop));
 231    if (page_sizes_prop_size) {
 232        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 233                           page_sizes_prop, page_sizes_prop_size)));
 234    }
 235
 236    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
 237                       pa_features, sizeof(pa_features))));
 238
 239    /* Build interrupt servers properties */
 240    for (i = 0; i < smt_threads; i++) {
 241        servers_prop[i] = cpu_to_be32(pc->pir + i);
 242    }
 243    _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 244                       servers_prop, sizeof(servers_prop))));
 245}
 246
 247static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
 248                       uint32_t nr_threads)
 249{
 250    uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
 251    char *name;
 252    const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
 253    uint32_t irange[2], i, rsize;
 254    uint64_t *reg;
 255    int offset;
 256
 257    irange[0] = cpu_to_be32(pir);
 258    irange[1] = cpu_to_be32(nr_threads);
 259
 260    rsize = sizeof(uint64_t) * 2 * nr_threads;
 261    reg = g_malloc(rsize);
 262    for (i = 0; i < nr_threads; i++) {
 263        reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
 264        reg[i * 2 + 1] = cpu_to_be64(0x1000);
 265    }
 266
 267    name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
 268    offset = fdt_add_subnode(fdt, 0, name);
 269    _FDT(offset);
 270    g_free(name);
 271
 272    _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
 273    _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
 274    _FDT((fdt_setprop_string(fdt, offset, "device_type",
 275                              "PowerPC-External-Interrupt-Presentation")));
 276    _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
 277    _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
 278                       irange, sizeof(irange))));
 279    _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
 280    _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
 281    g_free(reg);
 282}
 283
 284static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
 285{
 286    static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
 287    int i;
 288
 289    pnv_dt_xscom(chip, fdt, 0,
 290                 cpu_to_be64(PNV_XSCOM_BASE(chip)),
 291                 cpu_to_be64(PNV_XSCOM_SIZE),
 292                 compat, sizeof(compat));
 293
 294    for (i = 0; i < chip->nr_cores; i++) {
 295        PnvCore *pnv_core = chip->cores[i];
 296
 297        pnv_dt_core(chip, pnv_core, fdt);
 298
 299        /* Interrupt Control Presenters (ICP). One per core. */
 300        pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
 301    }
 302
 303    if (chip->ram_size) {
 304        pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
 305    }
 306}
 307
 308static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
 309{
 310    static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
 311    int i;
 312
 313    pnv_dt_xscom(chip, fdt, 0,
 314                 cpu_to_be64(PNV9_XSCOM_BASE(chip)),
 315                 cpu_to_be64(PNV9_XSCOM_SIZE),
 316                 compat, sizeof(compat));
 317
 318    for (i = 0; i < chip->nr_cores; i++) {
 319        PnvCore *pnv_core = chip->cores[i];
 320
 321        pnv_dt_core(chip, pnv_core, fdt);
 322    }
 323
 324    if (chip->ram_size) {
 325        pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
 326    }
 327
 328    pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
 329}
 330
 331static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
 332{
 333    static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
 334    int i;
 335
 336    pnv_dt_xscom(chip, fdt, 0,
 337                 cpu_to_be64(PNV10_XSCOM_BASE(chip)),
 338                 cpu_to_be64(PNV10_XSCOM_SIZE),
 339                 compat, sizeof(compat));
 340
 341    for (i = 0; i < chip->nr_cores; i++) {
 342        PnvCore *pnv_core = chip->cores[i];
 343
 344        pnv_dt_core(chip, pnv_core, fdt);
 345    }
 346
 347    if (chip->ram_size) {
 348        pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
 349    }
 350
 351    pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
 352}
 353
 354static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
 355{
 356    uint32_t io_base = d->ioport_id;
 357    uint32_t io_regs[] = {
 358        cpu_to_be32(1),
 359        cpu_to_be32(io_base),
 360        cpu_to_be32(2)
 361    };
 362    char *name;
 363    int node;
 364
 365    name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
 366    node = fdt_add_subnode(fdt, lpc_off, name);
 367    _FDT(node);
 368    g_free(name);
 369
 370    _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
 371    _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
 372}
 373
 374static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
 375{
 376    const char compatible[] = "ns16550\0pnpPNP,501";
 377    uint32_t io_base = d->ioport_id;
 378    uint32_t io_regs[] = {
 379        cpu_to_be32(1),
 380        cpu_to_be32(io_base),
 381        cpu_to_be32(8)
 382    };
 383    char *name;
 384    int node;
 385
 386    name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
 387    node = fdt_add_subnode(fdt, lpc_off, name);
 388    _FDT(node);
 389    g_free(name);
 390
 391    _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
 392    _FDT((fdt_setprop(fdt, node, "compatible", compatible,
 393                      sizeof(compatible))));
 394
 395    _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
 396    _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
 397    _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
 398    _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
 399                           fdt_get_phandle(fdt, lpc_off))));
 400
 401    /* This is needed by Linux */
 402    _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
 403}
 404
 405static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
 406{
 407    const char compatible[] = "bt\0ipmi-bt";
 408    uint32_t io_base;
 409    uint32_t io_regs[] = {
 410        cpu_to_be32(1),
 411        0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
 412        cpu_to_be32(3)
 413    };
 414    uint32_t irq;
 415    char *name;
 416    int node;
 417
 418    io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
 419    io_regs[1] = cpu_to_be32(io_base);
 420
 421    irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
 422
 423    name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
 424    node = fdt_add_subnode(fdt, lpc_off, name);
 425    _FDT(node);
 426    g_free(name);
 427
 428    _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
 429    _FDT((fdt_setprop(fdt, node, "compatible", compatible,
 430                      sizeof(compatible))));
 431
 432    /* Mark it as reserved to avoid Linux trying to claim it */
 433    _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
 434    _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
 435    _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
 436                           fdt_get_phandle(fdt, lpc_off))));
 437}
 438
 439typedef struct ForeachPopulateArgs {
 440    void *fdt;
 441    int offset;
 442} ForeachPopulateArgs;
 443
 444static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
 445{
 446    ForeachPopulateArgs *args = opaque;
 447    ISADevice *d = ISA_DEVICE(dev);
 448
 449    if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
 450        pnv_dt_rtc(d, args->fdt, args->offset);
 451    } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
 452        pnv_dt_serial(d, args->fdt, args->offset);
 453    } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
 454        pnv_dt_ipmi_bt(d, args->fdt, args->offset);
 455    } else {
 456        error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
 457                     d->ioport_id);
 458    }
 459
 460    return 0;
 461}
 462
 463/*
 464 * The default LPC bus of a multichip system is on chip 0. It's
 465 * recognized by the firmware (skiboot) using a "primary" property.
 466 */
 467static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
 468{
 469    int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
 470    ForeachPopulateArgs args = {
 471        .fdt = fdt,
 472        .offset = isa_offset,
 473    };
 474    uint32_t phandle;
 475
 476    _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
 477
 478    phandle = qemu_fdt_alloc_phandle(fdt);
 479    assert(phandle > 0);
 480    _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
 481
 482    /*
 483     * ISA devices are not necessarily parented to the ISA bus so we
 484     * can not use object_child_foreach()
 485     */
 486    qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
 487                       &args);
 488}
 489
 490static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
 491{
 492    int off;
 493
 494    off = fdt_add_subnode(fdt, 0, "ibm,opal");
 495    off = fdt_add_subnode(fdt, off, "power-mgt");
 496
 497    _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
 498}
 499
 500static void *pnv_dt_create(MachineState *machine)
 501{
 502    PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
 503    PnvMachineState *pnv = PNV_MACHINE(machine);
 504    void *fdt;
 505    char *buf;
 506    int off;
 507    int i;
 508
 509    fdt = g_malloc0(FDT_MAX_SIZE);
 510    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
 511
 512    /* /qemu node */
 513    _FDT((fdt_add_subnode(fdt, 0, "qemu")));
 514
 515    /* Root node */
 516    _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
 517    _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
 518    _FDT((fdt_setprop_string(fdt, 0, "model",
 519                             "IBM PowerNV (emulated by qemu)")));
 520    _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
 521
 522    buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
 523    _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
 524    if (qemu_uuid_set) {
 525        _FDT((fdt_property_string(fdt, "system-id", buf)));
 526    }
 527    g_free(buf);
 528
 529    off = fdt_add_subnode(fdt, 0, "chosen");
 530    if (machine->kernel_cmdline) {
 531        _FDT((fdt_setprop_string(fdt, off, "bootargs",
 532                                 machine->kernel_cmdline)));
 533    }
 534
 535    if (pnv->initrd_size) {
 536        uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
 537        uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
 538
 539        _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
 540                               &start_prop, sizeof(start_prop))));
 541        _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
 542                               &end_prop, sizeof(end_prop))));
 543    }
 544
 545    /* Populate device tree for each chip */
 546    for (i = 0; i < pnv->num_chips; i++) {
 547        PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
 548    }
 549
 550    /* Populate ISA devices on chip 0 */
 551    pnv_dt_isa(pnv, fdt);
 552
 553    if (pnv->bmc) {
 554        pnv_dt_bmc_sensors(pnv->bmc, fdt);
 555    }
 556
 557    /* Create an extra node for power management on machines that support it */
 558    if (pmc->dt_power_mgt) {
 559        pmc->dt_power_mgt(pnv, fdt);
 560    }
 561
 562    return fdt;
 563}
 564
 565static void pnv_powerdown_notify(Notifier *n, void *opaque)
 566{
 567    PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
 568
 569    if (pnv->bmc) {
 570        pnv_bmc_powerdown(pnv->bmc);
 571    }
 572}
 573
 574static void pnv_reset(MachineState *machine)
 575{
 576    PnvMachineState *pnv = PNV_MACHINE(machine);
 577    IPMIBmc *bmc;
 578    void *fdt;
 579
 580    qemu_devices_reset();
 581
 582    /*
 583     * The machine should provide by default an internal BMC simulator.
 584     * If not, try to use the BMC device that was provided on the command
 585     * line.
 586     */
 587    bmc = pnv_bmc_find(&error_fatal);
 588    if (!pnv->bmc) {
 589        if (!bmc) {
 590            if (!qtest_enabled()) {
 591                warn_report("machine has no BMC device. Use '-device "
 592                            "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
 593                            "to define one");
 594            }
 595        } else {
 596            pnv_bmc_set_pnor(bmc, pnv->pnor);
 597            pnv->bmc = bmc;
 598        }
 599    }
 600
 601    fdt = pnv_dt_create(machine);
 602
 603    /* Pack resulting tree */
 604    _FDT((fdt_pack(fdt)));
 605
 606    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
 607    cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
 608
 609    g_free(fdt);
 610}
 611
 612static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
 613{
 614    Pnv8Chip *chip8 = PNV8_CHIP(chip);
 615    return pnv_lpc_isa_create(&chip8->lpc, true, errp);
 616}
 617
 618static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
 619{
 620    Pnv8Chip *chip8 = PNV8_CHIP(chip);
 621    return pnv_lpc_isa_create(&chip8->lpc, false, errp);
 622}
 623
 624static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
 625{
 626    Pnv9Chip *chip9 = PNV9_CHIP(chip);
 627    return pnv_lpc_isa_create(&chip9->lpc, false, errp);
 628}
 629
 630static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
 631{
 632    Pnv10Chip *chip10 = PNV10_CHIP(chip);
 633    return pnv_lpc_isa_create(&chip10->lpc, false, errp);
 634}
 635
 636static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
 637{
 638    return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
 639}
 640
 641static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
 642{
 643    Pnv8Chip *chip8 = PNV8_CHIP(chip);
 644    int i;
 645
 646    ics_pic_print_info(&chip8->psi.ics, mon);
 647    for (i = 0; i < chip->num_phbs; i++) {
 648        pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
 649        ics_pic_print_info(&chip8->phbs[i].lsis, mon);
 650    }
 651}
 652
 653static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
 654{
 655    Pnv9Chip *chip9 = PNV9_CHIP(chip);
 656    int i, j;
 657
 658    pnv_xive_pic_print_info(&chip9->xive, mon);
 659    pnv_psi_pic_print_info(&chip9->psi, mon);
 660
 661    for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
 662        PnvPhb4PecState *pec = &chip9->pecs[i];
 663        for (j = 0; j < pec->num_stacks; j++) {
 664            pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
 665        }
 666    }
 667}
 668
 669static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
 670                                                uint32_t core_id)
 671{
 672    return PNV_XSCOM_EX_BASE(core_id);
 673}
 674
 675static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
 676                                                uint32_t core_id)
 677{
 678    return PNV9_XSCOM_EC_BASE(core_id);
 679}
 680
 681static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
 682                                                 uint32_t core_id)
 683{
 684    return PNV10_XSCOM_EC_BASE(core_id);
 685}
 686
 687static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
 688{
 689    PowerPCCPUClass *ppc_default =
 690        POWERPC_CPU_CLASS(object_class_by_name(default_type));
 691    PowerPCCPUClass *ppc =
 692        POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
 693
 694    return ppc_default->pvr_match(ppc_default, ppc->pvr);
 695}
 696
 697static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
 698{
 699    ISADevice *dev = isa_new("isa-ipmi-bt");
 700
 701    object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
 702    object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
 703    isa_realize_and_unref(dev, bus, &error_fatal);
 704}
 705
 706static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
 707{
 708    Pnv10Chip *chip10 = PNV10_CHIP(chip);
 709
 710    pnv_psi_pic_print_info(&chip10->psi, mon);
 711}
 712
 713/* Always give the first 1GB to chip 0 else we won't boot */
 714static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
 715{
 716    MachineState *machine = MACHINE(pnv);
 717    uint64_t ram_per_chip;
 718
 719    assert(machine->ram_size >= 1 * GiB);
 720
 721    ram_per_chip = machine->ram_size / pnv->num_chips;
 722    if (ram_per_chip >= 1 * GiB) {
 723        return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
 724    }
 725
 726    assert(pnv->num_chips > 1);
 727
 728    ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
 729    return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
 730}
 731
 732static void pnv_init(MachineState *machine)
 733{
 734    const char *bios_name = machine->firmware ?: FW_FILE_NAME;
 735    PnvMachineState *pnv = PNV_MACHINE(machine);
 736    MachineClass *mc = MACHINE_GET_CLASS(machine);
 737    char *fw_filename;
 738    long fw_size;
 739    uint64_t chip_ram_start = 0;
 740    int i;
 741    char *chip_typename;
 742    DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
 743    DeviceState *dev;
 744
 745    /* allocate RAM */
 746    if (machine->ram_size < mc->default_ram_size) {
 747        char *sz = size_to_str(mc->default_ram_size);
 748        error_report("Invalid RAM size, should be bigger than %s", sz);
 749        g_free(sz);
 750        exit(EXIT_FAILURE);
 751    }
 752    memory_region_add_subregion(get_system_memory(), 0, machine->ram);
 753
 754    /*
 755     * Create our simple PNOR device
 756     */
 757    dev = qdev_new(TYPE_PNV_PNOR);
 758    if (pnor) {
 759        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
 760    }
 761    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 762    pnv->pnor = PNV_PNOR(dev);
 763
 764    /* load skiboot firmware  */
 765    fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
 766    if (!fw_filename) {
 767        error_report("Could not find OPAL firmware '%s'", bios_name);
 768        exit(1);
 769    }
 770
 771    fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
 772    if (fw_size < 0) {
 773        error_report("Could not load OPAL firmware '%s'", fw_filename);
 774        exit(1);
 775    }
 776    g_free(fw_filename);
 777
 778    /* load kernel */
 779    if (machine->kernel_filename) {
 780        long kernel_size;
 781
 782        kernel_size = load_image_targphys(machine->kernel_filename,
 783                                          KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
 784        if (kernel_size < 0) {
 785            error_report("Could not load kernel '%s'",
 786                         machine->kernel_filename);
 787            exit(1);
 788        }
 789    }
 790
 791    /* load initrd */
 792    if (machine->initrd_filename) {
 793        pnv->initrd_base = INITRD_LOAD_ADDR;
 794        pnv->initrd_size = load_image_targphys(machine->initrd_filename,
 795                                  pnv->initrd_base, INITRD_MAX_SIZE);
 796        if (pnv->initrd_size < 0) {
 797            error_report("Could not load initial ram disk '%s'",
 798                         machine->initrd_filename);
 799            exit(1);
 800        }
 801    }
 802
 803    /* MSIs are supported on this platform */
 804    msi_nonbroken = true;
 805
 806    /*
 807     * Check compatibility of the specified CPU with the machine
 808     * default.
 809     */
 810    if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
 811        error_report("invalid CPU model '%s' for %s machine",
 812                     machine->cpu_type, mc->name);
 813        exit(1);
 814    }
 815
 816    /* Create the processor chips */
 817    i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
 818    chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
 819                                    i, machine->cpu_type);
 820    if (!object_class_by_name(chip_typename)) {
 821        error_report("invalid chip model '%.*s' for %s machine",
 822                     i, machine->cpu_type, mc->name);
 823        exit(1);
 824    }
 825
 826    pnv->num_chips =
 827        machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
 828    /*
 829     * TODO: should we decide on how many chips we can create based
 830     * on #cores and Venice vs. Murano vs. Naples chip type etc...,
 831     */
 832    if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
 833        error_report("invalid number of chips: '%d'", pnv->num_chips);
 834        error_printf(
 835            "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
 836        exit(1);
 837    }
 838
 839    pnv->chips = g_new0(PnvChip *, pnv->num_chips);
 840    for (i = 0; i < pnv->num_chips; i++) {
 841        char chip_name[32];
 842        Object *chip = OBJECT(qdev_new(chip_typename));
 843        uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
 844
 845        pnv->chips[i] = PNV_CHIP(chip);
 846
 847        /* Distribute RAM among the chips  */
 848        object_property_set_int(chip, "ram-start", chip_ram_start,
 849                                &error_fatal);
 850        object_property_set_int(chip, "ram-size", chip_ram_size,
 851                                &error_fatal);
 852        chip_ram_start += chip_ram_size;
 853
 854        snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
 855        object_property_add_child(OBJECT(pnv), chip_name, chip);
 856        object_property_set_int(chip, "chip-id", i, &error_fatal);
 857        object_property_set_int(chip, "nr-cores", machine->smp.cores,
 858                                &error_fatal);
 859        object_property_set_int(chip, "nr-threads", machine->smp.threads,
 860                                &error_fatal);
 861        /*
 862         * The POWER8 machine use the XICS interrupt interface.
 863         * Propagate the XICS fabric to the chip and its controllers.
 864         */
 865        if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
 866            object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
 867        }
 868        if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
 869            object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
 870                                     &error_abort);
 871        }
 872        sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
 873    }
 874    g_free(chip_typename);
 875
 876    /* Instantiate ISA bus on chip 0 */
 877    pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
 878
 879    /* Create serial port */
 880    serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
 881
 882    /* Create an RTC ISA device too */
 883    mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
 884
 885    /*
 886     * Create the machine BMC simulator and the IPMI BT device for
 887     * communication with the BMC
 888     */
 889    if (defaults_enabled()) {
 890        pnv->bmc = pnv_bmc_create(pnv->pnor);
 891        pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
 892    }
 893
 894    /*
 895     * The PNOR is mapped on the LPC FW address space by the BMC.
 896     * Since we can not reach the remote BMC machine with LPC memops,
 897     * map it always for now.
 898     */
 899    memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
 900                                &pnv->pnor->mmio);
 901
 902    /*
 903     * OpenPOWER systems use a IPMI SEL Event message to notify the
 904     * host to powerdown
 905     */
 906    pnv->powerdown_notifier.notify = pnv_powerdown_notify;
 907    qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
 908}
 909
 910/*
 911 *    0:21  Reserved - Read as zeros
 912 *   22:24  Chip ID
 913 *   25:28  Core number
 914 *   29:31  Thread ID
 915 */
 916static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
 917{
 918    return (chip->chip_id << 7) | (core_id << 3);
 919}
 920
 921static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
 922                                        Error **errp)
 923{
 924    Pnv8Chip *chip8 = PNV8_CHIP(chip);
 925    Error *local_err = NULL;
 926    Object *obj;
 927    PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
 928
 929    obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
 930    if (local_err) {
 931        error_propagate(errp, local_err);
 932        return;
 933    }
 934
 935    pnv_cpu->intc = obj;
 936}
 937
 938
 939static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
 940{
 941    PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
 942
 943    icp_reset(ICP(pnv_cpu->intc));
 944}
 945
 946static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
 947{
 948    PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
 949
 950    icp_destroy(ICP(pnv_cpu->intc));
 951    pnv_cpu->intc = NULL;
 952}
 953
 954static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
 955                                            Monitor *mon)
 956{
 957    icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
 958}
 959
 960/*
 961 *    0:48  Reserved - Read as zeroes
 962 *   49:52  Node ID
 963 *   53:55  Chip ID
 964 *   56     Reserved - Read as zero
 965 *   57:61  Core number
 966 *   62:63  Thread ID
 967 *
 968 * We only care about the lower bits. uint32_t is fine for the moment.
 969 */
 970static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
 971{
 972    return (chip->chip_id << 8) | (core_id << 2);
 973}
 974
 975static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
 976{
 977    return (chip->chip_id << 8) | (core_id << 2);
 978}
 979
 980static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
 981                                        Error **errp)
 982{
 983    Pnv9Chip *chip9 = PNV9_CHIP(chip);
 984    Error *local_err = NULL;
 985    Object *obj;
 986    PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
 987
 988    /*
 989     * The core creates its interrupt presenter but the XIVE interrupt
 990     * controller object is initialized afterwards. Hopefully, it's
 991     * only used at runtime.
 992     */
 993    obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
 994                           &local_err);
 995    if (local_err) {
 996        error_propagate(errp, local_err);
 997        return;
 998    }
 999
1000    pnv_cpu->intc = obj;
1001}
1002
1003static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1004{
1005    PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1006
1007    xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1008}
1009
1010static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1011{
1012    PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1013
1014    xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1015    pnv_cpu->intc = NULL;
1016}
1017
1018static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1019                                            Monitor *mon)
1020{
1021    xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1022}
1023
1024static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1025                                        Error **errp)
1026{
1027    PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1028
1029    /* Will be defined when the interrupt controller is */
1030    pnv_cpu->intc = NULL;
1031}
1032
1033static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1034{
1035    ;
1036}
1037
1038static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1039{
1040    PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1041
1042    pnv_cpu->intc = NULL;
1043}
1044
1045static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1046                                             Monitor *mon)
1047{
1048}
1049
1050/*
1051 * Allowed core identifiers on a POWER8 Processor Chip :
1052 *
1053 * <EX0 reserved>
1054 *  EX1  - Venice only
1055 *  EX2  - Venice only
1056 *  EX3  - Venice only
1057 *  EX4
1058 *  EX5
1059 *  EX6
1060 * <EX7,8 reserved> <reserved>
1061 *  EX9  - Venice only
1062 *  EX10 - Venice only
1063 *  EX11 - Venice only
1064 *  EX12
1065 *  EX13
1066 *  EX14
1067 * <EX15 reserved>
1068 */
1069#define POWER8E_CORE_MASK  (0x7070ull)
1070#define POWER8_CORE_MASK   (0x7e7eull)
1071
1072/*
1073 * POWER9 has 24 cores, ids starting at 0x0
1074 */
1075#define POWER9_CORE_MASK   (0xffffffffffffffull)
1076
1077
1078#define POWER10_CORE_MASK  (0xffffffffffffffull)
1079
1080static void pnv_chip_power8_instance_init(Object *obj)
1081{
1082    PnvChip *chip = PNV_CHIP(obj);
1083    Pnv8Chip *chip8 = PNV8_CHIP(obj);
1084    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1085    int i;
1086
1087    object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1088                             (Object **)&chip8->xics,
1089                             object_property_allow_set_link,
1090                             OBJ_PROP_LINK_STRONG);
1091
1092    object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1093
1094    object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1095
1096    object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1097
1098    object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1099
1100    for (i = 0; i < pcc->num_phbs; i++) {
1101        object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1102    }
1103
1104    /*
1105     * Number of PHBs is the chip default
1106     */
1107    chip->num_phbs = pcc->num_phbs;
1108}
1109
1110static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1111 {
1112    PnvChip *chip = PNV_CHIP(chip8);
1113    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1114    int i, j;
1115    char *name;
1116
1117    name = g_strdup_printf("icp-%x", chip->chip_id);
1118    memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1119    sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1120    g_free(name);
1121
1122    sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1123
1124    /* Map the ICP registers for each thread */
1125    for (i = 0; i < chip->nr_cores; i++) {
1126        PnvCore *pnv_core = chip->cores[i];
1127        int core_hwid = CPU_CORE(pnv_core)->core_id;
1128
1129        for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1130            uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1131            PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1132
1133            memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1134                                        &icp->mmio);
1135        }
1136    }
1137}
1138
1139static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1140{
1141    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1142    PnvChip *chip = PNV_CHIP(dev);
1143    Pnv8Chip *chip8 = PNV8_CHIP(dev);
1144    Pnv8Psi *psi8 = &chip8->psi;
1145    Error *local_err = NULL;
1146    int i;
1147
1148    assert(chip8->xics);
1149
1150    /* XSCOM bridge is first */
1151    pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1152    if (local_err) {
1153        error_propagate(errp, local_err);
1154        return;
1155    }
1156    sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1157
1158    pcc->parent_realize(dev, &local_err);
1159    if (local_err) {
1160        error_propagate(errp, local_err);
1161        return;
1162    }
1163
1164    /* Processor Service Interface (PSI) Host Bridge */
1165    object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1166                            &error_fatal);
1167    object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1168                             OBJECT(chip8->xics), &error_abort);
1169    if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1170        return;
1171    }
1172    pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1173                            &PNV_PSI(psi8)->xscom_regs);
1174
1175    /* Create LPC controller */
1176    object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1177                             &error_abort);
1178    qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1179    pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1180
1181    chip->fw_mr = &chip8->lpc.isa_fw;
1182    chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1183                                            (uint64_t) PNV_XSCOM_BASE(chip),
1184                                            PNV_XSCOM_LPC_BASE);
1185
1186    /*
1187     * Interrupt Management Area. This is the memory region holding
1188     * all the Interrupt Control Presenter (ICP) registers
1189     */
1190    pnv_chip_icp_realize(chip8, &local_err);
1191    if (local_err) {
1192        error_propagate(errp, local_err);
1193        return;
1194    }
1195
1196    /* Create the simplified OCC model */
1197    object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1198                             &error_abort);
1199    if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1200        return;
1201    }
1202    pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1203
1204    /* OCC SRAM model */
1205    memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1206                                &chip8->occ.sram_regs);
1207
1208    /* HOMER */
1209    object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1210                             &error_abort);
1211    if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1212        return;
1213    }
1214    /* Homer Xscom region */
1215    pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1216
1217    /* Homer mmio region */
1218    memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1219                                &chip8->homer.regs);
1220
1221    /* PHB3 controllers */
1222    for (i = 0; i < chip->num_phbs; i++) {
1223        PnvPHB3 *phb = &chip8->phbs[i];
1224        PnvPBCQState *pbcq = &phb->pbcq;
1225
1226        object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1227        object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1228                                &error_fatal);
1229        if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1230            return;
1231        }
1232
1233        /* Populate the XSCOM address space. */
1234        pnv_xscom_add_subregion(chip,
1235                                PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1236                                &pbcq->xscom_nest_regs);
1237        pnv_xscom_add_subregion(chip,
1238                                PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1239                                &pbcq->xscom_pci_regs);
1240        pnv_xscom_add_subregion(chip,
1241                                PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1242                                &pbcq->xscom_spci_regs);
1243    }
1244}
1245
1246static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1247{
1248    addr &= (PNV_XSCOM_SIZE - 1);
1249    return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1250}
1251
1252static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1253{
1254    DeviceClass *dc = DEVICE_CLASS(klass);
1255    PnvChipClass *k = PNV_CHIP_CLASS(klass);
1256
1257    k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1258    k->cores_mask = POWER8E_CORE_MASK;
1259    k->num_phbs = 3;
1260    k->core_pir = pnv_chip_core_pir_p8;
1261    k->intc_create = pnv_chip_power8_intc_create;
1262    k->intc_reset = pnv_chip_power8_intc_reset;
1263    k->intc_destroy = pnv_chip_power8_intc_destroy;
1264    k->intc_print_info = pnv_chip_power8_intc_print_info;
1265    k->isa_create = pnv_chip_power8_isa_create;
1266    k->dt_populate = pnv_chip_power8_dt_populate;
1267    k->pic_print_info = pnv_chip_power8_pic_print_info;
1268    k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1269    k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1270    dc->desc = "PowerNV Chip POWER8E";
1271
1272    device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1273                                    &k->parent_realize);
1274}
1275
1276static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1277{
1278    DeviceClass *dc = DEVICE_CLASS(klass);
1279    PnvChipClass *k = PNV_CHIP_CLASS(klass);
1280
1281    k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1282    k->cores_mask = POWER8_CORE_MASK;
1283    k->num_phbs = 3;
1284    k->core_pir = pnv_chip_core_pir_p8;
1285    k->intc_create = pnv_chip_power8_intc_create;
1286    k->intc_reset = pnv_chip_power8_intc_reset;
1287    k->intc_destroy = pnv_chip_power8_intc_destroy;
1288    k->intc_print_info = pnv_chip_power8_intc_print_info;
1289    k->isa_create = pnv_chip_power8_isa_create;
1290    k->dt_populate = pnv_chip_power8_dt_populate;
1291    k->pic_print_info = pnv_chip_power8_pic_print_info;
1292    k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1293    k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1294    dc->desc = "PowerNV Chip POWER8";
1295
1296    device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1297                                    &k->parent_realize);
1298}
1299
1300static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1301{
1302    DeviceClass *dc = DEVICE_CLASS(klass);
1303    PnvChipClass *k = PNV_CHIP_CLASS(klass);
1304
1305    k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1306    k->cores_mask = POWER8_CORE_MASK;
1307    k->num_phbs = 3;
1308    k->core_pir = pnv_chip_core_pir_p8;
1309    k->intc_create = pnv_chip_power8_intc_create;
1310    k->intc_reset = pnv_chip_power8_intc_reset;
1311    k->intc_destroy = pnv_chip_power8_intc_destroy;
1312    k->intc_print_info = pnv_chip_power8_intc_print_info;
1313    k->isa_create = pnv_chip_power8nvl_isa_create;
1314    k->dt_populate = pnv_chip_power8_dt_populate;
1315    k->pic_print_info = pnv_chip_power8_pic_print_info;
1316    k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1317    k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1318    dc->desc = "PowerNV Chip POWER8NVL";
1319
1320    device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1321                                    &k->parent_realize);
1322}
1323
1324static void pnv_chip_power9_instance_init(Object *obj)
1325{
1326    PnvChip *chip = PNV_CHIP(obj);
1327    Pnv9Chip *chip9 = PNV9_CHIP(obj);
1328    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1329    int i;
1330
1331    object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1332    object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1333                              "xive-fabric");
1334
1335    object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1336
1337    object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1338
1339    object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1340
1341    object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1342
1343    for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1344        object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1345                                TYPE_PNV_PHB4_PEC);
1346    }
1347
1348    /*
1349     * Number of PHBs is the chip default
1350     */
1351    chip->num_phbs = pcc->num_phbs;
1352}
1353
1354static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1355{
1356    PnvChip *chip = PNV_CHIP(chip9);
1357    int i;
1358
1359    chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1360    chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1361
1362    for (i = 0; i < chip9->nr_quads; i++) {
1363        char eq_name[32];
1364        PnvQuad *eq = &chip9->quads[i];
1365        PnvCore *pnv_core = chip->cores[i * 4];
1366        int core_id = CPU_CORE(pnv_core)->core_id;
1367
1368        snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1369        object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1370                                           sizeof(*eq), TYPE_PNV_QUAD,
1371                                           &error_fatal, NULL);
1372
1373        object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1374        qdev_realize(DEVICE(eq), NULL, &error_fatal);
1375
1376        pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1377                                &eq->xscom_regs);
1378    }
1379}
1380
1381static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1382{
1383    Pnv9Chip *chip9 = PNV9_CHIP(chip);
1384    int i, j;
1385    int phb_id = 0;
1386
1387    for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1388        PnvPhb4PecState *pec = &chip9->pecs[i];
1389        PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1390        uint32_t pec_nest_base;
1391        uint32_t pec_pci_base;
1392
1393        object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1394        /*
1395         * PEC0 -> 1 stack
1396         * PEC1 -> 2 stacks
1397         * PEC2 -> 3 stacks
1398         */
1399        object_property_set_int(OBJECT(pec), "num-stacks", i + 1,
1400                                &error_fatal);
1401        object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1402                                &error_fatal);
1403        object_property_set_link(OBJECT(pec), "system-memory",
1404                                 OBJECT(get_system_memory()), &error_abort);
1405        if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1406            return;
1407        }
1408
1409        pec_nest_base = pecc->xscom_nest_base(pec);
1410        pec_pci_base = pecc->xscom_pci_base(pec);
1411
1412        pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1413        pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1414
1415        for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1416             j++, phb_id++) {
1417            PnvPhb4PecStack *stack = &pec->stacks[j];
1418            Object *obj = OBJECT(&stack->phb);
1419
1420            object_property_set_int(obj, "index", phb_id, &error_fatal);
1421            object_property_set_int(obj, "chip-id", chip->chip_id,
1422                                    &error_fatal);
1423            object_property_set_int(obj, "version", PNV_PHB4_VERSION,
1424                                    &error_fatal);
1425            object_property_set_int(obj, "device-id", PNV_PHB4_DEVICE_ID,
1426                                    &error_fatal);
1427            object_property_set_link(obj, "stack", OBJECT(stack),
1428                                     &error_abort);
1429            if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
1430                return;
1431            }
1432
1433            /* Populate the XSCOM address space. */
1434            pnv_xscom_add_subregion(chip,
1435                                   pec_nest_base + 0x40 * (stack->stack_no + 1),
1436                                   &stack->nest_regs_mr);
1437            pnv_xscom_add_subregion(chip,
1438                                    pec_pci_base + 0x40 * (stack->stack_no + 1),
1439                                    &stack->pci_regs_mr);
1440            pnv_xscom_add_subregion(chip,
1441                                    pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1442                                    0x40 * stack->stack_no,
1443                                    &stack->phb_regs_mr);
1444        }
1445    }
1446}
1447
1448static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1449{
1450    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1451    Pnv9Chip *chip9 = PNV9_CHIP(dev);
1452    PnvChip *chip = PNV_CHIP(dev);
1453    Pnv9Psi *psi9 = &chip9->psi;
1454    Error *local_err = NULL;
1455
1456    /* XSCOM bridge is first */
1457    pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1458    if (local_err) {
1459        error_propagate(errp, local_err);
1460        return;
1461    }
1462    sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1463
1464    pcc->parent_realize(dev, &local_err);
1465    if (local_err) {
1466        error_propagate(errp, local_err);
1467        return;
1468    }
1469
1470    pnv_chip_quad_realize(chip9, &local_err);
1471    if (local_err) {
1472        error_propagate(errp, local_err);
1473        return;
1474    }
1475
1476    /* XIVE interrupt controller (POWER9) */
1477    object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1478                            PNV9_XIVE_IC_BASE(chip), &error_fatal);
1479    object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1480                            PNV9_XIVE_VC_BASE(chip), &error_fatal);
1481    object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1482                            PNV9_XIVE_PC_BASE(chip), &error_fatal);
1483    object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1484                            PNV9_XIVE_TM_BASE(chip), &error_fatal);
1485    object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1486                             &error_abort);
1487    if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1488        return;
1489    }
1490    pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1491                            &chip9->xive.xscom_regs);
1492
1493    /* Processor Service Interface (PSI) Host Bridge */
1494    object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1495                            &error_fatal);
1496    if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1497        return;
1498    }
1499    pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1500                            &PNV_PSI(psi9)->xscom_regs);
1501
1502    /* LPC */
1503    object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1504                             &error_abort);
1505    if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1506        return;
1507    }
1508    memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1509                                &chip9->lpc.xscom_regs);
1510
1511    chip->fw_mr = &chip9->lpc.isa_fw;
1512    chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1513                                            (uint64_t) PNV9_LPCM_BASE(chip));
1514
1515    /* Create the simplified OCC model */
1516    object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1517                             &error_abort);
1518    if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1519        return;
1520    }
1521    pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1522
1523    /* OCC SRAM model */
1524    memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1525                                &chip9->occ.sram_regs);
1526
1527    /* HOMER */
1528    object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1529                             &error_abort);
1530    if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1531        return;
1532    }
1533    /* Homer Xscom region */
1534    pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1535
1536    /* Homer mmio region */
1537    memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1538                                &chip9->homer.regs);
1539
1540    /* PHBs */
1541    pnv_chip_power9_phb_realize(chip, &local_err);
1542    if (local_err) {
1543        error_propagate(errp, local_err);
1544        return;
1545    }
1546}
1547
1548static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1549{
1550    addr &= (PNV9_XSCOM_SIZE - 1);
1551    return addr >> 3;
1552}
1553
1554static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1555{
1556    DeviceClass *dc = DEVICE_CLASS(klass);
1557    PnvChipClass *k = PNV_CHIP_CLASS(klass);
1558
1559    k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1560    k->cores_mask = POWER9_CORE_MASK;
1561    k->core_pir = pnv_chip_core_pir_p9;
1562    k->intc_create = pnv_chip_power9_intc_create;
1563    k->intc_reset = pnv_chip_power9_intc_reset;
1564    k->intc_destroy = pnv_chip_power9_intc_destroy;
1565    k->intc_print_info = pnv_chip_power9_intc_print_info;
1566    k->isa_create = pnv_chip_power9_isa_create;
1567    k->dt_populate = pnv_chip_power9_dt_populate;
1568    k->pic_print_info = pnv_chip_power9_pic_print_info;
1569    k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1570    k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1571    dc->desc = "PowerNV Chip POWER9";
1572    k->num_phbs = 6;
1573
1574    device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1575                                    &k->parent_realize);
1576}
1577
1578static void pnv_chip_power10_instance_init(Object *obj)
1579{
1580    Pnv10Chip *chip10 = PNV10_CHIP(obj);
1581
1582    object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1583    object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1584}
1585
1586static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1587{
1588    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1589    PnvChip *chip = PNV_CHIP(dev);
1590    Pnv10Chip *chip10 = PNV10_CHIP(dev);
1591    Error *local_err = NULL;
1592
1593    /* XSCOM bridge is first */
1594    pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1595    if (local_err) {
1596        error_propagate(errp, local_err);
1597        return;
1598    }
1599    sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1600
1601    pcc->parent_realize(dev, &local_err);
1602    if (local_err) {
1603        error_propagate(errp, local_err);
1604        return;
1605    }
1606
1607    /* Processor Service Interface (PSI) Host Bridge */
1608    object_property_set_int(OBJECT(&chip10->psi), "bar",
1609                            PNV10_PSIHB_BASE(chip), &error_fatal);
1610    if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1611        return;
1612    }
1613    pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1614                            &PNV_PSI(&chip10->psi)->xscom_regs);
1615
1616    /* LPC */
1617    object_property_set_link(OBJECT(&chip10->lpc), "psi",
1618                             OBJECT(&chip10->psi), &error_abort);
1619    if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1620        return;
1621    }
1622    memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1623                                &chip10->lpc.xscom_regs);
1624
1625    chip->fw_mr = &chip10->lpc.isa_fw;
1626    chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1627                                            (uint64_t) PNV10_LPCM_BASE(chip));
1628}
1629
1630static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1631{
1632    addr &= (PNV10_XSCOM_SIZE - 1);
1633    return addr >> 3;
1634}
1635
1636static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1637{
1638    DeviceClass *dc = DEVICE_CLASS(klass);
1639    PnvChipClass *k = PNV_CHIP_CLASS(klass);
1640
1641    k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1642    k->cores_mask = POWER10_CORE_MASK;
1643    k->core_pir = pnv_chip_core_pir_p10;
1644    k->intc_create = pnv_chip_power10_intc_create;
1645    k->intc_reset = pnv_chip_power10_intc_reset;
1646    k->intc_destroy = pnv_chip_power10_intc_destroy;
1647    k->intc_print_info = pnv_chip_power10_intc_print_info;
1648    k->isa_create = pnv_chip_power10_isa_create;
1649    k->dt_populate = pnv_chip_power10_dt_populate;
1650    k->pic_print_info = pnv_chip_power10_pic_print_info;
1651    k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1652    k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1653    dc->desc = "PowerNV Chip POWER10";
1654
1655    device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1656                                    &k->parent_realize);
1657}
1658
1659static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1660{
1661    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1662    int cores_max;
1663
1664    /*
1665     * No custom mask for this chip, let's use the default one from *
1666     * the chip class
1667     */
1668    if (!chip->cores_mask) {
1669        chip->cores_mask = pcc->cores_mask;
1670    }
1671
1672    /* filter alien core ids ! some are reserved */
1673    if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1674        error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1675                   chip->cores_mask);
1676        return;
1677    }
1678    chip->cores_mask &= pcc->cores_mask;
1679
1680    /* now that we have a sane layout, let check the number of cores */
1681    cores_max = ctpop64(chip->cores_mask);
1682    if (chip->nr_cores > cores_max) {
1683        error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1684                   cores_max);
1685        return;
1686    }
1687}
1688
1689static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1690{
1691    Error *error = NULL;
1692    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1693    const char *typename = pnv_chip_core_typename(chip);
1694    int i, core_hwid;
1695    PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1696
1697    if (!object_class_by_name(typename)) {
1698        error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1699        return;
1700    }
1701
1702    /* Cores */
1703    pnv_chip_core_sanitize(chip, &error);
1704    if (error) {
1705        error_propagate(errp, error);
1706        return;
1707    }
1708
1709    chip->cores = g_new0(PnvCore *, chip->nr_cores);
1710
1711    for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1712             && (i < chip->nr_cores); core_hwid++) {
1713        char core_name[32];
1714        PnvCore *pnv_core;
1715        uint64_t xscom_core_base;
1716
1717        if (!(chip->cores_mask & (1ull << core_hwid))) {
1718            continue;
1719        }
1720
1721        pnv_core = PNV_CORE(object_new(typename));
1722
1723        snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1724        object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1725        chip->cores[i] = pnv_core;
1726        object_property_set_int(OBJECT(pnv_core), "nr-threads",
1727                                chip->nr_threads, &error_fatal);
1728        object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1729                                core_hwid, &error_fatal);
1730        object_property_set_int(OBJECT(pnv_core), "pir",
1731                                pcc->core_pir(chip, core_hwid), &error_fatal);
1732        object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1733                                &error_fatal);
1734        object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1735                                 &error_abort);
1736        qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1737
1738        /* Each core has an XSCOM MMIO region */
1739        xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1740
1741        pnv_xscom_add_subregion(chip, xscom_core_base,
1742                                &pnv_core->xscom_regs);
1743        i++;
1744    }
1745}
1746
1747static void pnv_chip_realize(DeviceState *dev, Error **errp)
1748{
1749    PnvChip *chip = PNV_CHIP(dev);
1750    Error *error = NULL;
1751
1752    /* Cores */
1753    pnv_chip_core_realize(chip, &error);
1754    if (error) {
1755        error_propagate(errp, error);
1756        return;
1757    }
1758}
1759
1760static Property pnv_chip_properties[] = {
1761    DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1762    DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1763    DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1764    DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1765    DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1766    DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1767    DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1768    DEFINE_PROP_END_OF_LIST(),
1769};
1770
1771static void pnv_chip_class_init(ObjectClass *klass, void *data)
1772{
1773    DeviceClass *dc = DEVICE_CLASS(klass);
1774
1775    set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1776    dc->realize = pnv_chip_realize;
1777    device_class_set_props(dc, pnv_chip_properties);
1778    dc->desc = "PowerNV Chip";
1779}
1780
1781PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1782{
1783    int i, j;
1784
1785    for (i = 0; i < chip->nr_cores; i++) {
1786        PnvCore *pc = chip->cores[i];
1787        CPUCore *cc = CPU_CORE(pc);
1788
1789        for (j = 0; j < cc->nr_threads; j++) {
1790            if (ppc_cpu_pir(pc->threads[j]) == pir) {
1791                return pc->threads[j];
1792            }
1793        }
1794    }
1795    return NULL;
1796}
1797
1798static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1799{
1800    PnvMachineState *pnv = PNV_MACHINE(xi);
1801    int i, j;
1802
1803    for (i = 0; i < pnv->num_chips; i++) {
1804        PnvChip *chip = pnv->chips[i];
1805        Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1806
1807        if (ics_valid_irq(&chip8->psi.ics, irq)) {
1808            return &chip8->psi.ics;
1809        }
1810        for (j = 0; j < chip->num_phbs; j++) {
1811            if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1812                return &chip8->phbs[j].lsis;
1813            }
1814            if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1815                return ICS(&chip8->phbs[j].msis);
1816            }
1817        }
1818    }
1819    return NULL;
1820}
1821
1822static void pnv_ics_resend(XICSFabric *xi)
1823{
1824    PnvMachineState *pnv = PNV_MACHINE(xi);
1825    int i, j;
1826
1827    for (i = 0; i < pnv->num_chips; i++) {
1828        PnvChip *chip = pnv->chips[i];
1829        Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1830
1831        ics_resend(&chip8->psi.ics);
1832        for (j = 0; j < chip->num_phbs; j++) {
1833            ics_resend(&chip8->phbs[j].lsis);
1834            ics_resend(ICS(&chip8->phbs[j].msis));
1835        }
1836    }
1837}
1838
1839static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1840{
1841    PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1842
1843    return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1844}
1845
1846static void pnv_pic_print_info(InterruptStatsProvider *obj,
1847                               Monitor *mon)
1848{
1849    PnvMachineState *pnv = PNV_MACHINE(obj);
1850    int i;
1851    CPUState *cs;
1852
1853    CPU_FOREACH(cs) {
1854        PowerPCCPU *cpu = POWERPC_CPU(cs);
1855
1856        /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1857        PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1858                                                           mon);
1859    }
1860
1861    for (i = 0; i < pnv->num_chips; i++) {
1862        PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1863    }
1864}
1865
1866static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1867                         uint8_t nvt_blk, uint32_t nvt_idx,
1868                         bool cam_ignore, uint8_t priority,
1869                         uint32_t logic_serv,
1870                         XiveTCTXMatch *match)
1871{
1872    PnvMachineState *pnv = PNV_MACHINE(xfb);
1873    int total_count = 0;
1874    int i;
1875
1876    for (i = 0; i < pnv->num_chips; i++) {
1877        Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1878        XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1879        XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1880        int count;
1881
1882        count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1883                               priority, logic_serv, match);
1884
1885        if (count < 0) {
1886            return count;
1887        }
1888
1889        total_count += count;
1890    }
1891
1892    return total_count;
1893}
1894
1895static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1896{
1897    MachineClass *mc = MACHINE_CLASS(oc);
1898    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1899    PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1900    static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1901
1902    mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1903    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1904
1905    xic->icp_get = pnv_icp_get;
1906    xic->ics_get = pnv_ics_get;
1907    xic->ics_resend = pnv_ics_resend;
1908
1909    pmc->compat = compat;
1910    pmc->compat_size = sizeof(compat);
1911}
1912
1913static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1914{
1915    MachineClass *mc = MACHINE_CLASS(oc);
1916    XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1917    PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1918    static const char compat[] = "qemu,powernv9\0ibm,powernv";
1919
1920    mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1921    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1922    xfc->match_nvt = pnv_match_nvt;
1923
1924    mc->alias = "powernv";
1925
1926    pmc->compat = compat;
1927    pmc->compat_size = sizeof(compat);
1928    pmc->dt_power_mgt = pnv_dt_power_mgt;
1929}
1930
1931static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1932{
1933    MachineClass *mc = MACHINE_CLASS(oc);
1934    PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1935    static const char compat[] = "qemu,powernv10\0ibm,powernv";
1936
1937    mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1938    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
1939
1940    pmc->compat = compat;
1941    pmc->compat_size = sizeof(compat);
1942    pmc->dt_power_mgt = pnv_dt_power_mgt;
1943}
1944
1945static bool pnv_machine_get_hb(Object *obj, Error **errp)
1946{
1947    PnvMachineState *pnv = PNV_MACHINE(obj);
1948
1949    return !!pnv->fw_load_addr;
1950}
1951
1952static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1953{
1954    PnvMachineState *pnv = PNV_MACHINE(obj);
1955
1956    if (value) {
1957        pnv->fw_load_addr = 0x8000000;
1958    }
1959}
1960
1961static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1962{
1963    PowerPCCPU *cpu = POWERPC_CPU(cs);
1964    CPUPPCState *env = &cpu->env;
1965
1966    cpu_synchronize_state(cs);
1967    ppc_cpu_do_system_reset(cs);
1968    if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1969        /*
1970         * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1971         * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1972         * (PPC_BIT(43)).
1973         */
1974        if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1975            warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1976            env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1977        }
1978    } else {
1979        /*
1980         * For non-powersave system resets, SRR1[42:45] are defined to be
1981         * implementation-dependent. The POWER9 User Manual specifies that
1982         * an external (SCOM driven, which may come from a BMC nmi command or
1983         * another CPU requesting a NMI IPI) system reset exception should be
1984         * 0b0010 (PPC_BIT(44)).
1985         */
1986        env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1987    }
1988}
1989
1990static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1991{
1992    CPUState *cs;
1993
1994    CPU_FOREACH(cs) {
1995        async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
1996    }
1997}
1998
1999static void pnv_machine_class_init(ObjectClass *oc, void *data)
2000{
2001    MachineClass *mc = MACHINE_CLASS(oc);
2002    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2003    NMIClass *nc = NMI_CLASS(oc);
2004
2005    mc->desc = "IBM PowerNV (Non-Virtualized)";
2006    mc->init = pnv_init;
2007    mc->reset = pnv_reset;
2008    mc->max_cpus = MAX_CPUS;
2009    /* Pnv provides a AHCI device for storage */
2010    mc->block_default_type = IF_IDE;
2011    mc->no_parallel = 1;
2012    mc->default_boot_order = NULL;
2013    /*
2014     * RAM defaults to less than 2048 for 32-bit hosts, and large
2015     * enough to fit the maximum initrd size at it's load address
2016     */
2017    mc->default_ram_size = 1 * GiB;
2018    mc->default_ram_id = "pnv.ram";
2019    ispc->print_info = pnv_pic_print_info;
2020    nc->nmi_monitor_handler = pnv_nmi;
2021
2022    object_class_property_add_bool(oc, "hb-mode",
2023                                   pnv_machine_get_hb, pnv_machine_set_hb);
2024    object_class_property_set_description(oc, "hb-mode",
2025                              "Use a hostboot like boot loader");
2026}
2027
2028#define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2029    {                                             \
2030        .name          = type,                    \
2031        .class_init    = class_initfn,            \
2032        .parent        = TYPE_PNV8_CHIP,          \
2033    }
2034
2035#define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2036    {                                             \
2037        .name          = type,                    \
2038        .class_init    = class_initfn,            \
2039        .parent        = TYPE_PNV9_CHIP,          \
2040    }
2041
2042#define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2043    {                                              \
2044        .name          = type,                     \
2045        .class_init    = class_initfn,             \
2046        .parent        = TYPE_PNV10_CHIP,          \
2047    }
2048
2049static const TypeInfo types[] = {
2050    {
2051        .name          = MACHINE_TYPE_NAME("powernv10"),
2052        .parent        = TYPE_PNV_MACHINE,
2053        .class_init    = pnv_machine_power10_class_init,
2054    },
2055    {
2056        .name          = MACHINE_TYPE_NAME("powernv9"),
2057        .parent        = TYPE_PNV_MACHINE,
2058        .class_init    = pnv_machine_power9_class_init,
2059        .interfaces = (InterfaceInfo[]) {
2060            { TYPE_XIVE_FABRIC },
2061            { },
2062        },
2063    },
2064    {
2065        .name          = MACHINE_TYPE_NAME("powernv8"),
2066        .parent        = TYPE_PNV_MACHINE,
2067        .class_init    = pnv_machine_power8_class_init,
2068        .interfaces = (InterfaceInfo[]) {
2069            { TYPE_XICS_FABRIC },
2070            { },
2071        },
2072    },
2073    {
2074        .name          = TYPE_PNV_MACHINE,
2075        .parent        = TYPE_MACHINE,
2076        .abstract       = true,
2077        .instance_size = sizeof(PnvMachineState),
2078        .class_init    = pnv_machine_class_init,
2079        .class_size    = sizeof(PnvMachineClass),
2080        .interfaces = (InterfaceInfo[]) {
2081            { TYPE_INTERRUPT_STATS_PROVIDER },
2082            { TYPE_NMI },
2083            { },
2084        },
2085    },
2086    {
2087        .name          = TYPE_PNV_CHIP,
2088        .parent        = TYPE_SYS_BUS_DEVICE,
2089        .class_init    = pnv_chip_class_init,
2090        .instance_size = sizeof(PnvChip),
2091        .class_size    = sizeof(PnvChipClass),
2092        .abstract      = true,
2093    },
2094
2095    /*
2096     * P10 chip and variants
2097     */
2098    {
2099        .name          = TYPE_PNV10_CHIP,
2100        .parent        = TYPE_PNV_CHIP,
2101        .instance_init = pnv_chip_power10_instance_init,
2102        .instance_size = sizeof(Pnv10Chip),
2103    },
2104    DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2105
2106    /*
2107     * P9 chip and variants
2108     */
2109    {
2110        .name          = TYPE_PNV9_CHIP,
2111        .parent        = TYPE_PNV_CHIP,
2112        .instance_init = pnv_chip_power9_instance_init,
2113        .instance_size = sizeof(Pnv9Chip),
2114    },
2115    DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2116
2117    /*
2118     * P8 chip and variants
2119     */
2120    {
2121        .name          = TYPE_PNV8_CHIP,
2122        .parent        = TYPE_PNV_CHIP,
2123        .instance_init = pnv_chip_power8_instance_init,
2124        .instance_size = sizeof(Pnv8Chip),
2125    },
2126    DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2127    DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2128    DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2129                          pnv_chip_power8nvl_class_init),
2130};
2131
2132DEFINE_TYPES(types)
2133