qemu/hw/ppc/spapr_numa.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
   3 *
   4 * Copyright IBM Corp. 2020
   5 *
   6 * Authors:
   7 *  Daniel Henrique Barboza      <danielhb413@gmail.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 */
  12
  13#include "qemu/osdep.h"
  14#include "qemu-common.h"
  15#include "hw/ppc/spapr_numa.h"
  16#include "hw/pci-host/spapr.h"
  17#include "hw/ppc/fdt.h"
  18
  19/* Moved from hw/ppc/spapr_pci_nvlink2.c */
  20#define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))
  21
  22/*
  23 * Retrieves max_dist_ref_points of the current NUMA affinity.
  24 */
  25static int get_max_dist_ref_points(SpaprMachineState *spapr)
  26{
  27    if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
  28        return FORM2_DIST_REF_POINTS;
  29    }
  30
  31    return FORM1_DIST_REF_POINTS;
  32}
  33
  34/*
  35 * Retrieves numa_assoc_size of the current NUMA affinity.
  36 */
  37static int get_numa_assoc_size(SpaprMachineState *spapr)
  38{
  39    if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
  40        return FORM2_NUMA_ASSOC_SIZE;
  41    }
  42
  43    return FORM1_NUMA_ASSOC_SIZE;
  44}
  45
  46/*
  47 * Retrieves vcpu_assoc_size of the current NUMA affinity.
  48 *
  49 * vcpu_assoc_size is the size of ibm,associativity array
  50 * for CPUs, which has an extra element (vcpu_id) in the end.
  51 */
  52static int get_vcpu_assoc_size(SpaprMachineState *spapr)
  53{
  54    return get_numa_assoc_size(spapr) + 1;
  55}
  56
  57/*
  58 * Retrieves the ibm,associativity array of NUMA node 'node_id'
  59 * for the current NUMA affinity.
  60 */
  61static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id)
  62{
  63    if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
  64        return spapr->FORM2_assoc_array[node_id];
  65    }
  66    return spapr->FORM1_assoc_array[node_id];
  67}
  68
  69/*
  70 * Wrapper that returns node distance from ms->numa_state->nodes
  71 * after handling edge cases where the distance might be absent.
  72 */
  73static int get_numa_distance(MachineState *ms, int src, int dst)
  74{
  75    NodeInfo *numa_info = ms->numa_state->nodes;
  76    int ret = numa_info[src].distance[dst];
  77
  78    if (ret != 0) {
  79        return ret;
  80    }
  81
  82    /*
  83     * In case QEMU adds a default NUMA single node when the user
  84     * did not add any, or where the user did not supply distances,
  85     * the distance will be absent (zero). Return local/remote
  86     * distance in this case.
  87     */
  88    if (src == dst) {
  89        return NUMA_DISTANCE_MIN;
  90    }
  91
  92    return NUMA_DISTANCE_DEFAULT;
  93}
  94
  95static bool spapr_numa_is_symmetrical(MachineState *ms)
  96{
  97    int nb_numa_nodes = ms->numa_state->num_nodes;
  98    int src, dst;
  99
 100    for (src = 0; src < nb_numa_nodes; src++) {
 101        for (dst = src; dst < nb_numa_nodes; dst++) {
 102            if (get_numa_distance(ms, src, dst) !=
 103                get_numa_distance(ms, dst, src)) {
 104                return false;
 105            }
 106        }
 107    }
 108
 109    return true;
 110}
 111
 112/*
 113 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
 114 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
 115 * called from vPHB reset handler so we initialize the counter here.
 116 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
 117 * must be equally distant from any other node.
 118 * The final value of spapr->gpu_numa_id is going to be written to
 119 * max-associativity-domains in spapr_build_fdt().
 120 */
 121unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine)
 122{
 123    return MAX(1, machine->numa_state->num_nodes);
 124}
 125
 126/*
 127 * This function will translate the user distances into
 128 * what the kernel understand as possible values: 10
 129 * (local distance), 20, 40, 80 and 160, and return the equivalent
 130 * NUMA level for each. Current heuristic is:
 131 *  - local distance (10) returns numa_level = 0x4, meaning there is
 132 *    no rounding for local distance
 133 *  - distances between 11 and 30 inclusive -> rounded to 20,
 134 *    numa_level = 0x3
 135 *  - distances between 31 and 60 inclusive -> rounded to 40,
 136 *    numa_level = 0x2
 137 *  - distances between 61 and 120 inclusive -> rounded to 80,
 138 *    numa_level = 0x1
 139 *  - everything above 120 returns numa_level = 0 to indicate that
 140 *    there is no match. This will be calculated as disntace = 160
 141 *    by the kernel (as of v5.9)
 142 */
 143static uint8_t spapr_numa_get_numa_level(uint8_t distance)
 144{
 145    if (distance == 10) {
 146        return 0x4;
 147    } else if (distance > 11 && distance <= 30) {
 148        return 0x3;
 149    } else if (distance > 31 && distance <= 60) {
 150        return 0x2;
 151    } else if (distance > 61 && distance <= 120) {
 152        return 0x1;
 153    }
 154
 155    return 0;
 156}
 157
 158static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
 159{
 160    MachineState *ms = MACHINE(spapr);
 161    int nb_numa_nodes = ms->numa_state->num_nodes;
 162    int src, dst, i, j;
 163
 164    /*
 165     * Fill all associativity domains of non-zero NUMA nodes with
 166     * node_id. This is required because the default value (0) is
 167     * considered a match with associativity domains of node 0.
 168     */
 169    for (i = 1; i < nb_numa_nodes; i++) {
 170        for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
 171            spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i);
 172        }
 173    }
 174
 175    for (src = 0; src < nb_numa_nodes; src++) {
 176        for (dst = src; dst < nb_numa_nodes; dst++) {
 177            /*
 178             * This is how the associativity domain between A and B
 179             * is calculated:
 180             *
 181             * - get the distance D between them
 182             * - get the correspondent NUMA level 'n_level' for D
 183             * - all associativity arrays were initialized with their own
 184             * numa_ids, and we're calculating the distance in node_id
 185             * ascending order, starting from node id 0 (the first node
 186             * retrieved by numa_state). This will have a cascade effect in
 187             * the algorithm because the associativity domains that node 0
 188             * defines will be carried over to other nodes, and node 1
 189             * associativities will be carried over after taking node 0
 190             * associativities into account, and so on. This happens because
 191             * we'll assign assoc_src as the associativity domain of dst
 192             * as well, for all NUMA levels beyond and including n_level.
 193             *
 194             * The PPC kernel expects the associativity domains of node 0 to
 195             * be always 0, and this algorithm will grant that by default.
 196             */
 197            uint8_t distance = get_numa_distance(ms, src, dst);
 198            uint8_t n_level = spapr_numa_get_numa_level(distance);
 199            uint32_t assoc_src;
 200
 201            /*
 202             * n_level = 0 means that the distance is greater than our last
 203             * rounded value (120). In this case there is no NUMA level match
 204             * between src and dst and we can skip the remaining of the loop.
 205             *
 206             * The Linux kernel will assume that the distance between src and
 207             * dst, in this case of no match, is 10 (local distance) doubled
 208             * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
 209             * levels (4), so this gives us 10*2*2*2*2 = 160.
 210             *
 211             * This logic can be seen in the Linux kernel source code, as of
 212             * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
 213             */
 214            if (n_level == 0) {
 215                continue;
 216            }
 217
 218            /*
 219             * We must assign all assoc_src to dst, starting from n_level
 220             * and going up to 0x1.
 221             */
 222            for (i = n_level; i > 0; i--) {
 223                assoc_src = spapr->FORM1_assoc_array[src][i];
 224                spapr->FORM1_assoc_array[dst][i] = assoc_src;
 225            }
 226        }
 227    }
 228
 229}
 230
 231static void spapr_numa_FORM1_affinity_check(MachineState *machine)
 232{
 233    int i;
 234
 235    /*
 236     * Check we don't have a memory-less/cpu-less NUMA node
 237     * Firmware relies on the existing memory/cpu topology to provide the
 238     * NUMA topology to the kernel.
 239     * And the linux kernel needs to know the NUMA topology at start
 240     * to be able to hotplug CPUs later.
 241     */
 242    if (machine->numa_state->num_nodes) {
 243        for (i = 0; i < machine->numa_state->num_nodes; ++i) {
 244            /* check for memory-less node */
 245            if (machine->numa_state->nodes[i].node_mem == 0) {
 246                CPUState *cs;
 247                int found = 0;
 248                /* check for cpu-less node */
 249                CPU_FOREACH(cs) {
 250                    PowerPCCPU *cpu = POWERPC_CPU(cs);
 251                    if (cpu->node_id == i) {
 252                        found = 1;
 253                        break;
 254                    }
 255                }
 256                /* memory-less and cpu-less node */
 257                if (!found) {
 258                    error_report(
 259"Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i);
 260                    exit(EXIT_FAILURE);
 261                }
 262            }
 263        }
 264    }
 265
 266    if (!spapr_numa_is_symmetrical(machine)) {
 267        error_report(
 268"Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA");
 269        exit(EXIT_FAILURE);
 270    }
 271}
 272
 273/*
 274 * Set NUMA machine state data based on FORM1 affinity semantics.
 275 */
 276static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
 277                                           MachineState *machine)
 278{
 279    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 280    int nb_numa_nodes = machine->numa_state->num_nodes;
 281    int i, j, max_nodes_with_gpus;
 282
 283    /*
 284     * For all associativity arrays: first position is the size,
 285     * position FORM1_DIST_REF_POINTS is always the numa_id,
 286     * represented by the index 'i'.
 287     *
 288     * This will break on sparse NUMA setups, when/if QEMU starts
 289     * to support it, because there will be no more guarantee that
 290     * 'i' will be a valid node_id set by the user.
 291     */
 292    for (i = 0; i < nb_numa_nodes; i++) {
 293        spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
 294        spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
 295    }
 296
 297    /*
 298     * Initialize NVLink GPU associativity arrays. We know that
 299     * the first GPU will take the first available NUMA id, and
 300     * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
 301     * At this point we're not sure if there are GPUs or not, but
 302     * let's initialize the associativity arrays and allow NVLink
 303     * GPUs to be handled like regular NUMA nodes later on.
 304     */
 305    max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
 306
 307    for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
 308        spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
 309
 310        for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
 311            uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
 312                                 SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
 313            spapr->FORM1_assoc_array[i][j] = gpu_assoc;
 314        }
 315
 316        spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
 317    }
 318
 319    /*
 320     * Guests pseries-5.1 and older uses zeroed associativity domains,
 321     * i.e. no domain definition based on NUMA distance input.
 322     *
 323     * Same thing with guests that have only one NUMA node.
 324     */
 325    if (smc->pre_5_2_numa_associativity ||
 326        machine->numa_state->num_nodes <= 1) {
 327        return;
 328    }
 329
 330    spapr_numa_define_FORM1_domains(spapr);
 331}
 332
 333/*
 334 * Init NUMA FORM2 machine state data
 335 */
 336static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr)
 337{
 338    int i;
 339
 340    /*
 341     * For all resources but CPUs, FORM2 associativity arrays will
 342     * be a size 2 array with the following format:
 343     *
 344     * ibm,associativity = {1, numa_id}
 345     *
 346     * CPUs will write an additional 'vcpu_id' on top of the arrays
 347     * being initialized here. 'numa_id' is represented by the
 348     * index 'i' of the loop.
 349     *
 350     * Given that this initialization is also valid for GPU associativity
 351     * arrays, handle everything in one single step by populating the
 352     * arrays up to NUMA_NODES_MAX_NUM.
 353     */
 354    for (i = 0; i < NUMA_NODES_MAX_NUM; i++) {
 355        spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1);
 356        spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i);
 357    }
 358}
 359
 360void spapr_numa_associativity_init(SpaprMachineState *spapr,
 361                                   MachineState *machine)
 362{
 363    spapr_numa_FORM1_affinity_init(spapr, machine);
 364    spapr_numa_FORM2_affinity_init(spapr);
 365}
 366
 367void spapr_numa_associativity_check(SpaprMachineState *spapr)
 368{
 369    /*
 370     * FORM2 does not have any restrictions we need to handle
 371     * at CAS time, for now.
 372     */
 373    if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
 374        return;
 375    }
 376
 377    spapr_numa_FORM1_affinity_check(MACHINE(spapr));
 378}
 379
 380void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
 381                                       int offset, int nodeid)
 382{
 383    const uint32_t *associativity = get_associativity(spapr, nodeid);
 384
 385    _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
 386                      associativity,
 387                      get_numa_assoc_size(spapr) * sizeof(uint32_t))));
 388}
 389
 390static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
 391                                           PowerPCCPU *cpu)
 392{
 393    const uint32_t *associativity = get_associativity(spapr, cpu->node_id);
 394    int max_distance_ref_points = get_max_dist_ref_points(spapr);
 395    int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
 396    uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size);
 397    int index = spapr_get_vcpu_id(cpu);
 398
 399    /*
 400     * VCPUs have an extra 'cpu_id' value in ibm,associativity
 401     * compared to other resources. Increment the size at index
 402     * 0, put cpu_id last, then copy the remaining associativity
 403     * domains.
 404     */
 405    vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1);
 406    vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index);
 407    memcpy(vcpu_assoc + 1, associativity + 1,
 408           (vcpu_assoc_size - 2) * sizeof(uint32_t));
 409
 410    return vcpu_assoc;
 411}
 412
 413int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
 414                            int offset, PowerPCCPU *cpu)
 415{
 416    g_autofree uint32_t *vcpu_assoc = NULL;
 417    int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
 418
 419    vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
 420
 421    /* Advertise NUMA via ibm,associativity */
 422    return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
 423                       vcpu_assoc_size * sizeof(uint32_t));
 424}
 425
 426
 427int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
 428                                         int offset)
 429{
 430    MachineState *machine = MACHINE(spapr);
 431    int max_distance_ref_points = get_max_dist_ref_points(spapr);
 432    int nb_numa_nodes = machine->numa_state->num_nodes;
 433    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 434    uint32_t *int_buf, *cur_index, buf_len;
 435    int ret, i;
 436
 437    /* ibm,associativity-lookup-arrays */
 438    buf_len = (nr_nodes * max_distance_ref_points + 2) * sizeof(uint32_t);
 439    cur_index = int_buf = g_malloc0(buf_len);
 440    int_buf[0] = cpu_to_be32(nr_nodes);
 441     /* Number of entries per associativity list */
 442    int_buf[1] = cpu_to_be32(max_distance_ref_points);
 443    cur_index += 2;
 444    for (i = 0; i < nr_nodes; i++) {
 445        /*
 446         * For the lookup-array we use the ibm,associativity array of the
 447         * current NUMA affinity, without the first element (size).
 448         */
 449        const uint32_t *associativity = get_associativity(spapr, i);
 450        memcpy(cur_index, ++associativity,
 451               sizeof(uint32_t) * max_distance_ref_points);
 452        cur_index += max_distance_ref_points;
 453    }
 454    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 455                      (cur_index - int_buf) * sizeof(uint32_t));
 456    g_free(int_buf);
 457
 458    return ret;
 459}
 460
 461static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
 462                                           void *fdt, int rtas)
 463{
 464    MachineState *ms = MACHINE(spapr);
 465    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 466    uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
 467                                   spapr_numa_initial_nvgpu_numa_id(ms);
 468    uint32_t refpoints[] = {
 469        cpu_to_be32(0x4),
 470        cpu_to_be32(0x3),
 471        cpu_to_be32(0x2),
 472        cpu_to_be32(0x1),
 473    };
 474    uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
 475    uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
 476    uint32_t maxdomains[] = {
 477        cpu_to_be32(4),
 478        cpu_to_be32(maxdomain),
 479        cpu_to_be32(maxdomain),
 480        cpu_to_be32(maxdomain),
 481        cpu_to_be32(maxdomain)
 482    };
 483
 484    if (smc->pre_5_2_numa_associativity ||
 485        ms->numa_state->num_nodes <= 1) {
 486        uint32_t legacy_refpoints[] = {
 487            cpu_to_be32(0x4),
 488            cpu_to_be32(0x4),
 489            cpu_to_be32(0x2),
 490        };
 491        uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
 492        uint32_t legacy_maxdomains[] = {
 493            cpu_to_be32(4),
 494            cpu_to_be32(legacy_maxdomain),
 495            cpu_to_be32(legacy_maxdomain),
 496            cpu_to_be32(legacy_maxdomain),
 497            cpu_to_be32(spapr->gpu_numa_id),
 498        };
 499
 500        G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
 501        G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
 502
 503        nr_refpoints = 3;
 504
 505        memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
 506        memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
 507
 508        /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
 509        if (smc->pre_5_1_assoc_refpoints) {
 510            nr_refpoints = 2;
 511        }
 512    }
 513
 514    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
 515                     refpoints, nr_refpoints * sizeof(refpoints[0])));
 516
 517    _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
 518                     maxdomains, sizeof(maxdomains)));
 519}
 520
 521static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr,
 522                                               void *fdt, int rtas)
 523{
 524    MachineState *ms = MACHINE(spapr);
 525    int nb_numa_nodes = ms->numa_state->num_nodes;
 526    int distance_table_entries = nb_numa_nodes * nb_numa_nodes;
 527    g_autofree uint32_t *lookup_index_table = NULL;
 528    g_autofree uint8_t *distance_table = NULL;
 529    int src, dst, i, distance_table_size;
 530
 531    /*
 532     * ibm,numa-lookup-index-table: array with length and a
 533     * list of NUMA ids present in the guest.
 534     */
 535    lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1);
 536    lookup_index_table[0] = cpu_to_be32(nb_numa_nodes);
 537
 538    for (i = 0; i < nb_numa_nodes; i++) {
 539        lookup_index_table[i + 1] = cpu_to_be32(i);
 540    }
 541
 542    _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table",
 543                     lookup_index_table,
 544                     (nb_numa_nodes + 1) * sizeof(uint32_t)));
 545
 546    /*
 547     * ibm,numa-distance-table: contains all node distances. First
 548     * element is the size of the table as uint32, followed up
 549     * by all the uint8 distances from the first NUMA node, then all
 550     * distances from the second NUMA node and so on.
 551     *
 552     * ibm,numa-lookup-index-table is used by guest to navigate this
 553     * array because NUMA ids can be sparse (node 0 is the first,
 554     * node 8 is the second ...).
 555     */
 556    distance_table_size = distance_table_entries * sizeof(uint8_t) +
 557                          sizeof(uint32_t);
 558    distance_table = g_new0(uint8_t, distance_table_size);
 559    stl_be_p(distance_table, distance_table_entries);
 560
 561    /* Skip the uint32_t array length at the start */
 562    i = sizeof(uint32_t);
 563
 564    for (src = 0; src < nb_numa_nodes; src++) {
 565        for (dst = 0; dst < nb_numa_nodes; dst++) {
 566            distance_table[i++] = get_numa_distance(ms, src, dst);
 567        }
 568    }
 569
 570    _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table",
 571                     distance_table, distance_table_size));
 572}
 573
 574/*
 575 * This helper could be compressed in a single function with
 576 * FORM1 logic since we're setting the same DT values, with the
 577 * difference being a call to spapr_numa_FORM2_write_rtas_tables()
 578 * in the end. The separation was made to avoid clogging FORM1 code
 579 * which already has to deal with compat modes from previous
 580 * QEMU machine types.
 581 */
 582static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr,
 583                                           void *fdt, int rtas)
 584{
 585    MachineState *ms = MACHINE(spapr);
 586    uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
 587                                   spapr_numa_initial_nvgpu_numa_id(ms);
 588
 589    /*
 590     * In FORM2, ibm,associativity-reference-points will point to
 591     * the element in the ibm,associativity array that contains the
 592     * primary domain index (for FORM2, the first element).
 593     *
 594     * This value (in our case, the numa-id) is then used as an index
 595     * to retrieve all other attributes of the node (distance,
 596     * bandwidth, latency) via ibm,numa-lookup-index-table and other
 597     * ibm,numa-*-table properties.
 598     */
 599    uint32_t refpoints[] = { cpu_to_be32(1) };
 600
 601    uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
 602    uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) };
 603
 604    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
 605                     refpoints, sizeof(refpoints)));
 606
 607    _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
 608                     maxdomains, sizeof(maxdomains)));
 609
 610    spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas);
 611}
 612
 613/*
 614 * Helper that writes ibm,associativity-reference-points and
 615 * max-associativity-domains in the RTAS pointed by @rtas
 616 * in the DT @fdt.
 617 */
 618void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
 619{
 620    if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
 621        spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas);
 622        return;
 623    }
 624
 625    spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
 626}
 627
 628static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
 629                                              SpaprMachineState *spapr,
 630                                              target_ulong opcode,
 631                                              target_ulong *args)
 632{
 633    g_autofree uint32_t *vcpu_assoc = NULL;
 634    target_ulong flags = args[0];
 635    target_ulong procno = args[1];
 636    PowerPCCPU *tcpu;
 637    int idx, assoc_idx;
 638    int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
 639
 640    /* only support procno from H_REGISTER_VPA */
 641    if (flags != 0x1) {
 642        return H_FUNCTION;
 643    }
 644
 645    tcpu = spapr_find_cpu(procno);
 646    if (tcpu == NULL) {
 647        return H_P2;
 648    }
 649
 650    /*
 651     * Given that we want to be flexible with the sizes and indexes,
 652     * we must consider that there is a hard limit of how many
 653     * associativities domain we can fit in R4 up to R9, which would be
 654     * 12 associativity domains for vcpus. Assert and bail if that's
 655     * not the case.
 656     */
 657    g_assert((vcpu_assoc_size - 1) <= 12);
 658
 659    vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
 660    /* assoc_idx starts at 1 to skip associativity size */
 661    assoc_idx = 1;
 662
 663#define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
 664                             ((uint64_t)(b) & 0xffffffff))
 665
 666    for (idx = 0; idx < 6; idx++) {
 667        int32_t a, b;
 668
 669        /*
 670         * vcpu_assoc[] will contain the associativity domains for tcpu,
 671         * including tcpu->node_id and procno, meaning that we don't
 672         * need to use these variables here.
 673         *
 674         * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
 675         * macro. The ternary will fill the remaining registers with -1
 676         * after we went through vcpu_assoc[].
 677         */
 678        a = assoc_idx < vcpu_assoc_size ?
 679            be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
 680        b = assoc_idx < vcpu_assoc_size ?
 681            be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
 682
 683        args[idx] = ASSOCIATIVITY(a, b);
 684    }
 685#undef ASSOCIATIVITY
 686
 687    return H_SUCCESS;
 688}
 689
 690static void spapr_numa_register_types(void)
 691{
 692    /* Virtual Processor Home Node */
 693    spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
 694                             h_home_node_associativity);
 695}
 696
 697type_init(spapr_numa_register_types)
 698