qemu/hw/riscv/spike.c
<<
>>
Prefs
   1/*
   2 * QEMU RISC-V Spike Board
   3 *
   4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
   5 * Copyright (c) 2017-2018 SiFive, Inc.
   6 *
   7 * This provides a RISC-V Board with the following devices:
   8 *
   9 * 0) HTIF Console and Poweroff
  10 * 1) CLINT (Timer and IPI)
  11 * 2) PLIC (Platform Level Interrupt Controller)
  12 *
  13 * This program is free software; you can redistribute it and/or modify it
  14 * under the terms and conditions of the GNU General Public License,
  15 * version 2 or later, as published by the Free Software Foundation.
  16 *
  17 * This program is distributed in the hope it will be useful, but WITHOUT
  18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  19 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  20 * more details.
  21 *
  22 * You should have received a copy of the GNU General Public License along with
  23 * this program.  If not, see <http://www.gnu.org/licenses/>.
  24 */
  25
  26#include "qemu/osdep.h"
  27#include "qemu/error-report.h"
  28#include "qapi/error.h"
  29#include "hw/boards.h"
  30#include "hw/loader.h"
  31#include "hw/sysbus.h"
  32#include "target/riscv/cpu.h"
  33#include "hw/riscv/riscv_hart.h"
  34#include "hw/riscv/spike.h"
  35#include "hw/riscv/boot.h"
  36#include "hw/riscv/numa.h"
  37#include "hw/char/riscv_htif.h"
  38#include "hw/intc/riscv_aclint.h"
  39#include "chardev/char.h"
  40#include "sysemu/device_tree.h"
  41#include "sysemu/sysemu.h"
  42
  43static const MemMapEntry spike_memmap[] = {
  44    [SPIKE_MROM] =     {     0x1000,     0xf000 },
  45    [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
  46    [SPIKE_DRAM] =     { 0x80000000,        0x0 },
  47};
  48
  49static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
  50                       uint64_t mem_size, const char *cmdline, bool is_32_bit)
  51{
  52    void *fdt;
  53    uint64_t addr, size;
  54    unsigned long clint_addr;
  55    int cpu, socket;
  56    MachineState *mc = MACHINE(s);
  57    uint32_t *clint_cells;
  58    uint32_t cpu_phandle, intc_phandle, phandle = 1;
  59    char *name, *mem_name, *clint_name, *clust_name;
  60    char *core_name, *cpu_name, *intc_name;
  61    static const char * const clint_compat[2] = {
  62        "sifive,clint0", "riscv,clint0"
  63    };
  64
  65    fdt = s->fdt = create_device_tree(&s->fdt_size);
  66    if (!fdt) {
  67        error_report("create_device_tree() failed");
  68        exit(1);
  69    }
  70
  71    qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
  72    qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
  73    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
  74    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
  75
  76    qemu_fdt_add_subnode(fdt, "/htif");
  77    qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
  78
  79    qemu_fdt_add_subnode(fdt, "/soc");
  80    qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
  81    qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
  82    qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
  83    qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
  84
  85    qemu_fdt_add_subnode(fdt, "/cpus");
  86    qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
  87        RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
  88    qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
  89    qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
  90    qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
  91
  92    for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
  93        clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
  94        qemu_fdt_add_subnode(fdt, clust_name);
  95
  96        clint_cells =  g_new0(uint32_t, s->soc[socket].num_harts * 4);
  97
  98        for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
  99            cpu_phandle = phandle++;
 100
 101            cpu_name = g_strdup_printf("/cpus/cpu@%d",
 102                s->soc[socket].hartid_base + cpu);
 103            qemu_fdt_add_subnode(fdt, cpu_name);
 104            if (is_32_bit) {
 105                qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
 106            } else {
 107                qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
 108            }
 109            name = riscv_isa_string(&s->soc[socket].harts[cpu]);
 110            qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
 111            g_free(name);
 112            qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
 113            qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
 114            qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
 115                s->soc[socket].hartid_base + cpu);
 116            qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
 117            riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
 118            qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
 119
 120            intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
 121            qemu_fdt_add_subnode(fdt, intc_name);
 122            intc_phandle = phandle++;
 123            qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
 124            qemu_fdt_setprop_string(fdt, intc_name, "compatible",
 125                "riscv,cpu-intc");
 126            qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
 127            qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
 128
 129            clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
 130            clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
 131            clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
 132            clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
 133
 134            core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
 135            qemu_fdt_add_subnode(fdt, core_name);
 136            qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
 137
 138            g_free(core_name);
 139            g_free(intc_name);
 140            g_free(cpu_name);
 141        }
 142
 143        addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
 144        size = riscv_socket_mem_size(mc, socket);
 145        mem_name = g_strdup_printf("/memory@%lx", (long)addr);
 146        qemu_fdt_add_subnode(fdt, mem_name);
 147        qemu_fdt_setprop_cells(fdt, mem_name, "reg",
 148            addr >> 32, addr, size >> 32, size);
 149        qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
 150        riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
 151        g_free(mem_name);
 152
 153        clint_addr = memmap[SPIKE_CLINT].base +
 154            (memmap[SPIKE_CLINT].size * socket);
 155        clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
 156        qemu_fdt_add_subnode(fdt, clint_name);
 157        qemu_fdt_setprop_string_array(fdt, clint_name, "compatible",
 158            (char **)&clint_compat, ARRAY_SIZE(clint_compat));
 159        qemu_fdt_setprop_cells(fdt, clint_name, "reg",
 160            0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
 161        qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
 162            clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
 163        riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
 164
 165        g_free(clint_name);
 166        g_free(clint_cells);
 167        g_free(clust_name);
 168    }
 169
 170    riscv_socket_fdt_write_distance_matrix(mc, fdt);
 171
 172    if (cmdline) {
 173        qemu_fdt_add_subnode(fdt, "/chosen");
 174        qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
 175    }
 176}
 177
 178static void spike_board_init(MachineState *machine)
 179{
 180    const MemMapEntry *memmap = spike_memmap;
 181    SpikeState *s = SPIKE_MACHINE(machine);
 182    MemoryRegion *system_memory = get_system_memory();
 183    MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
 184    target_ulong firmware_end_addr, kernel_start_addr;
 185    uint32_t fdt_load_addr;
 186    uint64_t kernel_entry;
 187    char *soc_name;
 188    int i, base_hartid, hart_count;
 189
 190    /* Check socket count limit */
 191    if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
 192        error_report("number of sockets/nodes should be less than %d",
 193            SPIKE_SOCKETS_MAX);
 194        exit(1);
 195    }
 196
 197    /* Initialize sockets */
 198    for (i = 0; i < riscv_socket_count(machine); i++) {
 199        if (!riscv_socket_check_hartids(machine, i)) {
 200            error_report("discontinuous hartids in socket%d", i);
 201            exit(1);
 202        }
 203
 204        base_hartid = riscv_socket_first_hartid(machine, i);
 205        if (base_hartid < 0) {
 206            error_report("can't find hartid base for socket%d", i);
 207            exit(1);
 208        }
 209
 210        hart_count = riscv_socket_hart_count(machine, i);
 211        if (hart_count < 0) {
 212            error_report("can't find hart count for socket%d", i);
 213            exit(1);
 214        }
 215
 216        soc_name = g_strdup_printf("soc%d", i);
 217        object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
 218                                TYPE_RISCV_HART_ARRAY);
 219        g_free(soc_name);
 220        object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
 221                                machine->cpu_type, &error_abort);
 222        object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
 223                                base_hartid, &error_abort);
 224        object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
 225                                hart_count, &error_abort);
 226        sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
 227
 228        /* Core Local Interruptor (timer and IPI) for each socket */
 229        riscv_aclint_swi_create(
 230            memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
 231            base_hartid, hart_count, false);
 232        riscv_aclint_mtimer_create(
 233            memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size +
 234                RISCV_ACLINT_SWI_SIZE,
 235            RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
 236            RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
 237            RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, false);
 238    }
 239
 240    /* register system main memory (actual RAM) */
 241    memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
 242        machine->ram);
 243
 244    /* create device tree */
 245    create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
 246               riscv_is_32bit(&s->soc[0]));
 247
 248    /* boot rom */
 249    memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
 250                           memmap[SPIKE_MROM].size, &error_fatal);
 251    memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
 252                                mask_rom);
 253
 254    /*
 255     * Not like other RISC-V machines that use plain binary bios images,
 256     * keeping ELF files here was intentional because BIN files don't work
 257     * for the Spike machine as HTIF emulation depends on ELF parsing.
 258     */
 259    if (riscv_is_32bit(&s->soc[0])) {
 260        firmware_end_addr = riscv_find_and_load_firmware(machine,
 261                                    RISCV32_BIOS_ELF, memmap[SPIKE_DRAM].base,
 262                                    htif_symbol_callback);
 263    } else {
 264        firmware_end_addr = riscv_find_and_load_firmware(machine,
 265                                    RISCV64_BIOS_ELF, memmap[SPIKE_DRAM].base,
 266                                    htif_symbol_callback);
 267    }
 268
 269    if (machine->kernel_filename) {
 270        kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
 271                                                         firmware_end_addr);
 272
 273        kernel_entry = riscv_load_kernel(machine->kernel_filename,
 274                                         kernel_start_addr,
 275                                         htif_symbol_callback);
 276
 277        if (machine->initrd_filename) {
 278            hwaddr start;
 279            hwaddr end = riscv_load_initrd(machine->initrd_filename,
 280                                           machine->ram_size, kernel_entry,
 281                                           &start);
 282            qemu_fdt_setprop_cell(s->fdt, "/chosen",
 283                                  "linux,initrd-start", start);
 284            qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
 285                                  end);
 286        }
 287    } else {
 288       /*
 289        * If dynamic firmware is used, it doesn't know where is the next mode
 290        * if kernel argument is not set.
 291        */
 292        kernel_entry = 0;
 293    }
 294
 295    /* Compute the fdt load address in dram */
 296    fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
 297                                   machine->ram_size, s->fdt);
 298    /* load the reset vector */
 299    riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
 300                              memmap[SPIKE_MROM].base,
 301                              memmap[SPIKE_MROM].size, kernel_entry,
 302                              fdt_load_addr, s->fdt);
 303
 304    /* initialize HTIF using symbols found in load_kernel */
 305    htif_mm_init(system_memory, mask_rom,
 306                 &s->soc[0].harts[0].env, serial_hd(0));
 307}
 308
 309static void spike_machine_instance_init(Object *obj)
 310{
 311}
 312
 313static void spike_machine_class_init(ObjectClass *oc, void *data)
 314{
 315    MachineClass *mc = MACHINE_CLASS(oc);
 316
 317    mc->desc = "RISC-V Spike board";
 318    mc->init = spike_board_init;
 319    mc->max_cpus = SPIKE_CPUS_MAX;
 320    mc->is_default = true;
 321    mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
 322    mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
 323    mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
 324    mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
 325    mc->numa_mem_supported = true;
 326    mc->default_ram_id = "riscv.spike.ram";
 327}
 328
 329static const TypeInfo spike_machine_typeinfo = {
 330    .name       = MACHINE_TYPE_NAME("spike"),
 331    .parent     = TYPE_MACHINE,
 332    .class_init = spike_machine_class_init,
 333    .instance_init = spike_machine_instance_init,
 334    .instance_size = sizeof(SpikeState),
 335};
 336
 337static void spike_machine_init_register_types(void)
 338{
 339    type_register_static(&spike_machine_typeinfo);
 340}
 341
 342type_init(spike_machine_init_register_types)
 343