qemu/hw/timer/sse-timer.c
<<
>>
Prefs
   1/*
   2 * Arm SSE Subsystem System Timer
   3 *
   4 * Copyright (c) 2020 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 or
   9 * (at your option) any later version.
  10 */
  11
  12/*
  13 * This is a model of the "System timer" which is documented in
  14 * the Arm SSE-123 Example Subsystem Technical Reference Manual:
  15 * https://developer.arm.com/documentation/101370/latest/
  16 *
  17 * The timer is based around a simple 64-bit incrementing counter
  18 * (readable from CNTPCT_HI/LO). The timer fires when
  19 *  Counter - CompareValue >= 0.
  20 * The CompareValue is guest-writable, via CNTP_CVAL_HI/LO.
  21 * CNTP_TVAL is an alternative view of the CompareValue defined by
  22 *  TimerValue = CompareValue[31:0] - Counter[31:0]
  23 * which can be both read and written.
  24 * This part is similar to the generic timer in an Arm A-class CPU.
  25 *
  26 * The timer also has a separate auto-increment timer. When this
  27 * timer is enabled, then the AutoIncrValue is set to:
  28 *  AutoIncrValue = Reload + Counter
  29 * and this timer fires when
  30 *  Counter - AutoIncrValue >= 0
  31 * at which point, an interrupt is generated and the new AutoIncrValue
  32 * is calculated.
  33 * When the auto-increment timer is enabled, interrupt generation
  34 * via the compare/timervalue registers is disabled.
  35 */
  36#include "qemu/osdep.h"
  37#include "qemu/log.h"
  38#include "qemu/timer.h"
  39#include "qapi/error.h"
  40#include "trace.h"
  41#include "hw/timer/sse-timer.h"
  42#include "hw/timer/sse-counter.h"
  43#include "hw/sysbus.h"
  44#include "hw/irq.h"
  45#include "hw/registerfields.h"
  46#include "hw/clock.h"
  47#include "hw/qdev-clock.h"
  48#include "hw/qdev-properties.h"
  49#include "migration/vmstate.h"
  50
  51REG32(CNTPCT_LO, 0x0)
  52REG32(CNTPCT_HI, 0x4)
  53REG32(CNTFRQ, 0x10)
  54REG32(CNTP_CVAL_LO, 0x20)
  55REG32(CNTP_CVAL_HI, 0x24)
  56REG32(CNTP_TVAL, 0x28)
  57REG32(CNTP_CTL, 0x2c)
  58    FIELD(CNTP_CTL, ENABLE, 0, 1)
  59    FIELD(CNTP_CTL, IMASK, 1, 1)
  60    FIELD(CNTP_CTL, ISTATUS, 2, 1)
  61REG32(CNTP_AIVAL_LO, 0x40)
  62REG32(CNTP_AIVAL_HI, 0x44)
  63REG32(CNTP_AIVAL_RELOAD, 0x48)
  64REG32(CNTP_AIVAL_CTL, 0x4c)
  65    FIELD(CNTP_AIVAL_CTL, EN, 0, 1)
  66    FIELD(CNTP_AIVAL_CTL, CLR, 1, 1)
  67REG32(CNTP_CFG, 0x50)
  68    FIELD(CNTP_CFG, AIVAL, 0, 4)
  69#define R_CNTP_CFG_AIVAL_IMPLEMENTED 1
  70REG32(PID4, 0xFD0)
  71REG32(PID5, 0xFD4)
  72REG32(PID6, 0xFD8)
  73REG32(PID7, 0xFDC)
  74REG32(PID0, 0xFE0)
  75REG32(PID1, 0xFE4)
  76REG32(PID2, 0xFE8)
  77REG32(PID3, 0xFEC)
  78REG32(CID0, 0xFF0)
  79REG32(CID1, 0xFF4)
  80REG32(CID2, 0xFF8)
  81REG32(CID3, 0xFFC)
  82
  83/* PID/CID values */
  84static const int timer_id[] = {
  85    0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
  86    0xb7, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
  87    0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
  88};
  89
  90static bool sse_is_autoinc(SSETimer *s)
  91{
  92    return (s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_EN_MASK) != 0;
  93}
  94
  95static bool sse_enabled(SSETimer *s)
  96{
  97    return (s->cntp_ctl & R_CNTP_CTL_ENABLE_MASK) != 0;
  98}
  99
 100static uint64_t sse_cntpct(SSETimer *s)
 101{
 102    /* Return the CNTPCT value for the current time */
 103    return sse_counter_for_timestamp(s->counter,
 104                                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
 105}
 106
 107static bool sse_timer_status(SSETimer *s)
 108{
 109    /*
 110     * Return true if timer condition is met. This is used for both
 111     * the CNTP_CTL.ISTATUS bit and for whether (unless masked) we
 112     * assert our IRQ.
 113     * The documentation is unclear about the behaviour of ISTATUS when
 114     * in autoincrement mode; we assume that it follows CNTP_AIVAL_CTL.CLR
 115     * (ie whether the autoincrement timer is asserting the interrupt).
 116     */
 117    if (!sse_enabled(s)) {
 118        return false;
 119    }
 120
 121    if (sse_is_autoinc(s)) {
 122        return s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_CLR_MASK;
 123    } else {
 124        return sse_cntpct(s) >= s->cntp_cval;
 125    }
 126}
 127
 128static void sse_update_irq(SSETimer *s)
 129{
 130    bool irqstate = (!(s->cntp_ctl & R_CNTP_CTL_IMASK_MASK) &&
 131                     sse_timer_status(s));
 132
 133    qemu_set_irq(s->irq, irqstate);
 134}
 135
 136static void sse_set_timer(SSETimer *s, uint64_t nexttick)
 137{
 138    /* Set the timer to expire at nexttick */
 139    uint64_t expiry = sse_counter_tick_to_time(s->counter, nexttick);
 140
 141    if (expiry <= INT64_MAX) {
 142        timer_mod_ns(&s->timer, expiry);
 143    } else {
 144        /*
 145         * nexttick is so far in the future that it would overflow the
 146         * signed 64-bit range of a QEMUTimer. Since timer_mod_ns()
 147         * expiry times are absolute, not relative, we are never going
 148         * to be able to set the timer to this value, so we must just
 149         * assume that guest execution can never run so long that it
 150         * reaches the theoretical point when the timer fires.
 151         * This is also the code path for "counter is not running",
 152         * which is signalled by expiry == UINT64_MAX.
 153         */
 154        timer_del(&s->timer);
 155    }
 156}
 157
 158static void sse_recalc_timer(SSETimer *s)
 159{
 160    /* Recalculate the normal timer */
 161    uint64_t count, nexttick;
 162
 163    if (sse_is_autoinc(s)) {
 164        return;
 165    }
 166
 167    if (!sse_enabled(s)) {
 168        timer_del(&s->timer);
 169        return;
 170    }
 171
 172    count = sse_cntpct(s);
 173
 174    if (count >= s->cntp_cval) {
 175        /*
 176         * Timer condition already met. In theory we have a transition when
 177         * the count rolls back over to 0, but that is so far in the future
 178         * that it is not representable as a timer_mod() expiry, so in
 179         * fact sse_set_timer() will always just delete the timer.
 180         */
 181        nexttick = UINT64_MAX;
 182    } else {
 183        /* Next transition is when count hits cval */
 184        nexttick = s->cntp_cval;
 185    }
 186    sse_set_timer(s, nexttick);
 187    sse_update_irq(s);
 188}
 189
 190static void sse_autoinc(SSETimer *s)
 191{
 192    /* Auto-increment the AIVAL, and set the timer accordingly */
 193    s->cntp_aival = sse_cntpct(s) + s->cntp_aival_reload;
 194    sse_set_timer(s, s->cntp_aival);
 195}
 196
 197static void sse_timer_cb(void *opaque)
 198{
 199    SSETimer *s = SSE_TIMER(opaque);
 200
 201    if (sse_is_autoinc(s)) {
 202        uint64_t count = sse_cntpct(s);
 203
 204        if (count >= s->cntp_aival) {
 205            /* Timer condition met, set CLR and do another autoinc */
 206            s->cntp_aival_ctl |= R_CNTP_AIVAL_CTL_CLR_MASK;
 207            s->cntp_aival = count + s->cntp_aival_reload;
 208        }
 209        sse_set_timer(s, s->cntp_aival);
 210        sse_update_irq(s);
 211    } else {
 212        sse_recalc_timer(s);
 213    }
 214}
 215
 216static uint64_t sse_timer_read(void *opaque, hwaddr offset, unsigned size)
 217{
 218    SSETimer *s = SSE_TIMER(opaque);
 219    uint64_t r;
 220
 221    switch (offset) {
 222    case A_CNTPCT_LO:
 223        r = extract64(sse_cntpct(s), 0, 32);
 224        break;
 225    case A_CNTPCT_HI:
 226        r = extract64(sse_cntpct(s), 32, 32);
 227        break;
 228    case A_CNTFRQ:
 229        r = s->cntfrq;
 230        break;
 231    case A_CNTP_CVAL_LO:
 232        r = extract64(s->cntp_cval, 0, 32);
 233        break;
 234    case A_CNTP_CVAL_HI:
 235        r = extract64(s->cntp_cval, 32, 32);
 236        break;
 237    case A_CNTP_TVAL:
 238        r = extract64(s->cntp_cval - sse_cntpct(s), 0, 32);
 239        break;
 240    case A_CNTP_CTL:
 241        r = s->cntp_ctl;
 242        if (sse_timer_status(s)) {
 243            r |= R_CNTP_CTL_ISTATUS_MASK;
 244        }
 245        break;
 246    case A_CNTP_AIVAL_LO:
 247        r = extract64(s->cntp_aival, 0, 32);
 248        break;
 249    case A_CNTP_AIVAL_HI:
 250        r = extract64(s->cntp_aival, 32, 32);
 251        break;
 252    case A_CNTP_AIVAL_RELOAD:
 253        r = s->cntp_aival_reload;
 254        break;
 255    case A_CNTP_AIVAL_CTL:
 256        /*
 257         * All the bits of AIVAL_CTL are documented as WO, but this is probably
 258         * a documentation error. We implement them as readable.
 259         */
 260        r = s->cntp_aival_ctl;
 261        break;
 262    case A_CNTP_CFG:
 263        r = R_CNTP_CFG_AIVAL_IMPLEMENTED << R_CNTP_CFG_AIVAL_SHIFT;
 264        break;
 265    case A_PID4 ... A_CID3:
 266        r = timer_id[(offset - A_PID4) / 4];
 267        break;
 268    default:
 269        qemu_log_mask(LOG_GUEST_ERROR,
 270                      "SSE System Timer read: bad offset 0x%x",
 271                      (unsigned) offset);
 272        r = 0;
 273        break;
 274    }
 275
 276    trace_sse_timer_read(offset, r, size);
 277    return r;
 278}
 279
 280static void sse_timer_write(void *opaque, hwaddr offset, uint64_t value,
 281                            unsigned size)
 282{
 283    SSETimer *s = SSE_TIMER(opaque);
 284
 285    trace_sse_timer_write(offset, value, size);
 286
 287    switch (offset) {
 288    case A_CNTFRQ:
 289        s->cntfrq = value;
 290        break;
 291    case A_CNTP_CVAL_LO:
 292        s->cntp_cval = deposit64(s->cntp_cval, 0, 32, value);
 293        sse_recalc_timer(s);
 294        break;
 295    case A_CNTP_CVAL_HI:
 296        s->cntp_cval = deposit64(s->cntp_cval, 32, 32, value);
 297        sse_recalc_timer(s);
 298        break;
 299    case A_CNTP_TVAL:
 300        s->cntp_cval = sse_cntpct(s) + sextract64(value, 0, 32);
 301        sse_recalc_timer(s);
 302        break;
 303    case A_CNTP_CTL:
 304    {
 305        uint32_t old_ctl = s->cntp_ctl;
 306        value &= R_CNTP_CTL_ENABLE_MASK | R_CNTP_CTL_IMASK_MASK;
 307        s->cntp_ctl = value;
 308        if ((old_ctl ^ s->cntp_ctl) & R_CNTP_CTL_ENABLE_MASK) {
 309            if (sse_enabled(s)) {
 310                if (sse_is_autoinc(s)) {
 311                    sse_autoinc(s);
 312                } else {
 313                    sse_recalc_timer(s);
 314                }
 315            }
 316        }
 317        sse_update_irq(s);
 318        break;
 319    }
 320    case A_CNTP_AIVAL_RELOAD:
 321        s->cntp_aival_reload = value;
 322        break;
 323    case A_CNTP_AIVAL_CTL:
 324    {
 325        uint32_t old_ctl = s->cntp_aival_ctl;
 326
 327        /* EN bit is writeable; CLR bit is write-0-to-clear, write-1-ignored */
 328        s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_EN_MASK;
 329        s->cntp_aival_ctl |= value & R_CNTP_AIVAL_CTL_EN_MASK;
 330        if (!(value & R_CNTP_AIVAL_CTL_CLR_MASK)) {
 331            s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_CLR_MASK;
 332        }
 333        if ((old_ctl ^ s->cntp_aival_ctl) & R_CNTP_AIVAL_CTL_EN_MASK) {
 334            /* Auto-increment toggled on/off */
 335            if (sse_enabled(s)) {
 336                if (sse_is_autoinc(s)) {
 337                    sse_autoinc(s);
 338                } else {
 339                    sse_recalc_timer(s);
 340                }
 341            }
 342        }
 343        sse_update_irq(s);
 344        break;
 345    }
 346    case A_CNTPCT_LO:
 347    case A_CNTPCT_HI:
 348    case A_CNTP_CFG:
 349    case A_CNTP_AIVAL_LO:
 350    case A_CNTP_AIVAL_HI:
 351    case A_PID4 ... A_CID3:
 352        qemu_log_mask(LOG_GUEST_ERROR,
 353                      "SSE System Timer write: write to RO offset 0x%x\n",
 354                      (unsigned)offset);
 355        break;
 356    default:
 357        qemu_log_mask(LOG_GUEST_ERROR,
 358                      "SSE System Timer write: bad offset 0x%x\n",
 359                      (unsigned)offset);
 360        break;
 361    }
 362}
 363
 364static const MemoryRegionOps sse_timer_ops = {
 365    .read = sse_timer_read,
 366    .write = sse_timer_write,
 367    .endianness = DEVICE_LITTLE_ENDIAN,
 368    .valid.min_access_size = 4,
 369    .valid.max_access_size = 4,
 370};
 371
 372static void sse_timer_reset(DeviceState *dev)
 373{
 374    SSETimer *s = SSE_TIMER(dev);
 375
 376    trace_sse_timer_reset();
 377
 378    timer_del(&s->timer);
 379    s->cntfrq = 0;
 380    s->cntp_ctl = 0;
 381    s->cntp_cval = 0;
 382    s->cntp_aival = 0;
 383    s->cntp_aival_ctl = 0;
 384    s->cntp_aival_reload = 0;
 385}
 386
 387static void sse_timer_counter_callback(Notifier *notifier, void *data)
 388{
 389    SSETimer *s = container_of(notifier, SSETimer, counter_notifier);
 390
 391    /* System counter told us we need to recalculate */
 392    if (sse_enabled(s)) {
 393        if (sse_is_autoinc(s)) {
 394            sse_set_timer(s, s->cntp_aival);
 395        } else {
 396            sse_recalc_timer(s);
 397        }
 398    }
 399}
 400
 401static void sse_timer_init(Object *obj)
 402{
 403    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 404    SSETimer *s = SSE_TIMER(obj);
 405
 406    memory_region_init_io(&s->iomem, obj, &sse_timer_ops,
 407                          s, "sse-timer", 0x1000);
 408    sysbus_init_mmio(sbd, &s->iomem);
 409    sysbus_init_irq(sbd, &s->irq);
 410}
 411
 412static void sse_timer_realize(DeviceState *dev, Error **errp)
 413{
 414    SSETimer *s = SSE_TIMER(dev);
 415
 416    if (!s->counter) {
 417        error_setg(errp, "counter property was not set");
 418        return;
 419    }
 420
 421    s->counter_notifier.notify = sse_timer_counter_callback;
 422    sse_counter_register_consumer(s->counter, &s->counter_notifier);
 423
 424    timer_init_ns(&s->timer, QEMU_CLOCK_VIRTUAL, sse_timer_cb, s);
 425}
 426
 427static const VMStateDescription sse_timer_vmstate = {
 428    .name = "sse-timer",
 429    .version_id = 1,
 430    .minimum_version_id = 1,
 431    .fields = (VMStateField[]) {
 432        VMSTATE_TIMER(timer, SSETimer),
 433        VMSTATE_UINT32(cntfrq, SSETimer),
 434        VMSTATE_UINT32(cntp_ctl, SSETimer),
 435        VMSTATE_UINT64(cntp_cval, SSETimer),
 436        VMSTATE_UINT64(cntp_aival, SSETimer),
 437        VMSTATE_UINT32(cntp_aival_ctl, SSETimer),
 438        VMSTATE_UINT32(cntp_aival_reload, SSETimer),
 439        VMSTATE_END_OF_LIST()
 440    }
 441};
 442
 443static Property sse_timer_properties[] = {
 444    DEFINE_PROP_LINK("counter", SSETimer, counter, TYPE_SSE_COUNTER, SSECounter *),
 445    DEFINE_PROP_END_OF_LIST(),
 446};
 447
 448static void sse_timer_class_init(ObjectClass *klass, void *data)
 449{
 450    DeviceClass *dc = DEVICE_CLASS(klass);
 451
 452    dc->realize = sse_timer_realize;
 453    dc->vmsd = &sse_timer_vmstate;
 454    dc->reset = sse_timer_reset;
 455    device_class_set_props(dc, sse_timer_properties);
 456}
 457
 458static const TypeInfo sse_timer_info = {
 459    .name = TYPE_SSE_TIMER,
 460    .parent = TYPE_SYS_BUS_DEVICE,
 461    .instance_size = sizeof(SSETimer),
 462    .instance_init = sse_timer_init,
 463    .class_init = sse_timer_class_init,
 464};
 465
 466static void sse_timer_register_types(void)
 467{
 468    type_register_static(&sse_timer_info);
 469}
 470
 471type_init(sse_timer_register_types);
 472